DEM多尺度表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尺度是指在研究某一物体或现象时所采用的空间或时间单位,又可指某一现象或过程在空间和时间上所涉及到的范围和发生的频率,简单地说,尺度就是客体在其“容器”中规模相对大小的描述。尺度问题是地理信息科学以及地图学、遥感科学、地理学、水文学等学科中必须研究的核心理论问题。地理信息、地理现象以及地理过程在认知、获取、建模、测度、解译、可视化、存储、传输等处理过程中的任何一个环节都脱离不了对尺度的讨论,随着地理信息科学的应用领域的不断扩大和需求层次的日益提高,特别是数字化环境下,一方面,获取的空间数据量非常巨大,另一方面,人们对于随时随地的使用高精度的数据有着更高的期望,这就要求数字地形数据能够以高效的方式在各种介质上传递并再现。另外,对于如此海量的数据无论使用何种逼真的可视化技术,也难以让人迅速有效的挖掘其中需要的知识,它已经远远超出了人脑认知的尺度范围。因此,利用多尺度理论和技术多层次观察、处理、分析地理现象、描述地理过程变得越来越重要。空间数据的多尺度处理与表达,已成为建立多空间尺度数据库,实现多尺度GIS或无级比例尺GIS的核心内容,同时建立尺度依赖的空间数据表达模型,实现地理信息多尺度自动综合是解决空间数据多尺度处理与表达的关键技术。
     尺度和空间尺度理论是地理学、地图学和地理信息科学等学科中研究的热点问题,而且这些理论有着深厚的空间认知、信息科学、计算数学、计算机图形学以及工程应用的基础。本文在仔细探讨地理信息的空间尺度理论基础上,研究了导致多尺度现象产生的机理,总结了现有的对空间信息进行多尺度、多分辨率分析的技术和方法,在深入分析DEM数据多尺度表达的内涵基础上,结合地形特征线的重要作用和渐进式地图综合的基本思想,利用小波多分辨率分析原理和尺度理论的最新成果,提出了一个对DEM进行渐进式多尺度表达的理论框架,实现对DEM的渐进式多尺度表达和自动综合。
     本论文主要介绍和研究了以下几个问题:
     一)从地理信息科学的学科发展、理论研究以及社会需求等方面阐述空间数据多尺度处理问题研究的科学意义和必要性,叙述本论文的研究目标、主要研究内容以及论文章节的组织结构。
     二)介绍了当今空间数据多尺度处理与表达研究领域的研究主题和国内外研究发展的状态。系统地分析和归纳空间尺度的相关研究成果与存在问题以及DEM数字地形分析中的尺度类型和尺度变换方法,为进一步的开展研究提供目标和技术方向。
     三)分析了当前空间数据库存在的不足,研究了渐进式地图综合的基本思想及其形式化描述,指出渐进式思想是建立多尺度纵向连接关系的有效方法,结合地理空间的尺度特征,提出基于渐进式综合思想的多尺度表达模型研究了渐进式地图综合的思想,以使DEM数据处理过程中具有尺度维的分析处理和表达能力。
     四)研究了地形特征线的推理。首先基于约束Delaunay三角网(简称CDT)建立了等高线的层次结构,并利用这种关系实现地形分类以及等高线走向的调整。其次提取CDT中的平三角形区域,对于每一个平区域提取概略性地形特征线,对地形特征线上每一个点的高程值按一定的算法进行加权内插,得到更符合实际地形的特征线,将地形特征线加入TIN修正平三角形区域。再次研究了一种从成组等高线中提取地形特征线的方法:1)构造等高线的约束Delaunary三角网;2)计算等高线上各顶点的转角、曲率值及形状指数,并依据给定的阈值确定候选地形特征点集;3)按照相应的原则将符合条件的点连接成地形结构线;4)并对其进行优化。接下来还研究基于等高线约束的Delaunary三角网基础上求算每个Delaunary三角形(面片)的流向,并根据各种流向的组合关系来对Delaunary三角形的公共边进行分类,将相关的边连接得出地形结构线的算法。
     五)研究了基于小波分析理论的空间数据多尺度处理模型。首先简述小波分析理论的基本原理,分析空间数据多尺度处理与表示研究中应用小波分析理论的可能性和必要性;然后从小波分析理论的应用角度,研究空间数据多尺度处理与表示的原理和模型。基于小波分析理论,研究并提出满足尺度依赖空间数据模型要求并与之相配套的空间数据多尺度处理模型,完成基于二进制、多进制的多尺度表达模型的实现以及实验结果的分析,并研究基于提升变换的多尺度表达模型和实现原理,从性能上与前面的方法进行了比较。
     六)在改进的地形特征线的提取算法的基础上,实现了基于多尺度DEM的地形特征线的提取,并利用结构线的重叠程度来验证本文提出的方法的合理性。
     最后对本论文研究作全面总结,并指出下一步的研究方向和问题。
Scale is the space or time unit used for study of a geographical object or a geographical phenomenon. It also refers to the scope and the frequency of the phenomenon or process involved in space or time domain. In brief, it is the description of the relative size of the object in its container. Scale is the foundational issue that should be studied in geographic information science and cartography, remote sensing science, geography, hydrology and other disciplines.
