基于活性叶立德捕捉的新型多组份反应及其选择性调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多组份反应是多个简单的反应原料同时参与化学反应选择性地一步构建复杂多官能团目标化合物的高效合成方法。此类反应可以最大限度地提高结构多样性化合物骨架,实现化学反应的高原子经济性。多组份反应的最大挑战是反应的选择性。如何实现多组份反应体系中各反应底物的有序、高效地组装,从而高选择性地合成目标化合物是多组份反应中的难点。
     论文设计并实现了羟基、铵基两类活性叶立德捕捉的多组份新反应及考察了其选择性调控的研究,本文的研究工作有三个部分内容:一类是铵基叶立德捕捉的多组份类aldol, Mannich以及Michael反应;一类是基于活性叶立德捕捉的多组份串联反应研究;另一类是多组份反应选择性调控的研究。
     首先,我们研究了铵基叶立德捕捉的多组份类aldol, Mannich以及Michael反应。
     通过Rhn/ZrTM的协同催化策略,首次实现了α-芳基重氮酯、芳胺和醛的不对称三组份类Aldol反应。该方法为构建一类有机和医药化学中重要的含季碳中心β-羟基-α-氨基酸衍生物提供了便捷且高对映选择性的路线。将新型一价金属铑催化剂应用在α-烷基取代的重氮乙酯,芳香胺和芳香醛的三组份类Aldol反应中,高非对映选择性地合成了三组份产物β-羟基-α-氨基酸衍生物,成功地将重氮化合物拓展到了α-烷基取代的重氮酯。
     在实现铵基叶立德捕捉的多组份不对称类aldol反应后,通过金属催化剂和手性有机小分子催化剂协同催化策略在α-芳基重氮羧酸酯、氨基甲酸酯以及亚胺参与的不对称类mannich反应中的应用;首次实现了α,β-二氨酸衍生物高化学选择性(最高93%yield)、高立体选择性(最高>99:1dr,99%ee)合成。通过改变有机小分子催化剂手性磷酸BINOL骨架上的取代基团,能实现非对映异构体的翻转控制,即只要选择不同的取代基的手性磷酸催化剂,铵基叶立德捕捉的三组份反应的产物α,β-二氨酸衍生物的四个对映异构体都能任意地而且高选择性地合成得到。易脱保护的新型氨基甲酸酯首次应用到铵基叶立德的生成并参与多组份反应。另外,我们还研究了重氮化合物、氨基磷酸酯和亚胺酸酯的三组份不对称催化反应。通过金属和手性小分子催化剂的协同催化,首次实现了亚胺酸酯捕捉铵基叶立德的多组份反应,成功地将底物亚胺拓展到了亚胺酸酯。通过引入酯基基团具有可调性的氨基磷酸酯参与叶立德的多组份反应中,为反应的选择性调控提供了机会。该研究高非对映选择性(最高>99:1dr),立体选择性(最高98%ee)地构建了2-取代的2,3-二氨基琥珀酸衍生物。通过该研究构建的2-取代的2,3-二氨基琥珀酸骨架在合成上具有较好的可修饰性和延展性,对药物开发工艺具有重要的科学依据和实用价值。
     在研究铵基叶立德捕捉的多组份不对称类aldol,Mannich反应后,我们成功发展了硝基烯化合物,芳胺以及重氮化合物的三组份类Michael加成反应。该研究发展了一价金属铑催化剂在催化重氮分解中的应用。在金属和金鸡纳碱的催化下,活泼的铵基叶立德成功地被硝基烯类化合物捕捉,并且以较高的化学选择性及非对映选择性合成了α,γ-二氨基酸的重要骨架结构。这是第一次实现活泼叶立德与硝基烯类化合物的三组份反应。
     其次,我们发展了基于活性叶立德捕捉的多组份串联反应。
     首次研究了氨基甲酸酯参与的分子内Mannich/aza-Michael的四组份串联反应,高效地构建一系列骨架多样、结构丰富的含季碳的全取代四氢异喹啉衍生物。该研究发展了一类金属钌催化剂和手性BINOL磷酸的协同催化体系,有效地控制了四组份复杂反应体系中的反应途径,并且以中等收率,高立体选择性地一锅法合成了光学纯的四氢异喹啉衍生物。
     以上研究的都是铵基叶立德参与的多组份反应。不仅是铵基叶立德,羟基叶立德也能被相应的亲电试剂捕捉。我们发展了一类新型羟基叶立德捕捉的多组份串联反应。我们研究了醇的羟基叶立德捕捉的三组份环化/羰基加成的多组份串联反应。采用金属-金属协同催化的策略,成功地发现了单催化方式不能实现的新反应,高效合成了多官能团复杂1,2-异色烯衍生物。经过设计的对比实验,间接证明了反应的途径:其中一金属活化炔键发生分子内环化捕捉另外一金属催化重氮分解生成金属络合的叶立德。两金属催化剂相互协同作用,共同控制反应的途径和立体选择性。
     通过金属卡宾对小分子醇进行活化形成活泼羟基叶立德。羟基叶立德能被亲电试剂捕捉,质子转移发生一次延迟,得到了羟基叶立德捕捉的三组份中间体。我们探索了羟基叶立德一次捕捉后的活性中间体能再一次被亲电试剂或者亲电基团捕捉,发生质子转移的二次延迟,实现了分子内的Michael-aldol-type串联反应。通过手性薄荷醇作为其中一个底物的手性源,一步完成了多个手性中心化合物的高非对映选择性合成。该反应可以高非对映选择性地一步合成含有四手性中心的茚类化合物(dr>20:1)。并且通过氘代标记实验,证明了串联反应的过程是协同的机制。
