溶液中金属增强荧光机理的研究以及荧光蛋白在基因调控领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足生物学领域飞速发展的技术需求,同时伴随着荧光材料和显微技术的逐渐发展,荧光技术已成为生物研究很多领域的重要技术手段。而近年来由于生物原位探测技术的发展使越来越多的研究者专注于生物体内探测,如利用荧光分子对生物细胞进行标记来研究细胞内某些组织的结构、利用荧光蛋白对某些基因进行标记来监测这些基因的表达情况等。由于生物体内原位检测具有更高的真实性和可信度,使得荧光技术在这方面的应用也越来越被人们所关注。要实现生物体内荧光探测,首先需要对靶向分子进行标记。目前被广泛应用的主要有两种形式的标签:一种是利用某些荧光材料与细胞体内靶向蛋白或DNA等分子特异性结合,通过对这些荧光分子的探测达到研究靶向分子的目的。而另一种是在DNA水平上利用荧光蛋白基因对表达目的蛋白的基因进行标记,通过检测荧光蛋白实现对其报告基因表达情况进行研究的目的。本论文分别对两种生物体荧光探针进行了研究。
     对于第一种形式的探索,鉴于目前的研究重点还集中寻找荧光特性比染料分子优异、生物毒性却比量子点低的荧光材料,而近年来有些研究者发现稀土配合物的许多优良的特性,使其成为一种非常有前景的生物荧光探测材料,同时由于生物体内所有生物分子及成份都是液相环境工作的,故我们对Eu配合物在溶液中的光学特性进行研究,同时为了提高其荧光探测灵敏度,我们也对溶液中Ag纳米粒子增强该Eu配合物荧光的机理进行了研究,为溶液中金属增强荧光技术提供理论依据
     我们制备了不同浓度的Eu(TTA)_3·2H_2O配合物的二甲基甲酰胺(DMF)溶液,同时利用还原法制备了均匀分散的Ag纳米粒子胶体溶液,研究了Ag纳米粒子对配合物Eu(TTA)_3·2H_2O的DMF溶液发光的增强和猝灭的机理。我们通过吸收光谱、激发和发射光谱、发光动力学等性质的研究,揭示了Ag纳米粒子对Eu配合物荧光增强和猝灭的机制。实验结果显示,Ag纳米粒子对不同浓度的配合物溶液分别表现为增强和猝灭,当配合物浓度较高时,配合物荧光强度随Ag浓度增加先增强后减弱,此时配合物分子之间存在较强的相互作用,而Ag纳米粒子会降低这种相互作用。在溶液中,Ag纳米粒子可以通过增强Eu~(3+)周围的局域场提高~5D_0-~7F_2的电偶极辐射跃迁速率;同时通过减小配合物分子间相互作用降低配合物分子间的荧光共振能量传递,从而降低~5D0的非辐射跃迁速率。这两种因素导致稀土配合物荧光增强。另一方面,当配合物浓度较低时,Ag纳米粒子对配合物荧光表现为猝灭,这是Ag纳米粒子和配合物对激发光吸收竞争导致的。
     我们还研究了一定浓度的配合物Eu(TTA)_3·2H_2O的DMF溶液中,Ag纳米粒子对配合物的荧光增强效应与激发波长的依赖关系。我们分别选择269nm,341nm和375nm波长的光作为激发光,研究了不同激发波长下该Eu配合物溶液的激发和发射强度随溶液中Ag纳米粒子浓度的变化关系。通过对吸收光谱、激发和发射光谱等荧光性质的研究,我们发现Ag纳米粒子的存在不仅可以增强Eu~(3+)的~5D_0-~7F_2的电偶极辐射跃迁速率,同时还可以提高激发效率,增强激发强度。不同波长激发时Ag纳米粒子对配合物溶液激发和发射强度增强的程度存在很大差异,当采用375nm激发时,荧光增强效果最好。同时实验结果还显示,Ag纳米粒子的存在还降低了Eu配合物内部有机配体TTA向发光中心Eu~(3+)的能量传递效率。通过分析得出,Ag纳米粒子不仅可以增强Eu~(3+)的辐射跃迁速率、降低溶液中配合物的非辐射跃迁速率,同时还可以增强局域场、提高配合物溶液的激发效率,降低配合物内部的能量传递效率,这些因素共同决定了溶液中配合物的荧光强度。
     而对于第二种形式,自荧光蛋白被发现以来,由于其无毒性、可以对靶向蛋白进行精确标记、可以标记活细胞并实时观测等其它荧光材料所不具备的优良特性,使其成为生物体内基因表达研究中不可替代的技术。而近年来由于人们通过对荧光蛋白进行改造得到了很多不同颜色、不同特性的荧光蛋白变体,这使得其应用更加广泛。本文中我们利用具有成熟快、荧光信号强的黄色荧光蛋白变体Venus作为报告基因,对自抑制调控回路中的调控蛋白的表达情况进行了研究。我们构建了以Venus作为报告子的tetR自抑制调控回路,并将该回路整合到大肠杆菌染色体上,实现回路的单拷贝。通过改变诱导剂aTc的浓度和诱导时间来达到改变自抑制回路中反应参数的目的,从而研究处于不同环境中不同参数下自抑制回路调控蛋白(即抑制子TetR)的表达分布。通过研究我们发现在蛋白分子与DNA结合和解离速率比降解速率快得多的时候,系统处于绝热近似的状态,此时所有细胞只有一种表达状态;而当我们同过调节诱导条件使得结合速率与解离速率与降解速率相当,甚至低于降解速率的时候,系统处于一种非绝热的状态,我们的结果显示,此时细胞不再是一种表达状态,而是存在两种可能的状态,即在同一环境的细胞群体中,部分细胞处于高表达水平,而另一部分细胞却处在低表达状态。该实验结果与我们小组通过建立自抑制回路的理论模型得到的模拟结果完全吻合,进一步说明了理论预言的正确性,以及该实验结果的可靠性。这一研究结果从根本上为细胞分化的研究提供了更加可靠地依据。
