喷涂法制备聚合物太阳能电池器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机太阳能电池,尤其是聚合物太阳能电池以其较低的制造成本、材料能级结构可设计、便于制造大面积器件等优点受到了研究人员的广泛关注。
     目前实验室制备小尺寸器件主要采用滴涂法或旋涂法,部分较大尺寸器件也可以采用刮刀丝网印刷来实现,但这些方法距离大规模量产所要求的低成本和高效快速还有一定差距。近年来人们开发出了可以通过高速Rool-to-Roll方式制备聚合物太阳能电池器件的许多新工艺,其中喷雾法以其设备简单、材料利用率高、易于制造大面积器件、不受衬底刚柔限制、便于采用Rool-to-Roll方式生产等诸多优点,成为了新型聚合物电池制备工艺中的一颗新星。
     迄今为止,气压喷涂法还在初期摸索,研究工作多围绕具体实例展开,缺乏较为系统的研究和分析。本文针对这一现状,以目前应用较为成熟的聚合物电池材料和结构为样本,对喷涂法制备聚合物薄膜的物理过程进行了分析,分别建立了雾化、飞行以及沉积过程的物理模型,具体为:
     雾化过程中,雾化形成的雾滴边界直径正比于溶液的表面张力σ溶液和载荷气体的密度ρ流体,反比于喷涂系统流量系数μ的平方、溶液密度σ溶液和喷口压强差ΔP。对于确定的喷涂硬件系统和确定的载荷气体(一般使用干燥氮气),载荷气体的密度ρ流体、流量系数μ和压强差ΔP均为定值,雾化形成的液滴大小正比于σ溶液/ρ溶液的比值。
     飞行过程中,由于实际喷涂过程中,喷头附近和较远的区域雾滴挥发呈现非线性,而在之间的区域内,雾滴飞行速度较为平稳,形状较为稳定,与周围的热传递也较弱,此时液滴直径将呈线性变化。
     沉积过程中,液滴在到达衬底后回摊开成饼状,并在此过程中加速干燥形成薄片状斑痕,斑痕呈现边缘厚中间薄的特点。大量斑痕层叠堆积形成薄膜,薄膜的表面形貌决定于单个斑痕的大小、平均厚度以及边缘与中部的高度差。
     本文进一步采用喷涂法制备了双层异质结器件、体异质结器件等多种聚合物电池器件,并对其进行了系统的表征和分析,研究发现:
     喷涂法制备的薄膜表面粗糙度远大于旋涂薄膜,使得器件的填充因子偏低,但喷涂薄膜粗糙的表面形貌使得光敏层厚度增大,光吸收效率提高,同时导电通道得到改善,光生载流子收集和输运效率提高,从而使得喷涂器件往往具有较大的电流密度,我们制备的喷涂缓冲层器件和全喷涂体异质结器件的电流密度比同结构的旋涂器件高20%以上。
     另外喷涂还能够完成传统旋涂无法完成的一些应用,如多源共喷掺杂成膜。我们通过双源共喷成功制备了量子点增强P3HT:PCBM器件,在掺杂过程中有效避免了量子点的团聚并提高了器件的性能。
     最后我们采用全喷涂制备了大面积太阳能电池器件,制得的60mm*60mm器件的单点效率超过1%,且各取样点性能平均、稳定,这说明喷涂法制备是制备大面积高效器件的可行方法。
This dissertation prensents a systematically analysis and studies on the Air-brush spray deposition which was used in fabrication of organic solar cells. A model of the air-brush spray process was founded and it could be divided into three sub-processes, spray, fly and deposition. The fine atomized droplets size could be limited by the ratio between surface tension and density of the solusion. The droplets are volatilized and concentrated on its way to the substrate, and volatility of the solvent is major factor which decide the rate of size reduction. When drotlets arrive to substrate, they will spread out and dried to spots. These spots were not smooth but like a basin, high on the edge and low in the center. The film fabricated by air-brush spray deposition is formed by a lot of spots, and the micro appearance of the film is strongly related to the feature of spots.
     The relationships among preparing condition, micro appearance of films and performance of polymer solar cells which fabricated by air-brush spray deposition in practical cases were studied. The relationship between preparing condition and micro appearance of films can be described like that:solvent with low surface tension, high density and weak volatile will lead to more smooth films; high concentration of the solution and temperature of the substrate will lead to rough film. Other conditions, such as carrier gas pressure, feed rate of the solution and ambient temperature, have weak impact on film appearance. And the relationship between micro appearance of films and performance of polymer solar cells can be summarized to the roughness of the films. The roughness has strong impact on the performace of polymer solar cells, and rough film surface profile lead to poor fill factor, but it also enhance the current density of the devices.