     In any aspect of the process of cognition, acquisition, modeling, measurement, visualization, storage, and transmission of geographic information, phenomenon and process, scale is inseparable from the discussion. As the application field of geographic information science is expanding and the society requirements is increasing. Especially under the digital environment, on the one hand, the spatial data acquired is huge; on the other hand, people have high expectation for use of high-precision data at anytime and anywhere. This requires the digital terrain data to be able to efficiently transmit among a variety of media and be represented. In addition, for such a mass of data regardless of what kind of realistic visualization technology, it will be difficult for people to quickly and effectively mine the required knowledge. It has gone far beyond the scale scope of human brain cognitive. Therefore, using multi-scale theory and technology to observe, process, and analyze the geographic phenomenon in multiple levels, and describe geographic process become so important. The multi-scale processing and representation of spatial data has become the fundamental content in creating multi-space scale database and realizing multi-scale GIS or scale-free GIS or on the fly GIS, at the same time, building spatial data representation model dependent on scale and realizing multi-scale automatic generalization of geographic information is the key technology for processing and representing multi-scale spatial data.
     Scale and spatial scale theory is a hot research issue in geography, cartography and geographic information science, and these theories are on the basis of spatial cognition, information science, computational mathematics, computer graphics, as well as application.
     Based on the spatial scale theory of geographic information, this dissertation studies the mechanism of multi-scale phenomenon; summarizes present multi-scale and multi-resolution technologies and methods of spatial information. After analysing the connotation of DEM multi-scale representation in-depth, merging the important function of terrain characteristic lines and the basic idea of progressive map generalization, making use of wavelet multi-resolution analysis theory and the newest results of scale theory, a theoretical frame of progressive multi-scale representation for DEM is proposed and progressive multi-scale representation and automatic generalization of DEM is accomplished.
     The dissertation includes the following sections:
     1) The scientific significance and necessity of multi-scale processing of spatial data is discussed from the aspect of academic development and theoretical research of geographic information and social demands. The research general goal, main research content and the organization of dissertation is given.
     2) Related works. Analyzes the research content and the present results of spatial scale, introduces the researching topics and development status at home and abroad in the area of spatial data multi-scale processing and representation. It systematically analyzes and summarizes relevant researching results and existing problems of spatial scale, scale type and scale transform methods in DEM digital terrain analysis. It mainly analyzes scale characteristics of geographic space to provide goal and technical direction for further research.
     3) Research on the multi-scale representation model based on progressive generalization. It analyzes the inefficiency of current spatial database, studies the basic idea and its formal description of progressive map generalization, and points out that progressive idea is an effective method to set up multi-scale vertical connection relationship. Combining with the scale characteristics of geographic space, it puts forward and studies the multi-scale representation model based on progressive generalization so that there is analyzing, processing and expressing ability of scale-dimension when dealing with DEM data.
     4) Study on the reasoning of terrain characteristic lines. First of all, it sets up constrained Delaunay triangulation (CDT) and a hierarchy structure of contour lines, and realizes terrain classification and adjustment of the trend of contours. Then it extracts the flat triangle regions from CDT, and extracts general terrain characteristic lines from each flat region. Conduct weighting interpolation on the elevation value of each point in the terrain characteristic lines according to certain algorithms and achieve characteristic lines more in line with the actual terrain. Add the terrain characteristic lines into TIN to amend the flat triangle region. And then the method of extracting terrain characteristic lines from group contours is proposed:Firstly, Constrained Delaunay Triangulation of contours is constructed; secondly, the turn angle, curvature and shape index values of each vertex on the contour are calculated, and the candidate terrain characteristic points are classified by the given threshold; thirdly, connect the points matching conditions into terrain characteristic lines according to corresponding principles; fourthly, the line is optimized. Compute the flow direction of each triangle in Constrained Delaunay Triangulation based on contours, and classify the public sides of Constrained Delaunay triangle according to the combination relationship between various flow directions. Finally, the algorithm connecting the related sides to obtain terrain characteristic lines is proposed in dissertation.
     5) The multi-scale processing model of spatial data based on wavelet analysis theory. It briefly introduces the basic principle of wavelet analysis theory, analyzes the possibility and necessity of using wavelet analysis theory in processing and representing multi-scale spatial data. It analyzes the principle and model of multi-scale processing and representation of spatial data from the application aspect of wavelet analysis theory. Based on wavelet analysis theory, it proposes multi-scale processing model of spatial data that meets the requirements of and matches scale-dependent spatial data model. It realizes multi-scale representation model based on binary and multi numbering system, and makes experimental analysis. It also studies the multi-scale representation model and implementation principle based on lifting transform, and does comparison with former methods.
     6) Based on the improved extracting algorithm of terrain characteristic lines, terrain characteristic lines based on multi-scale DEM are extracted and the reasonableness of the method proposed in this dissertation is verified by the overlap rate of terrain characteristic lines.
     At last, a comprehensive conclusion is summed up and the research directions and problems to be solved in future are pointed out in the paper.
引文
1.艾廷华,祝国瑞,张根寿.基于Delaunay三角网模型的等高线地形特征提取及谷地树结构化组织[J].遥感学报.2003,7(4):292-298.