In order to meet the technical requirements of the rapid development in biologyfiled,also accompanied by the gradually developed of the fluorescent material andmicroscopy,fluorescence technology has become a very important technique in manyareas of biological research.In recent years more and more researchers focued on thein vivo detection,such as labeling some specific tissues in the cells to study theirstructure,or labeling label a protein by a fluorescence protein to measure itsexpression level.Due to the higher authenticity and credibility of in situ detecion invivo than in vitro,more and more people began to pay attention to this area.The mostimportant technique of in situ detection was how to label the targeting molecules.Two kinds of lables are widely used now.One was that using the fluorscencemoecules specifically binding to the target,and studying the target molecules bydetecting the fluorescence labels.The other form of label was fluorescence protein.The protein labeled by a fluorescence protein(FP)was extremely specific,and theexpression level of target gene was reported and detected by the FP.Here wediscussed these two forms of fluorescence labels
     For the first form,the current key issue was still looking for a promisingcandidate fluorescence label,which had better optical properties than dye and lowertoxicity than Quantum Dot.Due to the excellent characteristics of the rare earthcomplexes,many researchers considered it as a very promising fluorescence materialfor in vivo detection.Because all the moelecules inside the cells were situated insolution environment,we need to find a rare earth complexe which had goodfluorescence properties.In order to do that,we synthesized Eu complexes,and studiedits optical characteristic in solution phase.We also tried to enhance the fluorescenceintensity of the complexes in solution by Ag nanoparticles,and discussed the originsof metal enhanced fluorescence in solution.
     Luminescence enhancement and quenching of Eu(TTA)_3·2H_2O complex in DMF(N,N-dimethylformamide)solution containing silver nanoparticles were observed, which depended on the concentrations of both europium complex and silvernanoparticles.Their origins were discussed based on absorption spectra,excitationand emission spectra,and luminescent decay dynamics.The results indicated thatwhen the concentration of Eu complex was high enough,strong interaction amongcomplex molecules occurred.The presence of Ag nanoparticles definitely decreasedthe interaction among complex molecules.In the solution containing Ag nanoparticlesthe electronic-dipole transition rate of5D0-~7F_2increased due to enhanced local fieldsurrounding Eu~(3+)ions,while the nonradiative transition rate from5D0decreasedowing to decreased resonant energy transfer among europium complex molecules.These two factors led to the luminescence enhancement of europium complex.As tothe luminescent quenching,was attributed to absorption competition between Agnanoparticles and europium complex at excited wavelength.