     Many devices with different structures (such as air-brushed buffer layer device, bilayer heterojunction device, bulk heterojunction device, qantum dots enhanced P3HT:PCBM bulk-heterojunction device and large area device) were fabricated and described. The conversion efficiency of air-brushed devices could be rivaled to spin-coated devices in small size, and conversion efficiency of the device with60mm*60mm active area can reach to1%.
     All the result demonstrated that air-brush spray deposition was a good method which can easily produce both small and large area polymer solar cells devices with low cost. And it also will be a very important development direction of the research on fabrication of polymer solar cells in the future.
引文
[1]熊绍珍,朱美芳.太阳能电池基础与应用.北京:科学出版社,2009.
    [2]S. Benka. Phys. Today,38:39.
    [3]政府间有关气候变化讨论会(IPCO2001年综合报告.剑桥,纽约:剑桥大学出版社,2001
    [4]联合国发展规划署(UNDP)就世界新能源的评估报告.纽约,2000.
    [5]GB/T 6495.3-1996.光伏器件.第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据.111:电池标准汇编.太阳电池卷.北京:中国标准出版社,2003:75-85。
    [6]S.Hegedus, A. Luque, Handbook of photovoltaic science and engineering. In:A. Luque, S.Hegedus, Great Britain By Antony Rowe Ltd, Chinppenham, Wiltshire,2002.
    [7]C.Fritts, Proc. Am Assoc. Adv. Sci,1883,33:97.
    [8]M.Prince, J. Appl. Phys,1955,26:534-540.
    [9]J.Loferski, J.Appl. Phys,1956,27:777-784.
    [10]J.Wysocki, P. Rappaport, J. Appl. Phys,1960,31:571-578.
    [11]W. Shockley, H. Queisser, J. Appl. Phys,1961,32:510-519.
    [12]D. Cusano, Solid State Electron,1963,6:217-232.
    [13]M. Green, ea al. Proc.18th IEEE Photovoltaic Specialist Conf.,1985:39-42.
    [14]R. Sinton, Y. Kwark, P. Gruenbaum, ea al. Proc.18th IEEE Photovoltaic Specialist Conf., 1985,61-65.
    [15]D. Friedman, et al., Prog. Photovolt.,1995,3:47.
    [16]M. Gratzel. Prog. Photovolt.2000,8:171-186.
    [17]M. Contreras, ea al. Prog. Photovolt.,1999,7:311-316.
    [18]J. Zhao, A. Wang, M. Green, Prog. Phtovolt.,1999,7:471-474
    [19]L.L. Kazmerski, Best Research-cell Efficiencies, National Renewable Energy Laboratory (NREL), Dec.5th,2011.
    [20]C. W. Tang., Two Layer Organic Photovoltaic Cell, Appl Phys Lett,1986,48:183-185
    [21]C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Plastic solar cells, Adv. Funct. Mater.,2001,11: 15-26.
    [22]H. Spanggaard, F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. EnergyMater. Sol. Cells,2004,83:125-146.
    [23]K. M. Coakley, M. D. McGehee, Conjugated polymer photovoltaic cells, Chem. Mater.,2004, 16:4533-4542.
    [24]H. Hoppe, N. S. Sariciftci, Organic solar cells:anoverview, J. Mater. Res.,2004,19:1924-1945.
    [25]C. Winder, N. S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunctions solar cells, J. Mater. Chem.,2004,14:1077-1086.
    [26]S. E. Shaheen, D. S. Ginley, G. E. Jabbour, Organic-based photovoltaics:toward low-cost power generation, MRS Bull.,2005,30:10-19.
    [27]R. A. J. Janssen, J. C. Hummelen, N. S. Sariciftci, Polymer-fullerene bulk heterojunction solar cells, MRS Bull.,2005,30:33-36.
    [28]K. M. Coakley, Y. Liu, C. Goh, M. D. McGehee, Ordered organic-inorganic bulk heterojunction photovoltaic cells, MRSBull.,2005,30:37-40.
    [29]C. J. Brabec, J. A. Hauch, P. Schilinsky, C. Waldauf, Production aspects of organic photovoltaics and their impact on the commercialization of devices, MRS Bull.,2005,30:50-52.
    [30]F. C. Krebs, Alternative PV:large scale organic photovoltaics, Refocus,2005,6(3):38-39.
    [31]E. Bundgaard, F. C. Krebs, Low bandgap polymers for organic photovoltaics, Sol. EnergyMater.Sol.Cells,2007,91:954-985.