    2.陈述彭,鲁学军,周成虎.1999.地理信息系统导论,北京:科学出版社.
    3.程正兴,2003.小波分析算法与应用[M].西安:西安交通大学出版社,3.
    4.崔伟宏,1995,空间数据结构研究[M],北京:中国科学技术出版社
    5.杜晓初,2005.多重表达中空间拓扑关系等价性研究,武汉大学博士学位论文.
    6.费立凡.地形图等高线成组综合的试验[J].武汉测绘科技大学学报,18(增):1993,6-22.
    7.傅伯杰,2001,景观生态学原理及应用[M],北京:科学出版社
    8.傅国斌.遥感水文应用中的尺度问题,地球科学进展,2001,166.
    9.耿艳峰,冯叔初等.基于提升格式的双正交小波构造[J].石油大学学报(自然科学版),2005,6(3):146-147.
    10.郭庆胜,2002,地图自动综合理论与方法[M],测绘出版社,131-135.
    11.郭庆胜,1998,地图自动综合新理论与新方法的研究,博士论文,武汉:武汉测绘科技大学
    12.郭建忠,安敏.GIS中多比例尺地理数据的管理和应用[J],解放军测绘学院学A,1999,16(1):47-49.
    13.贾天旭,郑南宁,基于Bubble小波的多尺度边缘提取[J],电子学报,1996,24(4).
    14.李成名.1998.基于Voronoi图的空间关系描述、表达与推断,博士论文,武汉:武汉测绘科技大学
    15.李德仁.关于地理信息理论的若干思考[J],地理信息世界.1996,(4).
    16.李军,周成虎.地学数据特征分析[J],地理科学.1999,19(2)
    17.李霖,李德仁.GIS中二维空间目标的非原子性和尺度性[J],测绘学报.1994,23(3):315-322
    18.李霖.吴凡.2005.空间数据多尺度表达模型及其可视化[M].北京:科学出版社.
    19.李建平,1997,小波分析与信号处理——理论、应用及软件实现[M],重庆:重庆大学出版社
    20.李建平,唐远炎,著,1999,小波分析方法的应用[M],重庆:重庆大学出版社
    21.李军,景宁,孙茂印,一种域和对象相集成的面向对象GIS数据模型[J],计算机科学,2000,27(6)
    22.刘春,王家林,刘大杰.多尺度小波分析用于DEM网格数据综合[J].中国图像图形学报,2004,9(3):340-345
    23.刘学军,卢华兴,等.论DEM地形分析中的尺度问题[J].地理研究,2007,26(3):433-442.
    24.刘学军.2002.基于规则格网数字高程模型解译算法误差分析与评价[D].武汉:武汉大学.
    25.刘学军,龚健雅,等.DEM结构特征对坡度坡向的影响分析[J],地理与地理信息科学,2004,20(6):1-5。
    26.齐清文,张安定.关于多比例尺GIS中数据库多重表达的几个问题的研究[J], 地理研究,1999,18(2)
    27.秦前清、杨宗凯,1994,实用小波分析[M],西安电子科技大学出版社.
    28.汤国安,龚健雅,陈正江,等.数字高程模型地形描述精度量化模拟研究[J].测绘学报,2001,30(4):361-365。
    29.苏理宏,李小文,黄裕霞.遥感尺度向题研究进展[J].地球科学进展,2001,16(4):544-548.
    30.邵巨良.1993.小波理论与航空影像中建筑物的自动识别,博士论文,武汉:武汉测绘科技大学.
    31.毋河海.地图信息的自动综合,测绘通报,2001.
    32.王家耀,武芳,1998.数字地图自动综合原理与方法[M].北京:解放军出版社.
    33.王家耀,成毅.空间数据的多尺度特征与自动综合[J].海洋测绘,2004,24(4):1-3
    34.王家耀,陈毓芬,2000,理论地图学[M],解放军出版社.
    35.王家耀.2001.空间信息系统原理[M],北京:科学出版社.
    36.王涛,毋河海.顾及多因素的面状目标多层次骨架线提取[J].武汉大学学报信息科学版.2004,29(6):533-536
    37.吴纪桃,王桥.复杂地貌形态多比例尺表达的二维小波分析研究[J].遥感学报,2003,7(2):93-97.
    38.吴凡,祝国瑞.基于小波分析的地貌多尺度表达与自动综合[J],武汉大学学报(信息科学版),2001,26(2)
    39.吴凡,2002.地理空间数据的多尺度处理与表示研究,博士论文.武汉大学.
    40.武芳,2003.空间数据的多尺度表达自动综合[M],解放军出版社.
    41.武芳,2000.协同式地图自动综合研究与实践,博士论文,郑州:解放军测绘学院
    42.毋河海.地图信息自动综合基本问题研究[J].武汉测绘科技大学学报.2000,25(5):377-384
    43.毋河海.1991.地图数据库系统[M],北京:测绘出版社
    44.毋河海.基于多叉树结构的曲线综合算法[J].武汉大学学报信息科学版,2004,29(6):479-483
    45.王光霞,朱长青,史文中.数字高程模型地形描述精度的研究[J],测绘学报.2004,33(2):168-173.
    46.王树良.2002.基于数据场和云模型的空间数据挖掘和知识发现.博士论文,武汉大学.