     We also studied the wavelength dependence of Ag nanoparticles enhanced Eucomplexes fluorescence in solution.We selected three different wavelengthes,269nm,341nm and375nm as the excitation light,and explored how the excitation andemission intensity vary with increasing of Ag nanoparticles concentration.When wedicussed the absorption spectra,excitation and emission spectra,we found that Agnanoparticles could not only increase the electronic-dipole transition rate of Eu~(3+),butalso increase the excitation intensity and excitation efficiency.We also found that boththe enhancement factor of excitation and emission light intensity were very differentwhen we used different excitation wavelength.The results also showed that thepresence of Ag nanoparticles also reduced the efficiency of energy transfer betweenEu~(3+)and organic ligands(TTA).Finally,we concluded that Ag nanoparticles not onlyincreased the radiative transition,decreased nonradiative transition,but also enhancedthe local field effect of Ag nanoparticles,increased excitation efficiency of thecomplex solution,reduced internal energy transfer efficiency of Eu complexemolecule.All these factors worked together,finally enhanced the fluorescence of Eucomplex in solution.
     For the fluorescence protein,since it also was a protein,so it did not have atoxic effect on cell.Meanwhile,the genetically encoded FPs were extremely specific when it was used to label a protein.These advantages made it became the mostsuitable fluorescence label in the in vivo detection since the GFP was discovered.Asfurther development of GFP and finding of its variants with different fluorescencebehaviour,the fluorescence protein has been used by more and more researchers indifferent biolodical field.
     We constructed a tetR self-repressor gene regulation circuit,and used Venus asthe reporter of transcription factor TetR.Here,Venus is a YFP variant whichmaturated very fast and had higher fluorescence signal than many other kindfluorescence proteins.In order to make sure the copy number of the self-repressorgene regulation circuit is single-copy,we integrated it on the chromosome of E.coli.We induced the cells under different concentration of aTc to change the biochemicalreaction parameters of the regutated circuit,such as the binding and unbinding ratesbetween TetR and oprator tetO.We explored the expression level distribution of TetRin different biochemical environment by monitoring fluorescence of Venus.Ourresults showed that when the binding/unbinding were much faster than thesynthesis/degradation of protein,the concentration distribution of TetR in all the cellsexhibited one peak under the data from flow cytometry.But when we tuned thecondition of inducing to make the the binding/unbinding were even slower than thesynthesis/degradation,we found that there were two peaks happened,which meantthat there were two population cells with different expression level of regulatorprotein even when the same kind of cells grew in same environment.This result fittedto the theoretical prediction which was also got in our group very well.It must be asignificant breakthrough in the research filed of cell differentiation.
引文
[1]S.I Weissan.Intramolecular energy transfer the fluorescence of complexes ofeuropium.J.Chem.Phys.,1942,10:214-217
    [2]M.Morita,S.Shionoya.Effect of halogenation on intramolecular energy transfer inrare earth chelates.Bull.Chem.Soc.Jap.,1970,43,2404.
    [3]M L Bhaumik,L J Nugent.Time-resolved spectroscopy of Eu chelates.J.Chem.Phys.,1966,43,1680.
    [4]N.Filipescu,W F Sager,F A Serafin.Substitituten effects on intermolecularenergy transfer(II)the fluorescence spectra of Eu and Tbβ-dikeketone chelates.J.Phys.Chem.,1964,68,3324.
    [5]S.Sato,M.Wada.Relations between intramolecular energy efficiencies and tripletstate energies in rare earth β-dikeketone chelates.Bull.Chem.Soc.Jap.,1970,43,1952-1962
    [6]D L Rose,J Blanc and R Pressley.Interaction of electrons and nuclei in Li metal.J.Appl.Phys.Lett.,1966,8,101
    [7]Y.Matsuda,S.Makishima and S.Shionoya.Mechanism of intramolecular energytransfer in rare earth chelates as revealed by infrared absorption measurements.Bull.Chem.Soc.Jap.,1969,42,356.
    [8]T Fukuzawa,N Ebara.Amine sensitization of the fluorescence of tris(dibenzoylmethano)europium(III).Bull.Chem.Soc.Jap.,1972,45,1324
    [9]M L Bhaumik,Quenching and temption dependence of fluorescence in rare earthchelates.J.Chem.Phys.,1964,40,3711.
    [10]R.Reisfeld,C.K.Jorgensen,Jorgensen.Laser and excited states of rare earths,Springer-Verlag,Berlin,1977.
    [11]G A Crosby,R E Whan.Intramoleular energy transfer in Yb organic chelates.Spectrochim.Acta.1958,10,377.