    [32]S. Gunes, H. Neugebauer, N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chem.Rev.,2007,107:1324-1338.
    [33]A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, M. D. McGehee, Polymer-based solar cells, Mater.Today,2007,10:28-33.
    [34]M. T. Lloyd, J. E. Anthony, G G. Malliaras, Photovoltaics from soluble small molecules, Mater/Today,2007,10:34-41.
    [35]B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, Solar cell sutilizing small molecular weight organic semiconductors, Prog. Photovolt. Res. Appl.,2007,15:659-676.
    [36]M. J(?)rgensen, K. Norrman, F. C. Krebs, Stability/degradation of polymer solar cells, Sol. EnergyMater. Sol.Cells,2008,92:686-714.
    [37]B. C. Thompson, J. M. J. Fre'chet, Polymer-fullerene composite solar cells, Angew. Chem. Intl. Ed.,2008,47:58-77.
    [38]R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. deBoer, Smallbandgap polymers for or ganic solar cells (polymer material development in the last 5 years), Polym.Rev.2008,48:531-582.
    [39]S. Gunes, N. S. Sariciftci, Hybrid solar cells, Inorg. Chim. Acta.,2008,361:581-588.
    [40]C. J. Brabec, J. R. Durrant, Solution-processed organic solar cells, MRSBull.,2008,33: 670-675.
    [41]F. C. Krebs (GuestEd.), The development of organic and polymer photo-voltaics, Sol. EnergyMater, Sol.Cells,2004,83:125-321.
    [42]S. E. Shaheen, D. S. Ginley, G. E. Jabbour (GuestEds.), Organic-based photo-voltaics, MRSBull.,2005,30:10-52.
    [43]F. C. Krebs (GuestEd.), Low bandgap polymer materials for organic photovoltaics, Sol. EnergyMater.Sol.Cells,2007,91:953-1036.
    [44]J. Wood(Ed.), Areal alternative. Materials and devices for cheap efficient solar power,Mater.Today,2007,10:1-50.
    [45]J. Poortmans(GuestEd.), Organic solar cells. Prog. Photovolt, Res.Appl.,2007,15:657-754.
    [46]F. C. Krebs (GuestEd.), Degradation and stability of polymer and organic solar cells, Sol. EnergyMater.Sol.Cells,2008,92:685-820.
    [47]F. C. Krebs(GuestEd.), Processing and preparation of polymer and organic solar cells, Sol. EnergyMater.Sol.Cells,2009,93:393.
    [48]C. J. Brabec, V. Dyakonov, J. Parisi(Eds.), Organic Photovoltaics:Conceptsand Realization, Springer, NewYork,2003.
    [49]S. S. Sun, N. S. Sariciftci(Eds.), OrganicPhotovoltaics:Mechanisms, Materials and Devices, CRCPress, Taylor&FrancisGroup, Florida, USA,2005.
    [50]T. Soga(Ed.), Nano structured Materials for Solar Energy Conversion, Elsevier, UK,2006.
    [51]H. Kalhnann, M. Pope, Photovoltaic effect in organic crystals., J Chem Phys,1959,30 (2):585-586.
    [52]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, et al. Photoinduced electron-transfer from conducting polymer to buckminsterfullerene. Science,1992,258:1474-1476.
    [53]N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G Stucky, and F. Wudl, Semiconducting Polymer-Buckminsterfullerene Heterojunctions-Diodes, Photodiodes and Photovoltaic Cells, Appl. Phys. Lett.1993,62(6):585.
    [54]G.Yu, J. Gao, Hummelen, F. Wud1, A. J.Heeger, Polymer photovoltaic cells:Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science,1995,270: 1789-1791.
    [55]C. J Brabec, Organic Photovoltaics:technology and market. Solar Energy Materials & Solar cells,2004,83:273-292.
    [56]G Li, V. Shrotriva, J. S. Huang, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater.,2005,4:864-868.
    [57]J. Y. Kim, K. Lee, N. E. Coates, et al, Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317:222-225.
    [58]J. H. Hou, Z. A. Tan, Y. Yan, et al,Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi (thienylenevinylene) Side Chains, J. Am. Chem. Soc.,2006,128 (14):4911-4916
    [59]Y. Li, Y. Zou, Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility, Adv. Mater.,2008,20,2952-2958.
    [60]E. Wang, L. Wang, L. Lan, C. Luo, W. L. Zhuang, J. B. Peng, Y. Cao, High-performance polymer heterojunction solar cells of a polysilafluorene derivative, Appl. Phys. Lett.,2008,92: 033307.