     最后,我们对多组份反应选择性调控做了细致研究。
     我们研究了由芳醛,芳胺和α-芳基重氮羧酸酯三种相同的起始原料合成β-氨基-α-羟基酸、β-氨基-α-氨基酸和β-羟基-α-氨基酸衍生物的通用方法。发展了三类协同催化体系,催化相同的三种原料通过不同的成键方式调控反应途径,并且实现反应的高立体选择性控制。通过金属与有机小分子催化剂的协同催化,高非对映选择性(>20:1dr),高对映选择性(85%-96%ee)地分别合成了β-氨基-α-氨基酸和β-羟基-α-氨基酸衍生物。该研究为构建一系列骨架多样,结构丰富的氨基酸类衍生物提供了高效快捷的合成途径。
Multi-component reactions (MCRs) provide an efficient methodology for the synthesis of complex, polyfunctional compounds from simple materials (three or more starting materials), and offer an efficient starting point for the construction of diverse, complex molecules with improved atom economy. Selectivity control is the greatest challenge in MCRs. It is difficult to achieve an ordered, sequential assembly of the substrates in the reaction system and smoothly deliver the target compounds.
     In this work, we have designed and realized a series of novel MCRs based on trapping two types of active ylides through an asymmetric, co-catalytic strategy and exploration of selectivity control. The first approach used ammonium-ylide-trapping aldol, Mannich and Michael-type MCRs; the second used onium-ylide-trapping domino MCRs; the third used exploration of selectivity control.
     First of all, we developed the ammonium-ylide-trapping aldol, Mannich and Michael-type MCRs.
     We have developed RhⅡ/ZrⅣ-co-catalyzed asymmetric three-component reactions that combine aryl diazoacetates, amines and aldehydes. The reaction provides a convenient and highly enantioselective route to the construction of an important class of compounds for both organic and medicinal chemistry; namely, a-amino-β-hydroxy acid derivatives containing chiral tetrasubstituted carbon centers. Using the Rh(Ⅰ) catalyst in the three-component Mannich-type reaction of a-alkyldiazo esters, amines, and aromatic aldehydes, a-amino-β-hydroxy acid derivatives were obtained with high diastereo-selectivity. Additionally, diazo compounds were successfully converted into a-alkyldiazo esters.