    47.王铮,丁金宏等.1994.理论地理学概论[M],科学出版社。
    48.王涛,毋河海.等高线拓扑关系的构建以及应用[J].武汉大学学报(信息科学版),2004,29(5):438—442.
    49.王涛,2005.地貌信息提取中的结构化问题研究,武汉大学,博士论文.
    50.王桥,毋河海,1998,地图信息的分形描述与自动综合研究[M],武汉:武汉测绘科技大学出版社
    51.于浩,杨勤科等.基于小波多尺度分析的DEM数据综合研究[J].测绘科学,2008,33(3):93-95.
    52.应申,郭仁忠等.面向模型的大比例尺制图综合框架设计与实现[J],测绘学报,2002,31(4):344-349.
    53.应申,李霖.数字环境下的地图模型综合[J],华中师范大学学报(自然科学版),2004,38(4):524-527.
    54.应申,李霖.空间尺度的基础性问题研究[J],武汉大学学报(信息科学版).2005,30(3):199-203.
    55.应申,李霖等.计算几何在制图综合中的应用[J],测绘科学,2005,(3).
    56.应申,李霖,2007.空间可视分析方法和应用[M],测绘出版社(北京)
    57.应申.2007.空间可视分析的关键技术和应用研究,博士论文,武汉大学.
    58.尹章才,李霖,艾自兴.基于图论的时空数据模型研究[J].测绘学报.2003,32(2):168-172.
    59.张维强,宋国乡.基于一种新的阈值函数的小波域信号去噪[J].西安电子科技大学学报(自然科学版),2004(4).
    60.张继贤,林宗坚,柳健等.利用小波进行多尺度地形生成方法的研究[J],中国图形图像学报.1998,11(3):931-935.
    61.朱长青.1997.小波分析理论、应用模型与影像分析,博士论文,郑州:解放军测绘学院
    62.章毓晋.1999.图像处理和分析[M].北京:清华大学出版社.
    63.周启明,刘学军.2006.数字地形分析[M]北京:科学出版社.
    64.朱心雄等著.2000.自由曲线曲面造型枝术[M],北京:科学出版社
    65.邹建国.2000.景观生态学——格局,过程、尺度与等级[M],北京:高等教育出版社
    66. Allen TT. and Starr T,1982. Hierarchy:Perspectives for Ecological Complexity. Chicago:University of Chicago Press.
    67. Anselin. L., Getis, A.,1993. Spatial statistical analysis and geographic information systems. In:Fischer, M.M., Nijkamp, P., editors:Geographic Information Systems, spatial modeling and policy evaluation. Berlin: Springer-Verlag. pp.35-49.
    68. Arbia G, Benedetti R and Espa G.. Effects of the MAUP on image classification. Geogr.Syst.,1996,3:123-141.
    69. Atkinson P.M.1997, Scale and Spatial Dependence:In, van Gardingen P.R., Foody G.M., and Curran P.J. (Eds), Scaling-up:from cell to landscape. Cambridge University Press, Cambridge.
    70. Atkinson PM and Tatee NJ. Spatial Scale Problems and Geostatistical Solution: A Review. Professional Geogarpher.2000,52(4):607--623.
    71. Bauer BO, Veblen TT and Winkler J. A.,1999. On Methodology in Physical Geography:Current Status, Implications and Future Prospects. Annals of the Association of American geographers.89.
    72. Baishawa A, Arvind C., Digital Terrain Model:Elevation Extraction and Accuracy Assessment [J]. Journal of Surveying Engineering,1997, (5):71-76.
    73. Ballard D.,1981, Strip Trees:A Hierarchical Representation for Curves. Communication of the Association for Computing Machinery,14:310-321
    74. Bian Ling,1997, Scale, Multiscaling, Remote Sensing, and GIS. In Scale and Remote Sensing and GIS, ed.Goodchild, Michael F. and Quattrochi, Dale A., pp:1325.Boca Raton, FL:CRS Press.
    75. Board C. Map Reading Tasks Appropriate In Experimental Studies In Cartographic Communication. The Canadian Cartographer,1978,15(2).
    76. Borut Zalik, Nikola Guid, Calculation of Visibility From Raster Relief Models, Spring Conference on Computer Graphics SCCG, Bratislava.1998, pp: 247-256.
    77. Buttenfield B P., and McMaster R B.,1991, Map Generalization:Making Rules for Knowledge Representation. New York:Longmont Scientific and Technical.
    78. Cao, C., Lam, N.S.N.. Understanding the Scale and Resolution Effects in Remote Sensing and GIS. In:Quattrochi, D.A., Goodchild, M.F., editors:Scale in Remote Sensing and GIS. Boca Raton, Boston, London; New York Washington, D.C.:Lewis Publishers,1996, pp.57-72.
    79. Cao C. and Lam N.S 1997, Understanding the scale and resolution effects in remote sensing and GIS:In, Quattrochi D.A. and Goodchild M.F. (Eds), Scale in remote sensing and GIS. Lewis Publishers, Boca Raton.
    80. Champion D,1995. The Effect of Different Line of Sight Algorithms and Terrain Elevation Representations on Combat Simulations, U.S. Army TRADOC Analysis Center, White Sands Missile Range, New Mexico.