    [61]E. K. Putzeiko, A. Terin, Zhurnal Prikladnoi Khimii,1949,23:676
    [62]B. Oregan, M.Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 film. Nature,1991,353(6346):737-740.
    [63]M. Hiramoto, H. Fujiwara, M. Yokoyama, Three-layered organic solar cell with a photoactive interlayer of codeposited pigments, Appl. Phys. Lett.,1991,58:1062-1064.
    [64]S. Heutz, P. Sullivan, B.M. Sanderson, S.M. Schultes, T.S. Jones, Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc-C60 heterojunctions, Sol. Energy Mater. Sol. Cells,2004,83:229-245.
    [65]P. Sullivan, S. Heutz, S.M. Schultes, T.S. Jones, Influence of codeposition on the performance of CuPc-C60 heterojunction photovoltaic devices, Appl. Phys. Lett.,2004,84:1210-1212.
    [66]J.G. Xue, B.P. Rand, S. Uchida, S.R. Forrest, A hybrid planar-mixed molecular heterojunction photovoltaic cell, Adv. Mater.,2005,17:66-71.
    [67]F. Yang, M. Shtein, S.R. Forrest, Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nature Mater.,2005,4:37-41.
    [68]B. Pradhan, A.J. Pal, Organic photovoltaic devices:Concentration gradient of donor and acceptor materials in the molecular scale, Synthetic Metals,2005,155:555-559.
    [69]P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature,2006,425:158-162.
    [70]L. Chen, Y. Tang, X. Fan, C. Zhang, Z. Chu, D. Wang, D. Zou, Improvement of the efficiency of CuPc/C60-based photovoltaic cells using a multistepped structure, Org. Electron.,2009,10: 724-728.
    [71]S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo, Improved bulk heterojunction organic solar cells employing C70 fullerenes, Appl. Phys. Lett.,2009,94:223307.
    [72]R. Pandey, R.J. Holmes, Graded Donor-Acceptor Heterojunctions for Efficient Organic Photovoltaic Cells, Adv. Mater.,2010,22:5301-5305.
    [73]B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Solar Cells Utilizing Small Molecular Weight Organic Semiconductors, Prog. Photovolt.:Res. Appl.,2007,15:659-676.
    [74]W. Ma, C.Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater.,2005,15: 1617-1622.
    [75]G Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater.,2005, 4:864-868.
    [76]J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, GC. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Mater., 2007,6:497-500.
    [77]Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son,G. Li, L. Yu, Development of new semiconducting polymers for high performance solar cells, J. Am. Chem. Soc.,2009,131:56-57.
    [78]S.H. Park, A. Roy, S. BeauprS, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, AJ. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics,2009,3:297-303.
    [79]Y.Y. Liang, Z. Xu, J.B. Xia, S.-T. Tsai, Y. Wu, G Li, C. Ray, L.P. Yu, For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater.,2010, 22:E135-E138.
    [80]L.J. Huo, S.Q. Zhang, X. Guo, F. Xu, Y.F. Li, J.H. Hou, Replacing Alkoxy Groups with Alkylthienyl Groups:A Feasible Approach To Improve the Properties of Photovoltaic Polymers, Angew. Chem.,2011,123:9871-9876.
    [81]J. Peet, C. Soci, R.C. Coffin, T.Q. Nguyen, A. Mikhailovsky, D. Moses, GC. Bazan, Method for increasing the photoconductive response in conjugated polymer/fullerene composites, Appl. Phys. Lett.,2006,89:252105.
    [82]J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee, GC. Bazan, A.J. Heeger, Processing additives for improved efficiency from bulk heterojunction solar cells, J. Am. Chem. Soc., 2008,130:3619-3623.
    [83]A.J. Moule, A. Tsami, T.W. Bunnagel, M. Forster, N.M. Kronenberg, M. Scharber, M. Koppe, M. Morana, C.J. Brabec, K. Meerholz, U. Scherf, Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulk-heterojunction-type solar cells, Chem. Mater.,2008,20:4045-4050.
    [84]J.K. Lee, N.E. Coates, S. Cho, N.S. Cho, D. Moses.GC. Bazan, K. Lee, A.J. Heeger, Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol, Appl. Phys. Lett.,2008,92:243308.
    [85]R. S. Ohl. Light sensitive electric device. US patent,2443542, filed 27 May 1941.
    [86]D. M. Chapin, C. S. Fuller, G L.Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys.,1954,8:676.
    [87]Bell Labs. Record. November,1954:436.
    [88]Bell Labs. Record. May,1955:166.