    [12]G A Crosby,R E Whan,J J Freeman.Spectroscopic studies of rare earth chelates.J.Phys.Chem.,1962,66,2493
    [13]G A Crosby,R E Whan,J.Alire.Intramoleular energy transfer in rare chelates-role of the triplet state.J.Phys.Chem.,1961,34,743
    [14]C Liang,W Li,Z Hong,X Liu,J Peng,…L Liu,Z Lu,M Xie,Z Liu,J Yu.Energy transfer process from polymer to rare earth complexes.Synthetic Metals(1997)Volume:91,Issue:1-3,Pages:151-154
    [15]Dong-Jin Qian,Hong-Guo Liu,Hong-Xiang Huang,Qiang Fu,Xu-Sheng Feng.Europium complex nanoparticles:preparation,characterization and opticalproperties.Materials Letters512001525-528
    [16]Lü Yu-guang,LI Gang,SHI Chun-hui,YU Lian-sheng,LUAN Fang,ZHANGFu-jun.Synthesis and emission analysis of novel rare earth complexEu(TTA)3(2NH2-Phen).Trans.Nonferrous Met.Soc.China20(2010)2336-2339.
    [17]F.X.Zang,O.Lengyel,Wenlian Li,Z.R.Hong,Ze Liu,C.S.Lee,S.T.Lee.Electron mobility of rare earth complexes measured by transient electro-luminescence method.Solid-State Electronics50(2006)1584-1587
    [18]Youxuan Zheng,Jun Lin,Yujun Liang,Qin Lin,Yingning Yu,Shubin Wang,Chuan Guo,Hongjie Zhang.Green electroluminescent device with a terbiumb-diketonate complex as emissive center.Optical Materials20(2002)273-278
    [19]黄春辉.稀土配位化学.北京;科学出版社,1997.363-379
    [20]杨迟,杨燕生.大学化学,1995,10(1):6-10
    [21]Sabbatn N,Grardigle M,Lehn J-M.Coord Chem Rev,1993,13;201-228
    [22]S.Nie and S.R.Emory(1997).Science275,1102-1106
    [23]K.Kneipp,H Kneipp,V.Bhaskaran Kartha,R,Manoharan,G.Deinum,I.Itzkan,R.R.Dasari and M.S.Feld(1998)Phys.Rev.E57(6),R6281-R6284
    [24]Drexhage K H.J.Lumin.,1970,1P2:693-701.
    [25]Drexhage K H.Progress in Optics(ed.Wolf E).Amsterdam:North2Holland,1974.161-323.
    [26]Gersten J,Nitzan A.J.Chem.Phys.,1981,75:1139-1152.
    [27]Weitz D A,Garoff S,Gersten J I,et al.J.Chem.Phys.,1983,78:5324-5338.
    [28]Weitz D A,Garoff S,Anson C D,et al.Opt.Lett.,1982,7:89-91.
    [29]Aussenegg F R,Leitner A,Lippitch M E,et al.Surf.Sci.,1987,139:935-945.
    [30]Leitner A,Lippitch M E,Draxler S,et al.Appl.Phys.B,1985,36:105-109.
    [31]Lakowicz J R.Anal.Biochem.,2001,298:1-24.
    [32]Lakowicz J R,Shen Y B,D’Auria S,et al.Anal.Biochem.,2002,301:261-277
    [33]Lakowicz J R.Anal.Biochem.,2004,324:153-169.
    [34]Gryczynski I,Malicka J,Gryczynski Z,et al.Anal.Biochem.,2004,324:170-182
    [35]Lakowicz J R.Anal.Biochem.,2005,337:171-194.
    [36]Joseph R.Lakowicz,*Joanna Malicka,Sabato DAuria,and Ignacy
    [37]By Cédric Louis,Stephane Roux,Gilles Ledoux and Laurence Lemelle.Adv.Mater.16,2163(2004).