    81. Chew L P.. Constrained Delaunay Triangulations. Algorithmica,1989,4:97-108
    82. Cecconi A.2003. Integration of cartographic generalization and multi-scale databases for enhanced web mapping. PhD Thesis, University of Zurich, Zurich
    83. Chen Ying-jui, Amaratunga K S., M-chanel lifting factorization of perfect reconstruction filter banks and reversible M-band wavelet transforms[J]. Circuits and System II, IEEE Transaction on,2003,50(12):963-976.
    84. Cohen, I. Daubechies, and J. Feauveau, Bi-orthogonal bases of compactly supported wavelets[J].. Comm. Pure Appl. Math.,1992,45:485-560.
    85. Cronin T. Automated Reasoning with Contour Maps. Computer and Geosciences,1996,21(5):609-618.
    86. Curran PJ, Foody GM and van Gardingen PR.1997. Scaling up. In Scaling up: From Cell to Landscape, ed.van Gardingen PR, Foody GM and Curran PJ, Cambridge, UK:Cambridge University Press.
    87. Daubechies and W. Sweldens. Factoring Wavelet Transforms into Lifting Steps [J]. Journal of Analysis and Application,4(3),1998,247-269.
    88. David J.. Toward Cadastral Level Cartographic Analysis Using Multiscale Spatial Data, Porceedings of ICA, Barcelona.1995, p2328-2342.
    89. DeFloriani L, Jeanne P and Nagy G..Visibility Characteristics Of Grey-Scal Images. In progress in image analysis and processing, Cantoni V, Cordella LP et al. (edt), world scientific,1990,435-442.
    90. DeFloriani L, Magillo P.1993.Algorithms For Visibility Computation On Digital Terrain Models, Proceedings of the 1993 ACM/SIGAPP symposium on Applied computing, Indianapolis, Indiana, United States.
    91. FlorianiL D, Magillo P, Puppo E.VARIANT:A System for Terrain Modeling at Variable Resolution [J]. Geolnformatica,2000,4 (3):287-315.
    92. Dubayah, Ralph, Eric F. Wood, and Daniel Lavallee. Multiscaling Analysis in Distributed Modeling and Remote Sensing:An Application Using Soil Moisture. Scale in Remote Sensing and GIS. Dale A. Quattrochi and Michael F. Goodchild, Eds. Boca Raton; FL:CRC Lewis,1997,93-112.
    93. Dungan JL, Perry JN, Dale MRT. Legendre P,et al. A Balanced View Of Scale In Spatial Statistical Analysis, ECOGRAPHY.2002,25:5.
    94. Gary William Coutu.2001. Exploring The Effects Of Observational Scale Upon Non-Point Source Pollution:policy analysis and modeling (PHD),Texas A&M Universtiy.
    95. Gao J. Resolution and Accuracy of Terrain Representation by Grid DEMs at a Micro-scale [J]. International Journal of Geographical Information Science, 1997,11 (2):199-212
    96. Gibson, C.C., Ostrom, E., Ahn, T.K.. The concept of scale and the human dimensions of global change:a survey. Ecological Economics.2000, 32(2):217-239.
    97. Gibson JJ, Ostrom E, Ahn TK. The Concept of Scale and the Human Dimensions of Global Change:A Survey. Ecological Economics.2000.32: 217-239.
    98. Garcia A B, Nicieza C G, MereeJ BO, and Diaz A M. A Contour Line based Triangulating Algorithm[C]. In Proceedings of the 5th International Symposium on Spatial Data Handling (Charleston SC USA), P. Bresnahan, E. Corwin, and D. Cowen, Eds., vol.2, IGU Commission of GIS:1992,411-423.
    99. Gold CM., Breadth Versus Depth:The Dilemma Of GIS Education. Proceedings, GIS Challenge For The 1990s, Ottawa,1990, Pp.886--900.
    100.Goodchild MF and Mark D. The Fractal Nature of Geographic Phenomena. Annals of the association of American geographers.1987,77:265-278.
    101.Goodchild MF and Proctor J. Scale in a Digital Geographic World. Geographical and Environmental Modelling.1997,1(1):5-23.
    102.Goodchild MF and Quattrochi D,1997, Scale, Multiscaling, Remoting Sensing and GIS. ed.Goodchild, Michael F. and Quattrochi, Dale A.,1997.pp:1325.Boca Raton, FL:CRS Press.
    103.Goodchild MF, Lee J.. Coverage Problems and Visibility Regions on Topographic Surfaces. Annals of Operations Research.1989,18(14):175--186.
    104.Goodchild MF. Metrics of scale in remote sensing and GIS. International Journal of Applied Earth Observation and Geoinformation.2001,3(2): 114-120.
    105.Goodchild MF. Scales of Cyber geography. In E. Sheppard and R.B. McMaster, editors, Scale and Geographic Inquiry:Nature, Society, and Method. Malden, MA:Blackwell.2004, pp.154-169.
    106.Goodwin B and Fahrig L.1998. Spatial Scaling and Animal Population Dynamics. In Ecological Scale Theory and Applicatons, ed. Peterson, David L. and Parker, Thomas V, pp:193-206. New York:Columbia University Press.