    [89]P. J. Verlinden, R. M. Swanson, R. A. Crane,7000 efficiency cells for a dream, Progress in Photovoltaics,1994,2:143-152.
    [90]J. Zhao, A. Wang, M. Taouk, ea al.20% efficient photovoltaic module. Electron Device Letters, 1993,EDL-14:539-541.
    [91]M. A. Green, World solar challenge 1993:the trans-Australian solar car race. Progress in Photovoltaics,1994, EDL-14:539-541.
    [92]J. Koh, Y. Lee, H. Fujiwara, et al., Optimization of hydrogenated amorphous silicon p-i-n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry, Appl. phys lett.,1998, 73:1526.
    [93]Y. Tawada, K, Tauge, M. Kondo, et al., Properties and structure of aSiC:H for high efficiency a-Si Solar cell, Appl. phys lett.,1982,53:5273.
    [94]S. R.Ovshinsky,18th IEEE photovoltaic Specialists Conference. IEEE, New York,1985:1365
    [95]J. Yang, A. Banerjee, S.Guha, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies, Appl. Phys. Lett.,1997,70:2975.
    [96]P. A.Basore, Proc. Of 3rd World Conference on Photovoltaic Energy Conversion, May 2003, Osaka, Japan:40-D7-01.
    [97]K. Yamamoto, A. Nakajima, M. Yoshimi, et al. Record of the 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, May,2006:1489.
    [98]R. R. King, D. C. Law, K. M. Edmondson, et al.40% efficient metamorphic-GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett.,2007,90:183516.
    [99]K. Schneider, World Record:41.1% efficiency reached for multi-junction solar cells. Fraunhofer ISE.
    [100]R. A. Michelsen, W. S.Chen Proceedings of 7th international conference on Ternery and Multinary Compounds, Snowmass, Colorado,1986.
    [101]A. Rockett, R. W.Birkmire, CuInSe2 cell and module technologe. Proceeding of 20th IEEE PVSC, Las Vagas,1988.
    [102]L. Stolt, J. Hedstrom, J. Kessler, et al. ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl. Phys. Lett.,1993,62:597.
    [103]A. M. Gabor, J. R. Tuttle, D. S. Albin, et al. High-efficiency CuInxGa1-xSe2 solar cells mad from (InxGa1-x)2Se2 precursor films. Appl. Phys. Lett.,1994,65:198.
    [104]M. A. Contreras, B. Egaas, K. Ramanathan, et al., Progress toward 20% efficiency in Cu(In, Ga)Se2 polycrystalline thin-film solar cells. Prog. Photovolt:Res. Appl.,1999,7:311.
    [105]K. Ramanathan, M. A. Contreras, C. L. Perkins, et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2,thin-film solar cell., Prog. Photovolt:Res. Appl.,2003,11:225.
    [106]I. Repinsl, M. A. Contreras, B. Egaas, et al.19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor., Prog. Photovolt:Res. Appl.,2008,16:235.
    [107]M. Durr, A. Schmid, M. Obermaier, et al. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Materials,2005,4(8):607.
    [108]S. Ito, N. L. C. Ha, G. Rothenberger, et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystralline-TiO2 photoanode. Chem. Comm.,2006,38:4004.
    [109]T. Dentani, K. Funabiki, J. Y. Jin, et al. Application of 9-substituted 3,4-perylenedicarboxylic anhydrides as sensitizers for zinc oxide solar cell. Dyes & Pigments,2007,72(3):303.
    [110]F. Gao, Y. Wang, D. Shi, et al. enhangce the potical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. AM. Chem. Soc.2008,130:10720.
    [111]Z. S. Wang, C. H. Huang, F. Y. Li, et al. Alternative self-assembled films of metal-ion-bridged 3,4,9,10-perylenetetracarboxylic acid on nanostructured TiO2 electrodes and their photoelectronchemical properties. J. Phys. Chem. B,2001,105(19):4230.
    [112]S. L. Li, K. J. Jiang, K. F. Shao, et al. Novel organic dyes for efficient dye-sensitized solar cells. Chem. Comm.,2006, (26):2792.
    [113]T. Kitamura, M. Ikeda, K. Shigaki, et al. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem. Mater.,2004 16(9):1806.
    [114]K. Hara, M. Kurashige, S. Ito, et al. Nover Polyene dyes for highly efficient dye-sensitized solar cells. Chem. Comm.,2003,(2):252.
    [115]K. Hara, Z. S. Wang, T. Sato, et al. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B,2005,109(32):15476.
    [116]T. Horiuchi, H. Miura, K. Sumioka, et al. High-efficiency of dye-sensitized solar cells based on metalfree indoline dyes. J. Am. Chem. Soc.,2004,126(39):12218.