     The use of a synergistic catalysis strategy using an intriguing Rh2(OAc)4and chiral Brφnsted acid co-catalyzed three-component Mannich-type reaction between a diazo compound, a carbamate, and an imine provides rapid and efficient access to both a, β-diamino acid derivatives with a high level of control of chemo-, diastereo-, and enantio-selectivity (up to93%yield,>99:1dr and99%ee). By the judicious choice of chiral phosphoric acid catalysts combined with differentially sterically substituted3,3-BINOL components, the diastereoselectivity can be inverted and each of the four stereoisomers of the a,p-diamino esters could be made at will. The novel, easily deprotected carbamate was initially evaluated in ammonium-ylide-based MCRs. In addition, a highly enantioselective trapping of protic phosphoramidate ammonium ylides with a-imino esters is reported; it is based on the Rh2(OAc)4and chiral Brφnsted acid system. The Rh2(OAc)4and chiral Brφnsted acid co-catalyzed three-component Mannich-type reaction between a diazo compound, a phosphoramidate, and an a-imino ester provides rapid and efficient access to2,3-diaminosuccinic acid derivatives with a high degree of diastereo-and enantio-selective control. It also provides an opportunity to fine tune the stereoselectivity by adjusting the side chain of the phosphoramides. Furthermore, imines derived from aromatic aldehydes were successfully converted to alkyl aldehydes, which have both scientific and practical significance in drug discovery.
     We describe the first application of the three-component Michael-type reaction for trapping ammonium ylides with β-nitrostyrenes. With Rh(Ⅰ) and metal-organic molecule catalysis, a,y-amino acid derivatives were obtained with high chemo-and diastereo-selectivity.
     Secondly, we developed novel domino MCRs based on trapping onium ylide.
     Based on the synergistic catalysis strategy using Rh2(OAc)4and the chiral Brφnsted acid co-catalyzed three-component Mannich-type reactions described, we designed an asymmetric four-component domino reaction. A ruthenium complex/chiral Brφnsted acid system was developed for the enantioselective synthesis of fully substituted tetrahydroisoquinolines in moderate yields and with high stereoselectivities.
     Similarly, oxonium ylides could be also trapped in the novel domino reactions. A domino cyclization/three-component reaction of2-alkylaryaldehydes with diazo compounds and alcohols is described, which affords isochromenes using metal-metal synergistic catalysis. The reaction could not be achieved using traditional monocatalysts. Using a control reaction, we indirectly proved that the domino reaction occurs via a process of cyclization/ylide trapping.
     We describe the development of the first oxonium-ylide-trapping, intramolecular three-component Michael-aldol-type cascade reaction of an oxonium ylide, formed from a metal carbene and an alcohol, and an electrophile through a delayed proton-transfer process. The intermediate obtained can be successfully trapped by another electrophile or electrophilic group, and the delayed proton-transfer process. In a promising pathway to chirality induction, this MCR was used to construct optically pure, functionalized,1-indanol derivatives containing multiple chiral centers, with complete stereocontrol (>20:1dr). In addition, through a deuterium-labeling experiment, we proved that the domino reaction was a concerted process.
     In the end, we addresses three types of synergistic catalysis systems for the synthesis of a-hydroxy-β-amino, a-amino-β-amino, and a-amino-β-hydroxy ester derivatives with high stereoselective control, using the same three starting materials: diazo compounds, aromatic aldehydes, and amines. Through the use of the synergistic metal-organic catalysis strategy, a-hydroxy-β-amino and a-amino-β-amino ester derivatives were obtained with>20:1dr and85-96%ee. The methodology not only offers an effective approach to constructing stereochemically complex and structurally diverse amino acid compounds, but also provides an insight into the construction of biological macromolecules in Nature.
引文
[1]P. A. Wender, S. T. Handy, D. L. Wright, Chem. Ind. (London),1997,765-769
    [2]A. Domling, Chem. Rev.,2006,106,17.