    [38]Jung-Hoon Song,Tolga Atay,Sufei Shi,Hayato Urabe,and Arto V.NurmikkoNano Lett.,Vol.5,No.8,2005
    [39]Kadir Aslan,Meng Wu,Joseph R.Lakowicz,and Chris D.Geddes.FluorescentCore Shell Ag@SiO2Nanocomposites for Metal-Enhanced Fluorescence andSingle Nanoparticle Sensing Platforms.J.Am.Chem.Soc.,2007,129(6),pp1524-1525
    [40]Kadir Aslan,Michael J.R.Previte,Yongxia Zhang and Chris D.Geddes.Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films.J.Phys.Chem.C,2008,112(47),pp18368-18375
    [41]Kadir Aslan,Stuart N.Malyn and Chris D.Geddes.Metal-EnhancedFluorescence from Gold Surfaces:Angular Dependent Emission.Journal ofFluorescence.2007.17:7-13,
    [42]Yongxia Zhang,Apala Padhyay,Jesus E.Sevilleja,Richard L.Guerrant andChris D.Geddes.Interactions of Fluorophores with Iron Nanoparticles:Metal-Enhanced Fluorescence.J.Phys.Chem.C,2010,114(17),pp7575-7581
    [43]Yongxia Zhang,Anatoliy Dragan and Chris D.Geddes.Wavelength Dependenceof Metal-Enhanced Fluorescence.J.Phys.Chem.C,2009,113(28),pp12095-12100
    [44]Rodd Pribik,Kadir Aslan,Yongxia Zhang and Chris D.Geddes.Metal-EnhancedFluorescence from Chromium Nanodeposits.J.Phys.Chem.C,2008,112(46),pp17969-17973
    [45]Yongxia Zhang,Anatoliy Dragan and Chris D.Geddes.Broad WavelengthRange Metal-Enhanced Fluorescence Using Nickel Nanodeposits.J.Phys.Chem.C,2009,113(36),pp15811-15816
    [46]Zhang,Yongxia;Dragan,Anatoliy;Geddes,Chris D.Metal-enhancedfluorescence from tin nanostructured surfaces.Journal of Applied Physics.2010,107(2)024302-024302-5
    [47]Yongxia Zhang1,Kadir Aslan1,Michael J.R.Previte1,and Chris D.Geddes.Metal-enhanced fluorescence:Surface plasmons can radiate a fluorophore’sstructured emission.Appl.Phys.Lett.90,053107(2007)
    [48]Kadir Aslan,Stuart N.Malyn,Chris D.Geddes.Angular-dependentmetal-enhanced fluorescence from silver island films Chemical Physics LettersVolume453,Issues4–6,3March2008,Pages222-228
    [49]H.Nabika and S.Deki Eur.Phys.J.D24,369-372(2003)
    [50]Hideki Nabika and Shigehito Deki J.Phys.Chem.B,Vol.107,No.35,20039161-9164
    [51]Youyi Sun,Hongfang Jiu,Douguo Zhang,Jiangang Gao,Bin Guo,Qijin ZhangChemical Physics Letters410(2005)204-208
    [52]David J.Lewis,Thomas M.Day,Julie V.MacPherson and Zoe PikramenouChem.Commun.,2006,1433-1435
    [53]Yuehui Wang,Ji Zhou,Ting Wang.Materials Letters62(2008)1937-1940
    [54]Yuehui Wang,Xinran Zhou,Ting Wang,Ji Zhou Materials Letters62(2008)3582-3584
    [55]Raether H.Surface Plasmons Berlin:Springer1988
    [56]Chao N M,Chu K U,Shen Y R.Mol Cryst Liq Cryst,1981;67;261
    [57]H Sugai,I Ghanashev and M Nagatsu,High-density flat plasma production basedon surface waves,Plasma Sources Science and Technology7No.21998,192-205
    [58]Lakowicz J R.Anal.Biochem.,2001,298:1-24
    [59]Stefan A M,Pieter G K,Harry A A,et al.N a tu re M ateria ls,2003,2(4):2292232.
    [60]Nabika H,Deki S.J.Phys.Chem.B,2003,107(35):916129164.
    [61]Geddes C D,Lakowicz J R.J.F luoresc.,2002,12(2):1212129.
    [62]Gersten J,Nitzan A.J.Chem.Phys.,1981,75:1139—1152
    [63]Lakowicz J R,Shen Y B,D’Auria S,et al.Anal.Biochem.,2002,301:261—277
    [64]Lakowicz J R.A na l.B iochem.,2004,337(2):1712194.
    [65]Joseph R.Lakowicz Analytical Biochemistry337(2005)171-194
    [66]Joseph R.Lakowicz Plasmonics(2006)1:5-33
    [67]Raether H(1988)Surface Plasmons on Smooth and Rough Surfaces and onGratings.Springer-Verlag,New York,pp136
    [68]Raether H(1978)Surface plasma oscillations and their applications.In:Hass G,Francombe MH,Hoffman RW(eds)Physics ofThin Films.Academic Press,New York,pp145-261
    [69]Forstmann F,Gerhardts RR(1986)Metal optics near the plasma frequency.Springer Tracts Mod Phys109:132
    [70]Lakowicz J R.Radiative decay engineering5:Metal2enhancedfluorescence and plasmon em ission.Anal.Biochem.,2004,337(2):1712194.
    [71]Zhang Yongxia,A slan K,Previte M J R.Metal2enhanced fluorescence:Surface p lasmons can radiate a fluorophore π s structured em ission.Appl.Phys.Lett.,2007,90(5):0531072123.