    [117]A. Pochettino. Sul compo rtamento foto-elettrico dell. Acad. LinceiRendicont
    [118]M.Y. Chan, S.L. Lai, M.K. Fung, C.S. Lee, S.T. Lee, Doping-induced efficiency enhancement in organic photovoltaic devices, Appl. Phys. Lett.,2007,90:023504.
    [119]J. Huang, J.S. Yu, W. Wang, YD. Jiang, Organic solar cells with a multicharge separation structure consisting of a thin rubrene fluorescent dye for open circuit voltage enhancement, Appl. Phys. Lett.,2011,98:023301.
    [120]J.J.M. Halls, C.A. Walsh,N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature,1995,376:498-500.
    [121]A.M.Nardes, M.Kemerink, M.M.de Kok, et al. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol[J].Organic Electronics,2008,9(5):728.
    [122]F. Jonasa, L. Schrader. Conductive modifications of polymers with polypyrroles and polythiophenes[J]. Synthetic Metals,1991,41(3):831.
    [123]Z.Q.Wang, X. M. Wu, N. Jing, et al. Influence of PEDOT:PSS buffer layer on the performance of organic photocoupler[J].Optoelectronics Letters,2009,5(3):0173-0176.
    [124]Y. Jun, H. S. Cheng, R. T. Fu, et al. Electro-polymerized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film on ITO glass and its application in photovoltaic device[J]. Solar Energy Materials & Solar Cells,2010,94(2):390-394.
    [125]A. L. Jung, H. C. Jeong, D. P. Yeong, et al. Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors[J]. Applied Physics Letters,2006,88(8):082102.
    [126]D.H. Xu, C. Adachi. Organic light-emitting diode with liquid emitting layer[J].Applied Physics Letters,2009,95(5):053304.
    [127]Z. A. Tan, E. J. Zhou, X. W. Zhan, et al. Efficient all-polymer solar cells based on blend of tris (thienylenevinylene)-substituted polythiophene and poly (perylene diimide-alt-bis (dithienothiophene)). Appl. Phys. Lett.,2008,93:073309.
    [122]W. U. Huynh, J. J. Dittmer, P. Alivisatos, Hybrid nanorod-polymer solar cells. Science, 2002,295:2425
    [129]B. Q. Sun, H. J. Snaith, A. S. Dhoot, et al., Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys.,2005,97:014914.
    [130]D. J. D. Moet, L. J. A. Koster, B. de Boer, et al. Hybrid polymer solar cells from highly reactive diethylzinc:MDMO-PPV versus P3HT. Chem. Mater.,2007,19:5856.
    [131]Y. Zhou, Y. C. Li, H. Z. Zhong, et al. Hybrid nanocrystal-polymer solar cells based on tetrapod-shaped CdSexTel-x, nanocrystal. Nanotechnology,2006,17:4041.
    [132]琚晓晖,氧化锌阵列的制备及其在光电池中的应用研究,[学位论文]天津大学,2009.78-92.
    [133]Y. F. Lim, S. S. Lee, D. J. Herman, et al. " Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells.J.Applied Physics Letters,2008,93(19):193301-1-193301-3.
    [134]A. J. Hegger, N. S. Sariciftci, Namdas,(著),帅志刚,曹镛 等(译),Semiconducting and Metallic polymers,4匕京,科学出版社,2010:197-198.
    [135]F. C. Krebs(Ed.), Polymer Photovoltaics:A Practical Approach, SPIE Press, Bellingham,2008.
    [136]F. C. Krebs, Fabrication and processing of polymer solar cells:A review of printing and coating techniques, Sol. EnergyMater., SolarCells,2009,93:394-412.
    [137]K. Norrman, A. Ghanbari-Siahkali,N. B. Larsen, Studies of spin-coated polymer films, Annu. Rep. Prog. Chem. Sect. C,2005,101:174-201.
    [138]E. Cohen, E. Gutoff(Eds.), Modern Coating and Drying Technology, Wiley-VCH,1992.
    [139]R. Mens, P. Adriaensens, L. Lutsen, A. Swinnen, S. Bertho, B. Ruttens, J. D' Haen, J. Manca, T. Cleij, D. Vanderzande, J. Gelan, NMR Study of the nanomorphology in thin films of polymer blends used inorganic PV devices:MDMO-PPV/PCBM, J. Pol. Sci. APol. Chem.,2008,46:138-145.