    [3]J. P. Zhu, Bienayme H. WILEY-VCH Verlag GmbH & Co. KGaA,2005
    [4]a) A. S. C. Chan, W. Hu, C. C. Pai, C. P. Lau, Y. Jiang, A. Mi, M. Yan, J. Sun, R. Lou, J. Deng, J. Am. Chem. Soc.1997,119,9570; b) Y. Liu, K. Ding, J. Am. Chem. Soc.2005,127,10488; c) J. H. Xie, Q. L. Zhou, Acc. Chem. Res.2008,41,581; c) J. H. Xie, S. F. Zhu, Q. L. Zhou, Chem. Rev.2011, 111,1713; d) J. Zhou, Y. Tang, J. Am. Chem. Soc.2002,124,9030; e) S. F. Lu, D. M. Du, J. Xu, S. W. Zhang, J. Am. Chem. Soc.2006,128,7418; f) S. F. Zhu, Y. Cai, H. X. Mao, J. H. Xie, Q. L. Zhou, Nature Chem.2010,2,546; g) J. Chen, J. Chen, F. Lang, X. Zhang, L. Cun, J. Zhu, J. Deng, J. Liao, J. Am. Chem. Soc.2010,132,4552.
    [5]X. Liu, L. Lin, X. Feng, Acc. Chem. Res.2011,44,574.
    [6]Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc.2010,132,8532.
    [7]A. E. Allen, D. W. C. MacMillan, Chem. Sci.,2012,3,633
    [8]M. Sawamura, M. Sudoh, Y. Ito, J. Am. Chem. Soc.,1996,118,3309.
    [9]M. Rueping, A. P. Antonchick and C. Brinkmann, Angew. Chem. Int. Ed.,2007, 46,6903.
    [10]K. R. Knudsen and K. A. JΦrgensen, Org. Biomol. Chem.,2005,3,1362.
    [11]A. E. Allen and D. W. C. MacMillan, J. Am. Chem. Soc.,2011,133,4260.
    [12]a) J. C. Conrad, J. Kong, B. N. Laforteza and D. W. C. MacMillan, J. Am. Chem. Soc.,2009,131,11640; b) J. Aleman, S. Cabrera, E. Maerten, J. Overgaard and K. A. Jφrgensen, Angew. Chem., Int. Ed.,2007,46,5520.
    [13]R. Rios, H. Sunden, I. Ibrahem and A. Cordova, Tetrahedron Lett.,2007,48, 2181.
    [14]A. B. Xia, D. Q. Xu, S. P. Luo, J. R. Jiang, J. Tang, Y. F. Wang, Z. Y. Xu, Chem. Eur.J.,2010,16,801.
    [15]L. Q. Lu, Y. J. Cao, X. P. Liu, J. An, C. J. Yao, Z. H. Ming, W. J. Xiao, J. Am. Chem. Soc. 2008,130,6946.
    [16]D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc.,2009,131, 10875.
    [17]S. Murata, J. Kobayash, C. Kongou, M. Miyata, T. Matsushita, H. Tomioka. J. Am. Chem. Soc.1998,120,9088.
    [18]Mark S. Baird. Chem. Rev.2003,103,1271.
    [19]a) D. J. Cardin; B. Cetinkaya; M. F. Lappert. Chem. Rev.1972,72,545-574; b) Michael P. Doyle. Chem. Rev.1980,66,919-939; c) Michael P. Doyle; David C. Forbes. Chem. Rev.1998,98,911; d) Michael P. Doyle; Richard Duffy; Maxim Ratnikov; Lei Zhou. Chem. Rev.2010,110,704.
    [20]V. J. Nair, C. Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen, L. Balagopal,Acc.Chem. Res.,2003,36,899.
    [21]H. M. L. Davies, R. E. J. Beckwith, Chem. Rev.,2003,103,2861.