    [72]A slan K,Leonenko Z,Lakowicz J R,et al.Annealed silver2island film sfor app lications in metal-enhanced fluorescence:interp retation in terms ofradiating plasmons.J.Fluoresc.,2005,15(5):6432654.
    [73]Lakowicz J R.Radiative decay engineering5:Metal2enhanced fluorescenceand plasmon em ission.A na l.B iochem.2004,337(2):1712194.
    [74]Komarova,Y.,1.Peloquin,and G.Borisy(2005).Microinjection of fluorophore-labeled proteins.In Live Cell Imaging,a Laboratory Manual,R.D.Goldmanand D.L.Spector,Editors.Cold Spring Harbor Laboratory Press:Cold SpringHarbor,New York,pp.67-86.
    [75]O'Hare,H.M.,K.Johnsson,and A.Gautier(2007).Chemical probes shed lighton protein function.Curr Opin Struct BioI,17(4):488-94.
    [76]Sako,Y.,S.Minoghchi,and T.Yanagida(2000).Single-molecule imaging ofEGFR signalling on the surface of living cells.Nat Cell BioI,2(3):168-72.
    [77]Schutz,G.J.,G.Kada,et al.(2000).Properties of lipid microdomains in amuscle cell membrane visualized by single molecule microscopy.EMBO J19:892-901.
    [78]Murakoshi,H.,R.lino,et al.(2004).Single-molecule imaging analysis of Rasactivation in living cells.Proc Natl Acad Sci USA,101(19):7317-22.
    [79]Guignet,E.G.,1.M.Segura,et al.(2007).Repetitivereversiblelabeling ofproteins at polyhistidine sequences for single-molecule imaging in live cells.Chemphyschem,8(8):1221-7.
    [80]Heim,R.,A.B.Cubitt,and R.Y.Tsien(1995).Improved green fluorescence.Nature,373(6516):663-4.
    [81]Yang,F,L.G.Moss,and G.N.Phillips,Jr.(1996).The molecular structure ofgreen fluorescent protein.Nat Biotechnol,14(10):1246-51.
    [82]Ormo,M.,A.B.Cubitt,et al.(1996).Crystal structure of the Aequoreavictoria green fluorescent protein.Science,273(5280):1392-5.
    [83]M Chalfie,Y Tu,G Euskirchen,WW Ward and DC Prasher.Green fluorescentprotein as a marker for gene expression.Science(1994)263,802-805
    [84]Heim,R.,D.C.Prasher,and R.Y.Tsien(1994).Wavelength mutations andposttranslational autoxidation of green fluorescent protein.Proc Nat Acad SciUSA,91(26):12501-4.
    [85]Ward,W.W.,H.1.Prentice,et al.(1982).Spectral perturbations of the Aequoreagreen fluorescent protein.Photochem Photobiol,35:803-8.
    [86]Remington,S.J.(2006).Fluorescent proteins:maturation,photochemistry andphotophysics.Curr Opin Struct BioI,16(6):714-21.
    [87]M.Avlund,Ian B.Dodd,K.Sneppen and S.Krishna.Minimal Gene RegulatoryCircuits that Can Count like Bacteriophage Lambda.J.Mol.Biol.(2009)394,681–693
    [88]Gardner,T.S.,C.R.Cantor,and J.J.Collins.2000.Construction of a genetictoggle switch in Escherichia coli.Nature.403(6767):339-342.
    [89]Elowitz,M.B.,and S.Leibler.2000.A synthetic oscillatory network oftranscriptional regulators.Nature.403(6767):335-338.
    [90]Ptashne,M.,A.D.Johnson,and C.O.Pabo.1982.A genetic switch in a bacterialvirus.Sci.Am.247(5):128-130,132,134-140.
    [91]Eichenberger,P.,M.Fujita,S.T.Jensen,E.M.Conlon,D.Z.Rudner,S.T.Wang,C.Ferguson,K.Haga,T.Sato,J.S.Liu,and R.Losick.2004.The program ofgene transcription for a single differentiating cell type during sporulation inBacillus subtilis.PLoS Biol.2(10):e328.
    [92]Saddic,L.A.,B.Huvermann,S.Bezhani,Y.Su,C.M.Winter,C.S.Kwon,R.P.Collum,and D.Wagner.2006.The LEAFY target LMI1is a meristem identityregulator and acts together with LEAFY to regulate expression ofCAULIFLOWER.Development.133(9):1673-1682.