    107.Hagget P.1963, Scale Components in geographical problems. in:R.J.Chorley and P.Hagget, eds. Frontiers in Geographical Teaching,London:Methuen & Company Limited.
    108.Hay GJ, Dube A, Bouchard, Marceau DJ, A Scale space Primer For Exploring And Quantifying Complex Landscapes. Ecololyg Model,2002,153 (1/2) 27-49.
    109.Hillier B. Space As A Paradigm For Describing Emergent Structure In Strongly Relational Systems, Proceeding of the Second Space Syntax Symposium,1999, Vol2,52.p1-16.
    110.Hillier B,2003, The Architectures Of Seeing And Going:Or, Are Cities Shaped By Bodies Or Minds? And Is There is A Syntax Of Spatial Cognition? Proceedings.4th International Space Syntax Symposium London.
    111.Hong M, Sederberg T W, Klimaszewski K S, Kaneda K.1998,Triangulation of Branching Contours using Area Minimization[J]. International Journal of Computational Geometry & Applications,8 (4):389-406.
    112.Hodgson M E. What Cell Size Does the Computed Slope/Aspect Angle Represent? [J].Photogrammetric Engineering and Remote Sensing,61:513-517
    113. Hoppe H.,1996, Progressive meshes. Computer Graphics,30 (Annual Conference Series):1995,99-108
    114.Huang W, Lin PL. Visibility Inference Based On Spatial Knowledge Representation From Observer's Perspective, IJGIS,1997,12(3):191-202.
    115.Hudson JC., Scale in Space and Time. In Geography's Inner Worlds: Pervasive Themes in Contemporary American geography, ed. Alber, R.F., Marcus, M.G. and Olson, J.M.,1992.1992, pp:280-297. new Brunswick, NJ:Rutgers University Press.
    116.Hutchinson M F,1996, A locally adaptive approach to the interpolation of digital elevation models[R].Third Conference/Workshop on Integrating GIS and Environmental Modeling. Santa Barbara:NCGIA, University of California.
    117.Hutchinson M F, Gallant J C,2000, Digital elevation models and representation of terrain shape. In:Terrain Analysis Principles and Applications[M]. New York: John Wiley and Sons.
    118.Hunter G J, Goodchild M F., Modeling the Uncertainty of Slope and Aspect Estimates Derived from Spatial Databases[J]. Geographical Analysis,1997,29 (1):35-49
    119.Hull RB, Revell GRB, Issues in Sampling Landscapes for Visual Quality Assessments. Landscape Urban Plan.1989,17,323-330.
    120.Iwamura K, Nomoto Y, Kakumoto S and Ejiri M.1990, Geographical Feature Analysis Using Integrated Information Processing System. IAPR Workshop on Machine Vision Application. Tokyo.
    121. James Stewart A,1997, Hierarchical Visibility in Terrains, Proceedings of Euro graphics Rendering Workshop.
    122.Jarvis, P.G. Scaling processes and problems. Plants, Cell and Environment 1995,18:1079-1089
    123. Jones C B, Kidner D B, Luo L Q, Bundy G L, Ware J M., Database design for a multi-scale spatial information system. International Journal of Geographic Information Systems,1996,10(8):901-920
    124.Kidner DB., The Role Of GIS In Wind Farm Planning. Geographical Information'97:From Research To Application Through Cooperation,1997, Vols 1 And 2,843-852.
    125.Kovacevic J, Sweldens W. Wavelet families of increasing order in arbitrary dimensions [J].Image Processing, IEEE Transactions on,2000,9(3):480-496.
    126.Kweon I, Kanade T., Extracting Topological Terrain Features from Elevation Maps. CVGIP,1995,59(2):171-182.
    127.Lam N and Quattrochi DA.. On The Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences. The Professional Geographer, 1992,44:88--98.
    128.Lam WHK,Tam M,Wong SC,Wirasinghe SC. Way finding In The Passenger Terminal Of Hong Kong International Airport. Journal of Air Transport Management.2003,9(2):73-81.
    129.Lee J., Analyses Of Visibility Sites On Topographic Surfaces. IJGIS.1991,5(4), pp 413-429.
    130.Levin SA..The Problem Of Pattern And Scale In Ecology. Ecology.1992,73: 1943-1967.
    131.Li Habin and Reynolds JF.,1997, Modeling Effects of Spatial Patter, Drought, and Grazing on Rates of Rangeland Degradation:A Combined Markov and Cellular Automaton Approach. Scale in Remote Sensing and GIS. Dale A. Quattrochi and Michael F. Goodchild, Eds. Boca Raton, FL:CRC Lewis, 211-230.
    132.Li, Zhilin, and Openshaw, S., A comparative study of the performance of manual and automated generalizations of line features. AGI 1992-1993 Year Book,1992,501-513.
    133.Li Z, Openshaw S., Algorithms for automated line generalization based on a natural principle of objective generalization. IJGIS,1992,6(5):373-389
    134. Li Z.2006. Algorithmic foundation of multi-scale spatial representation. CRC Press
    135.Li, Zhilin and Openshaw, S., A Natural Principle for Objective Generalization of Digital Map Data, Cartography and Geographic Information System, 1993,20(1):19-29.