    [22]a) G. A. Mirafzal, G. Cheng, L. K. Woo, J. Am. Chem. Soc.2002,124,176; b) S. R. Wang, C. Y. Zhu, X. L. Sun, Y. Tang. J. Am. Chem. Soc.2009,131,4192; c) S. F. Zhu, Y. Cai, H. X. Mao, J. H. Xie, Q. L. Zhou. Nature Chemistry,2010,2,546.
    [23]a) S. F. Zhu; J. A. Perman; X. P. Zhang. Angew. Chem. Int. Ed.2008,47,8460; b) Y. Chen, J. V. Ruppel, X. P. Zhang. J. Am. Chem. Soc.2007,129,12074-12075; c) Wojciech I. Dzik; Xue Xu; X. Peter Zhang; Joost N. H.Reek; Bas de Bruin, J. Am. Chem. Soc.2010,132,10891-10902; d) Shifa Zhu; Xue Xu; Jason A. Perman; X. Peter Zhang.J. Am. Chem. Soc.2010,132,12796-12799; e) Akira Nakamura; Akira Konishi; Yoshitaka Tatsuno; and Sei Otsuka. J. Am. Chem.Soc.1978,100,3443-3448.
    [24]a) H. Nozaki, S. Moriuti, H. Takaya, R. Noyori, Tetrahedron Lett.1966,59; b) R. G. Salomon, J. K. Kochi, J. Chem. Soc, Chem. Commun.1972,559; c) R. G. Salomon, J. K. Kochi, J. Am. Chem. Soc.1973,95,3300; d) E. J. Corey, A. G. Myers, Tetrahedron Lett.1984,25,3559.
    [25]a) H. Nishiyama, Y. Itoh, H. Matsumoto, S. B. Park; K. Itoh. J. Am. Chem. Soc. 1994,116,2223; b) C. M. Che, J. S. Huang, F. W. Lee, Y. Li, T. S. Lai; H. L. Kwong; P. F. Teng, W. S. Lee, W. C. Lo, S. M. Peng, Z. Y. Zhou, J. Am. Chem. Soc.2001, 123,4119; c) Z. J. Xu, R. Fang, C. Y. Zhao, J. S.Huang, G. Y. Li, N. Y. Zhu, C. M. Che. J. Am. Chem. Soc.2009,131,4405; d) G. Y. Li, J. Chen, W. Y. Yu, W. Hong, C. M. Che. Org. Lett,2003,5,2153.
    [26]a) M. P. Doyle. Chem. Rev.1980,66,919; b)Michael P. Doyle; D. C. Forbes. Chem. Rev.1998,98,911-935; c) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev.2010,110,704.
    [27]a) Z. Zhang; Y. Liu; M. Gong; X. Zhao; Y. Zhang; J. Wang. Angew. Chem. Int. Ed.,2010,49,1139-1142; b) Q. Xiao; J. Ma; Y. Yang; Y. Zhang. J. Wang. Org. lett., 2009,11,4732-4735; c) C. Peng; Y. Wang; J. B. Wang. J. Am. Chem. Soc.2008,130, 1566-1567; d) C. Peng, J. J. Cheng; J. B. Wang. J. Am. Chem. Soc.2007,129, 8708-8709.
    [28]D. A. Evans, K. A. Woerpel, M. M. Hinman, M. M. Faul, J. Am. Chem. Soc. 1991,113,726-728.
    [29]a) B. Liu, S. F. Zhu, W. Zhang, C. Chen, Q. L. Zhou, J. Am. Chem. Soc.2007, 129,5834; b) C. Chen, S. F. Zhu, B. Liu, L. X. Wang, Q. L. Zhou, J. Am. Chem. Soc. 2007,129,12616; c) S. F. Zhu, C. Chen, Y. Cai, Q. L. Zhou, Angew. Chem. Int. Ed. 2008,47,932.
    [30]a) T. C. Maier, G. C. Fu, J. Am. Chem. Soc.2006,128,4594; b) E. C. Lee, G. C. Fu, J. Am. Chem. Soc.2007,129,12066.