    [93]Boyer,L.A.,T.I.Lee,M.F.Cole,S.E.Johnstone,S.S.Levine,J.P.Zucker,M.G.Guenther,R.M.Kumar,H.L.Murray,R.G.Jenner,D.K.Gifford,D.A.Melton,R.Jaenisch,and R.A.Young.2005.Core transcriptional regulatory circuitry inhuman embryonic stem cells.Cell.122(6):947-956.
    [94]Odom,D.T.,N.Zizlsperger,D.B.Gordon,G.W.Bell,N.J.Rinaldi,H.L.Murray,T.L.Volkert,J.Schreiber,P.A.Rolfe,D.K.Gifford,E.Fraenkel,G.I.Bell,andR.A.Young.2004.Control of pancreas and liver gene expression by HNFtranscription factors.Science.303(5662):1378-1381.
    [95]Alon,U.2007.Network motifs:theory and experimental approaches.Nat.Rev.Genet.8(6):450-461.
    [96]Milo,R.,S.Shen-Orr,S.Itzkovitz,N.Kashtan,D.Chklovskii,and U.Alon.2002.Network motifs:simple building blocks of complex networks.Science.298(5594):824-827.
    [97]G.Lajos.D.,Jancura,P.,Miskovsky.J.V.,Garc′a-Ramos and S.Sanchez-Cortes,J.Phys.Chem.C112,12974(2008).
    [98]E.Dulkeith,A.C.Morteani,T.Niedereichholz,T.A.Klar,and J.Feldmann,Phys.Rev.Lett.89,203002(2002).
    [99]Chris D.Geddes,Haishi Cao,Ignacy Gryczynski,Zygmunt Gryczynski,JiyuFang and Joseph R.Lakowicz,J.Phys.Chem.A107,3443(2003).
    [100]Neogi A,Morkoc H,Nanotechnology.15,1252(2004).
    [101]H.Nabika and S.Deki,J.Phys.Chem.,B35,9161(2003).
    [102]Youyi Sun,Zhi Zheng,Qing Yan,Jiangang Gao,Hongfang Jiu and Qijin Zhang,Materials Letters.60,2756(2006).
    [103]Zhu XJ,Wang XL and Jiang CQ.Anal.Biochem.341,299(2005).
    [104]Auntute JB and Wensel T G,BioconjugateChem.6,88(1995).
    [105]Horrocks W,Dew J and Collier W E.J.Am.Chem.Soc.103,2856(1981).
    [106]By Cédric Louis,Stephane Roux,Gilles Ledoux and Laurence Lemelle.Adv.Mater.16,2163(2004).
    [107]T.Hayakawa,S.T.Selvan and M.Nogami,J.Non-Cryst.Solids.259,16(1999).
    [108]Joseph R.Lakowicz,Badri P.Maliwal,Joanna Malicka,Zygmunt Gryczynskiand Ignacy Gryczynski,Journal of Fluorescence.12,431(2002).
    [109]T.Hayakawa,S.T.Selvan and M.Nogami,Appl.Phys.Lett.74,1513(1999).
    [110]H.Nabika and S.Deki,Eur.Phys.J.D24,369(2003).
    [111]H.F.Jiu,W.Su and Y.H.Ji.et al.Chin.J.Chem.Phys.17,4460(2004).
    [112]K.Clays,E.Hemdrickx,M.Triest and A.Persoons,J.Mol.Liq.67,133(1995).
    [113]M.Dkaki,S.Ait-Lyazidi,M.Haddad,M.Hnach,C.Cazeau Dubroca and J.P.Aycard,J.Phys.Chem.A.102,5275(1998).
    [114]Yoshihiko Nakao,Hiromu Sugeta and Yoshimasa Kyogoku.Bull.Chem.Soc.Jpn.58,1767(1985).
    [115]Jan Alsins,Mikael Bjoè rling,Istva n Furo and Valdis Egle,J.Phys.Org.Chem.12,171(1999).
    [116]Erik R.Farquhar,John P.Richard and Janet R.Morrow,Inorg.Chem.46,7169(2007).
    [117]Bao-Li An,Chuan-Wei Hua,Hong-Liang Ma,Qing-Yi Pan and Ming-Xin Li,Journal of Luminescence.127,297(2007).
    [118]C.H.Huang,K.Z.Wang,G.X.Xu,X.S.Zhao,X.M.Xie and Y.Yu.et al.J.Phys.Chem.99,14397(1995).
    [119]Xurong Xu and Mianzeng Su.Luminescence and luminescent materials,Chemical Industry Press,13(2004).
    [120]D.A.Weitz,S.Garoff,C.D.Hanson,T.J.Gramila and J.I.Gersten.OpticsLett.7,89(1982).