    136.Li Zhilin, Zhu Qing, Gold C..2005. Digital Terrain Modeling:Principles and Methodology [M]. Florida:CRC Press.
    137.Llobera M., Exploring the Topography of Mind:GIS, Social Space and Archaeology, Antiquity.1996,70:612-22.
    138.Lynch, Kevin,1976, Managing a Sense of Region. Cambridge, MA:MIT Press.
    139.Marceau DJ, The Scale Issue in the Social and Natural Science, Canadian Journal of Remote Sensing.1999,254.p347-356.
    140.Marceau DJ, Hay G., Remote Sensing Contributions To The Scale Issue. Can. J. Remote Sensing.1999,25,357-366.
    141.Mark D., The History of Geographic Information Systems:Invention and Re-invention of Triangulated Irregular Networks (TINS)[C]. Proceedings of GIS/LIS'97:1997,267-272.
    142.M. Egenhofer and D Mark., Naive Geography. In:Spatial Information Theory---A Theoretical Basis for GIS, International Conference, COSIT'95, Semmering, Austria, Spring-Verlag, Berlin,1995, pp.1-15.
    143.M. Vetterli and D. Le Gall., Perfect reconstruction FIR filter banks:Some properties and factorizeations. IEEE Trans. Acoust. Speech Signal Process, 1989,37:1057-1071.
    144.Montello DR., Scale And Multiple Psychologies Of Space, In Frank AU and Campari I (eds), Spatial information theory:a theoretical basis for GIS. 1993,pp.312-321. Berlin:Spring Verlag, Lecture notes in computer science.
    145.Montello DR, Golledge RG.,1999, Scale and Detail in the Cognition of Geographic Information. In Report of specialist meeting of project varenius, santa Barbara.
    146.Montello DR., Scale in Geography. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral Sciences.2001, pp. 13501-13504. Oxford:Pergamon Press.
    147.Morley J, Rana S.,2002, Optimising Visibility Analysis Using Topographic Features on the Terrain. CASA working paper 44. February ISSN:146761298. Serial.
    148.O'Neill RV and King AW., Why are there so many books on scale. In Ecological Scale Theory and Applications, ed. Peterson, David L. and Parker, Thomas V.,1998, pp:17-34. New York:Columbia University Press.
    149.Openshaw S, Charlatan M, Wymer C, Craft A., Geographic Analysis Machine for the automated analysis of point data sets. IJGIS,1987,1(4):335--358.
    150.Openshaw, S., Taylor, P.J., A million or so correlation coefficients:three experiments on the modifiable areal unit problem. In:Wrigley N, editor. Statistical Applications in the Spatial Sciences. Pion, London,1979, pp. 127-144.
    151.Openshaw S, Taylor P.J., The modifiable areal unit problem. In:Wrigley N, Bennett R, editors. Quantitative Geography:A British View. London:Routledge and Kegan Paul,1981, pp.60-69.
    152.Oksanen J, Sarjakoski T. Error Propagation of DEM Based Surface Derivatives[J]. Computers & Geosciences,2005,31:1015-1027
    153.Peter A. Whigham, Spatial Information:Problems, Challenges And Directions. GeoComputation.2001.
    154.Petty D,1997, Computer Generated Forces, Terrain Representation, and Intervisibility Algorithms, Computer Science Colloquium, University of Central Florida, Orlando FL, March 28.
    155.Quattrochi DA., The Need for a Lexicon of Scale Terms in Integrating Remote Sensing Data with GIS. Journal of Geography.1993,92:206-212.
    156.Quattrochi DA and Goodchild MF.1997.Scale in Remote Sensing and GIS. Boca Raton:Lewis Publishers.
    157.Quattrochi DA, Nina SiuNgan Lam, HongLie Qui, and Wei Zhao.,1997, Image Characterization and Modeling System (ICAMS):A Geographic Information System for the Characterization and Modeling of Multiscale Remote Sensing Data. Scale in Remote Sensing and GIS. Dale A. Quattrochi and Michael F. Goodchild, Eds. Boca Raton, FL:CRC Lewis,295-307.
    158.Scott Bell, Spatial Cognition and Scale:A Child'S Perspective, Journal Of Environmental Psychology.2002,22,9-27.
    159.Shortridge AM, Goodchild M., Geometric Probability And GIS:Some Applications For The Statistics Of Intersections. IJGIS,2002,16(3):227-243.
    160.Silbernagel J. Scale Perception from Cartography To Ecology. Bulletin of the Ecological Society of America.1997,78:166-169.
    161.Sivapalan M and Kalma JD, Scale Problems in Hydrology:Contributions of the Robertson Workshop. Hydrological Processes.1995,9(3/4):243-250.
    162.Robinson A.H., Morrison J.L., Muehrcke P.C., Kimerling A.J. and Guptill S.C. 1995, Elements of cartography. John Wiley and Sons, New York.
    163.Sweldens W. The Lifting Scheme:A Custom design Construction of Biorthogonal Wavelets [J]. Appl. Comut. Harmon. Appl,1996,3(2):186-200.
    164.Sweldens W.. The Lifting Scheme:A Construction of Second Generation Wavelets [J]. SiamJ Math. Anal,1997,29(2):511-546.