    [140]P. Schilinsky, C. Waldauf, C. J. Brabec, Performance analysis of printed bulk heterojunction solar cells, Adv. Funct. Mater.2006,16:1669-1672.
    [141]F. C. Krebs, M. J(?)rgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, KLLarsen, J.Kristensen, A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration, Sol. EnergyMater. Sol. Cells,2009,93: 422-441.
    [142]S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, Fabrication of bulk heterojunction plastic solar cells by screen printing, Appl. Phys. Lett.2001,79:2996-2998.
    [143]F. C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Production of large-area polymer solar cells by industrial silk screen printing,lifetime considerations and lamination with poly ethyleneterephthalate, Sol.EnergyMater.Sol.Cells,2004,83:293-300.
    [144]F. C. Krebs, H. Spanggaard, T. Kjaer, M. Biancardo, J. Alstrup, Large area plastic solar cell modules, Mater.Sci.Eng.B,2007,138:106-111.
    [145]T. Aernouts, P. Vanlaeke, J. Poortmans, P. Heremans, Polymer solar cells:screen printing as a novel deposition technique, Proc. SPIE,2004,5464:252.
    [146]M. Jorgensen, O. Hagemann, J. Alstrup, F. C. Krebs, Thermo-cleavable solvents for printing conjugated polymers:application in polymer solar cells,Sol.Energy Mater.Sol.Cells,2009,93: 413-421.
    [147]T. Aernouts, Organic bulk heterojunction solar cells:from single cell towards fully flexible photovoltaic module, Ph. D. Thesis, University of Leuven, Belgium,2006.
    [148]T. Aernouts, F. C. Krebs, P. Vanlaeke, Method for the production of a layer of organic material, filingdate 29.11.2007,WO2007134616A1.
    [149]T. Aernouts, F. C. Krebs, P. Vanlaeke, Method for the production of a layer of organic material,filingdate29.11.2007, WO2007134823A1.
    [150]F. C. Krebs, M. Jorgensen, Decomposable vehicles in printing or coating compositions, filingdate13.04.2007,WO2007118850A1.
    [151]C. N. Hoth, S. A. Choulis, P. Schilinsky, C. J. Brabec, High photovoltaic performance of ink jet printed polymer:fullerene blends, Adv. Mater.,2007,19:3973-3978.
    [152]T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, J. Poortmans, Polymer based organic solar cells using ink-jet printed active layers, Appl. Phys. Lett.,2008,92:033306.
    [153]F. C. Krebs, Pad printing as a film forming technique for polymer solar cells, Sol. EnergyMater.SolarCells,2009,93:484-490.
    [154]P. Hahne, E. Hirth, I. E. Reis, K. Schwichtenberg, W. Richtering, F. M. Horn, U. Eggenweiler, Progress in thick-film pad printing technique for solar cells,Sol.Energy Mater.Sol.Cells, 2001,65:399-407.
    [155]An example of acommercially available roll coating plat formfor R2R applications /www.solarcoating.deS.
    [156]F. C. Krebs, Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edgecoating, slot-die, coating and screenprinting, Sol.Energy Mater.Sol.Cells,2009,93: 465-475.
    [157]M. Pudas, J. Hagberg, S. Leppavuori, Gravure off set printing of polymer inks for conductors,Prog.Org.Coat.2004,49:324-335.
    [158]M. Pudas, N. Halonen, P. Granat, J. Vahakangas, Gravure printing of conductive particulate polymer inks on flexible substrates, Prog.Org.Coat.2005,54:310-316.
    [159]M. Pudas, J. Hagberg, S. Leppavuori, Printing parameters and ink components affecting ultra-fine-line gravure offset printing for electronics applications, J. Eur. Ceram. Soc.,2004,24: 2943-2950.
    [160]P. H. Gaskell, G. E. Innes, M. D. Savage, An experimental investigation of meniscus rollcoating, J.FluidMech.,1998,355:17-44.
    [161]L. W. Schwartz, Numerical modeling of liquid withdrawal from gravure cavities in coating operations; the effect of cell pattern, J.Eng.Math.,2002:243-253.
    [162JN. Kapur, A parametric study of direct gravure coating, Chem. Eng. Sci.,2003,58:2875-2882.
    [163]X. Yin, S. Kumar, Flow visualization of the liquid-emptying process in scaled-up gravure groove sand cells, Chem. Eng. Sci.,2006,61:1146-1156.
    [164]R. W. Hewson, N. Kapur, P. H. Gaskell, A theoretical and experimental investigation of tri-helical gravure roll coating, Chem.Eng.Sci.,2006,61:5487-5499.