    [121]Forster,V.Th.Ann.Phys.(Leipzig)6,55(1948).
    [122]D.L.Dexter.J.Chem.Phys.21,836(1953).
    [123]J.M.Chen,T.I.Ho and C.Y.Mou.,J.Phys.Chem.94,2889(1990).
    [124]Monatshefte fuèr Chemie129,151-158(1998))
    [125]Ingolia NT,Weissman JS.(2008)Systems biology:Reverse engineering the cell.Nature,454:1059-62.
    [126]Allison KR and Collins JJ.Bacteria as control engineers.Molecular Cell41:4-5(2011)
    [127]Ruder WC,Lu T and Collins JJ.Synthetic biology moving into the clinic.Science333:1248-1252(2011).
    [128]Khalil AS and Collins JJ.Synthetic biology:applications come of age.NatureReviews Genetics11:367-379(2010).
    [129]Eldar A,Elowitz MB.Functional roles for noise in genetic circuits.Nature.2010Sep.
    [130]Guet,C.,Elowitz,M.,Hsing,W.&Leibler,S.Combinatorial synthesis ofgenetic networks.Science.296,1466–1470(2002).
    [131]Hasty J,McMillen D and Collins JJ.Engineered gene circuits.Nature420:224-230(2002).
    [132]Kirill Tarassov,Vincent Messier,Christian R.Landry,Stevo Radinovic,Mercedes M.Serna Molina,Igor Shames,Yelena Malitskaya,Jackie Vogel,Howard Bussey and Stephen W.Michnick.An in Vivo Map of the Yeast ProteinInteractome.Science.320,1465-1470(2008)
    [133]Breslow DK,Cameron DM,Collins SR,Schuldiner M,Stewart-Ornstein J,Newman HW,Braun S,Madhani HD,Krogan NJ,Weissman JS.(2008)Acomprehensive strategy enabling high-resolution functional analysis of the yeastgenome.Nature Methods,Aug;5(8):711-8.
    [134]Becskei,A.&Serrano,L.Engineering stability in gene networks byautoregulation.Nature405,590–593(2000).
    [135]Becskei,A.,Séraphin.B.&Serrano,L.Positive feedback in eukaryotic genenetworks:cell differentiation by graded to binary response conversion.EMBO J.20,2528–2535(2001).
    [136]Ferrell JE Jr.,Pomerening JR,Kim SY,Trunnell NB,Xiong W,Huang CY,Machleder EM.Simple,realistic models of complex biological processes:positive feedback and bistability in a cell fate switch and a cell cycle oscillator.FEBS Lett.2009Dec17;583(24):
    [137]G.K.Ackers,A.D.Johnson,and M.A.Shea,Proc.Natl.Acad.Sci.U.S.A.79,1129(1982).
    [138]J.E.M.Hornos,D.Schultz,G.C.P.Innocentini,J.Wang,A.M.Walczak,J.N.Onuchic,and P.G.Wolynes.Self-regulating gene:An exact solution.PHYSICAL REVIEW E72,051907(2005)
    [139]Haidong Feng,Bo Han,and Jin Wang.Adiabatic and Non-AdiabaticNon-Equilibrium Stochastic Dynamics of Single Regulating Genes.J.Phys.Chem.B,2011,115(5),pp1254–1261
    [140]Attila Becskei&Luis Serrano.Engineering stability in gene networks byautoregulation.Nature2000.405:590-593
    [141]D.W.Austin,M.S.Allen,J.M.McCollum,R.D.Dar,J.R.Wilgus,G.S.Sayler,N.F.Samatova,C.D.Cox&M.L.Simpson.Gene network shaping ofinherent noise spectra.Nature2006.439:608-611
    [142]Yu,J.,J.Xiao,et al.,(2006),Probing gene expression in live cells,one proteinmolecule at a time Science.,311(5767):1600-3.
    [143]Rolf Lutz and Hermann Bujard.Independent and tight regulation oftranscriptional units in Escherichia coli via the LacR/O,the TetR/O andAraC/I1-I2regulatory elements.Nucleic Acids Research,1997,25(6),1203–1210
    [144]Andreas Haldimann and Barry L.Wanner.Conditional-Replication,Integration,Excision,and Retrieval Plasmid-Host Systems for Gene Structure-FunctionStudies of Bacteria.J.Bacteriol.2001,183(21):6384-6393.
    [145]C F Beck,R Mutzel,J Barbé and W Müller.A multifunctional gene(tetR)controls Tn10-encoded tetracycline resistance.J.Bacteriol.1982.150:633-642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700