    165.Sweldens W. The Lifting scheme:A new philosophy in Biorthogonal wavelet constructions [A]. Proceedings of SPIE on Wavelet Application in Signal and Image Processing III. San Diego:SPIE,1995,68-79.
    166.Sweldens W, et al.1996, Building Your Own Wavelets at Home [J]. Wavelets in Computer Graphs, ACM SIGGRAPH Course Notes,15-87.
    167.Temenoujka Bandrova,2001, Designing of Symbol System for 3D City Maps, ICC Beijing China.
    168.Thomas JC, Goodchild MF. Extending Geographical representation to include Fields of spatial Objects. IJGIS,2002,16(6):509-532.
    169.Turner A.,2000.Angular Analysis:A Method for the Quantification of Space. Working Paper 23, Centre for Advanced Spatial Analysis, UCL, London.
    170.Turner, M.G, O'Neill, V., Gardner, R.H., Milne, B. Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology.1989, 3.3/4:153-162.
    171.Turner, M.G, Meisel, J. Scale detection in real and artificial landscapes using semivariance analysis. Landscape Ecology.1998,13:347-362.
    172.Turner, M.G, Gardner, R.H., O'Niell, R.V.2001, Landscape Ecology. In Theory and Practice. Pattern and Process. New York:Springer
    173.UCGIS. Research priorities for geographic information science. Cartography and Geographic Information Systems,1996,23(3).
    174.Visvalingam M.,Whyatt J D.. Line generalization by repeated elimination of the smallest area.The Cartographic Journal,1993,30(1):46-51
    175.Wechsler, S.P. Perceptions of Digital Elevation Model Uncertainty by DEM Users. URISA Journal,2003,15/2:57-64.
    176.Weibel, R., An adaptive methodology for automated relief generalization. Auto Carto,1987,8,42-49.
    177.Weibel R, Dutton G, Generalising spatial data and dealing with multiple representations. P. Longley, M.F. Goodchild, D.J. Maguire and D.W. Rhind(eds.), Geographical Information Systems:principles, techniques, management and applications, Second Edition, Cambridge, GeoInformation International,1999,125-156
    178.Weigel SJ,1996,Scale, Resolution and Resampling:Representation and Analysis of Remotely Sensed Landscapes Across Scale in GIS. Ph.D. Dissertation, Louisiana State University.
    179.Wong D, and Amrhein C.The Modifiable Areal Unit Problem. Special issue of Geographical Systems,1996,3:23.
    180.Wood Eric F.. Scale Analysis For Landsurface Hydrology. In:Scale dependence and scale invariance in hydrology. Ed. Dposito G,1998, pp:1-29. Cambridge, UK:Cambridge University Press.
    181.Wood JD and Fisher PF. Assessing Interpolation Accuracy In Elevation Models. IEEE Computer Graphics & Applications,1993,13(2):48-56, March.
    182.Wu J and Hobbs, R.. Key Issues And Research Priorities In Landscape Ecology: An Idiosyncratic Synthesis. Landsc. Ecol.2002,17:355-365.
    183.Wu J. Hierarchy and Scaling:Extrapolating Information Along A Scaling Ladder. Canadian Journal of Remote Sensing.1999,25 (4), pp.367-380.
    184.Wu J, Jelinski DE, Luck M and Tueller PT. Multiscale Analysis Of Landscape Heterogeneity:Scale Variance And Pattern Metrics. Geographic Information Science.2000,6:6-19.
    185.Xia ZongGuo and Clarke KC. Approaches to Scaling of GeoSpatial Data. Scale in Remote Sensing and GIS. DA Quattrochi and MF. Goodchild, Eds. Boca Raton, FL:CRC Lewis,1997,309-360.
    186.Yoeli P, the Making of Intervisibility Maps with Computer And Plotter, Cartographica,1985,22,88-103.
    187.Zhilin LI,1996, Transformation of Spatial Representation in Scale Dimension: A New Paradigm for Digital Generalization of Spatial Data, ISPRS Commission Ⅲ.7:Vienna p453-458.
    188.Zhilin LI, Transformations of Spatial Information in Multiscale Representation, Proceedings of the 20th International Cartographic Conference.8,610:Beijing China.2001, p3176-3189.
    189.Zhilin Li, MennoJan Kraak, WebBased Exploratory Data Analysis: Visualisation Meets Spatial Analysis,Proceedings Of ISPRS Commmission Ⅱ Symposium, Integrated systems for spatial data production custodian and decision support, August xi'an China,2002,281-285.
    190.Zhang, X., Drake, N.A., Wainwright, J.2003, Scaling issues in environmental modelling. In:Wainwright J, Mulligan M, editors. Environmental Modeling: Finding Simplicity in Complexity. Chichester:John Wiley and Sons.
    191. Zhou Qiming, Liu Xuejun., Analysis on Errors of Derived Slope and Aspect Related to DEM Data Properties [J]. Computer and Geoscience 2004, (30): 369-378
    192.Zhou Qiming, Liu Xuejun. Error Analysis on Grid-based Slope and Aspect Algorithm [J]. Photogrammetric Engineering and Remote Sensing,2004,70(8): 957-962

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700