    [165]J. M. Ding, A. F. Vornbrock, C. Ting, V. Subramanian, Patternable polymer bulk heterojunction photovoltaic cells on plastic by ro to gravure printing, Sol.Energy Mater. Sol.Cells,2009, 93:459-464.
    [166]H. Santa-Nokki, J. Kallioinen, T. Kololuoma, V. Tuboltsev, J. Korppi-Tommola, Dynamic preparation of TiO2 films for fabrication of dye-sensitizedsolar cells, J. Photochem. Photobiol. AChem.2006,182:187-191.
    [167]K. X. Steirer, M. O. Reese, B. Rupert, N. Kopidakis, D. C. Olson, R. T. Collins, D. S. Ginley, Ultrasonic spray deposition for production of organic solar cells, Sol. EnergyMater.Sol.Cells, 2009,93:447-453.
    [168]C. Girotto, B. P. Rand, J. Genoe, P. Heremans, Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells, Sol.EnergyMater.Sol.Cells,2009,93: 454-458.
    [169]T. Ishikawa, et al., Proceedings of the society of photo-optical instrumentation engineers,2004, (5215):211-218.
    [170]H. Noda, et al., Japanese journal of applied physics part1-regular papers brief communications & review papers,2006, (45):2792-2793.
    [171]V. Doojin et al., Applied physics letters,2007,(91):081102.
    [172]R. Green, et al., Applied physics letters,2008,(92):033301.
    [173]K.X. Steirer, ea al., Thin solid films,2009, (517):2781-2786.
    [174]A. C. Chapple, F. R. Hall, A description of the droplet spectra produced by a flat fan nozzle, Transactions of the ASAE,1993,37(1):51-58.
    [175]C. H. Chen, lecture of Electrostatic Spray Deposition Technique for Thin Films Fabrication, Department of Materials Science and Engineering University of Science and Technology of China, 2010.
    [176]蒋勇,廖光煊,王清安,范维澄,喷雾过程液滴碰撞-聚合模型研究,火灾科学,2000,2:27-30
    [177]魏明锐,文华,刘永长,张煜盛,喷雾过程液滴碰撞模型研究,内燃机学报,2005,6:518-523
    [178]A. E. Godsave, Studies of the combustion of drops in a fuel spray:the burning of single droplets of fuel,Proceedings of the 4th Symposium on Combustion. Baltimore M D,1953: 818-830
    [179]D. B. Spalding, Experiments on the burning and extinction of liquid fuel spheres. Fuel,1953, 3(2):169-185
    [180]S. S. Sazhin. Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci.,2006,32(2):162-214
    [181]B. Abramzon, W. A. Sirignano, Approximate theory of a single droplet vaporization in a convective field:effects of variable properties, Stefan flow and transient liquid heating, Pro.2nd ASME-JSME Thermal Engng Joint Conf. Honolulu, Hawaii,1987
    [182]B. Abramzon, W. A. Sirignano, Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer,1989,32(9):1605-1618.
    [183]S. S. Sazhin, T. Kristyadi, W. A. Abdelghaffar, M. R. Heikal Models for fuel droplet heating and evaporation:comparative analysis. Fuel,2006,85(12):1613-1630.
    [184]C. T. Crowe, M. P. Sharma, Stock D E. The particle source in cell(PSI-cell) model for gas-droplet flows. Fluids Eng.,1977,99:325-332.
    [185]F. Mashayek, Direct numerical sim ulations of evaporating droplet dispersion in forced low Mach number turbulence. Int. J. Heat Mass Transfer。1998,41(17):2601-2617
    [186]F. Mashayek, Droplet-turbulence interactions in low Machnumber homogeneous shear two-phase flows. Fluid M ech.,1998,367:163-203
    [187]Z. F. Zhou, G X. Wang, L. J. Guo, Y. S. Wang, B. Chen, Comparison and evaluation of evaporation models for single moving droplet with a high evaporation rate,3rd International Conference on Particulate Processes in the Pharmaceutical Industry. Gold Coast, Australia,2011
    [188]R. S. Miller, K. Harstad, J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiphase Flow,1998,24 (6): 1025-1055
    [189]W. E. Ranz, W.R. Marshall, Evaporation from drops, Chem. Eng. Prog.,1952,48:141
    [190]A. P. Caricato, M. Cesaria, G. Gigli, A. Loiudice, A. Luches et al., Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications, Appl. Phys. Lett. 2012,100:073306.
    [191]L. Dou, J.B. You, J. Yang, C.C. Chen, Y.J. He, S. Murase, T. Moriarty, K. Emery, G Li and Y. Yang.Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics,2012,6:180-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700