    [31]a) L. A. Nazarova, I. I. Chernyaev, A. S. Morozova, Zh. Neorgan. Khim.1965, 10,539-541; b) F. A. Cotton, N. F. Curtis, C. B. Harris, B. F. G. Johnson, S. J. Lippard, J. T. Mague, W. R. Robinson, J. S. Wood, Science 1964,145,1305.
    [32]R. Paulissenen, H. Reimlinger, E. Hayez, A. J. Hubert, P. Teyssie, Tetrahedron Lett.1973,14,2233.
    [33]R. Paulissenen, H. Reimlinger, E. Hayez, A. J. Hubert, Ph. Teyssie, Tetrahedron Lett.1973,2233.
    [34]M. P. Doyle, Chem. Rev.1986,86,919.
    [35]G. Maas, Top. Curr. Chem.1987,137,76.
    [36]T. Ye, M. A. McKervey, Chem. Rev.1994,94,1091.
    [37]a) M. P. Doyle, V. Bagheri, T. J. Wandless, N. K. Harn, D. A. Brinker, C. T.; K. L. Hoh, J. Am. Chem. Soc.1990,112,1906; b) M. P. Doyle, L. J. Westrum, W. N. E. Wolthuis, See, M. M.; Boone, W. P.; Bagheri, V.; Pearson, M. M. J. Am. Chem. Soc. 1993,115,958.
    [38]A. Padwa, D. J. Austin, Angew. Chem., Int. Ed. Engl.1994,33,1797.
    [39]M. P. Doyle, M. S. Shanklin, Organometallics 1994,13,1081.
    [40]M. P. Doyle, V. Bagheri, T. J. Wandless, N. K. Harn, D. A. Brinker, C. T. Eagle, K. L. Hoh, J. Am. Chem. Soc. 1990,112,1906.
    [41]M. P. Doyle, L. J. Westrum, W. N. E. Wolthuis, See, M. M.; W. P. Boone, V. Bagheri, M. M. Pearson, J. Am. Chem. Soc.1993,115,958.
    [42]M. P. Doyle, Angew. Chem. Int. Ed.,2009,48,850-852.
    [43]a) H. M. L. Davies, Eur. J. Org. Chem.1999,10,2459-2469; b) H. M. L. Davies; T. Hansen, M. R. Churchill. J. Am. Chem. Soc.2000,122,3063-.3070.
    [44]S. Kitagaki, M. Anada, O. Kataoka, K. Matsuno, C. Umeda, N. Watanabe, S. Hashimoto, J. Am. Chem. Soc.1999,121,1417-1418.
    [45]P. Muller, Y. Allenbach, E. Robert, "Rhodium(Ⅱ)-catalyzed Olefin Cyclopropanation with the Phenyliodonium Ylide Derived from Meldrum's Acid," Tetrahedron:Asymmetry 2003,14,779-785.
    [46]a) M. P. Doyle, D. C. Forbes, Chem, Rev.1998,98,911; b) Doyle, M. P. Chem, Rev.1986,86,919
    [47]a) X. Sun, and Y. Tang, Acc. Chem. Res.,2008,41,937-948; b) F. G. West, and J. S. Clark, Nitrogen, Oxygen and Sulfur Ylide Chemistry,2002; c) A. Padwa, and S. F. Hornbuckle, Chem. Rev.,1991,91,263-309.
    [48]a) H. Yamataka, S. Nagase, J. Am. Chem. Soc.,1998,120,7530-7536; b) V. V. N. K. V. P. Raju, V. Ravindra, V. T. Mathad, P. K. Dubey and P. Reddy, Org. Process Res. Dev.,2009,13,710-715; c) D. Gau, T. Kato, N. S. Merceron, F. P. Cosso and A. Baceiredo, J. Am. Chem. Soc.,2009,131,8762-8763; d) R. Robiette, J. Richardson, V. K. Aggarwal and J. N. Harvey, J. Am. Chem. Soc.,2005,127, 13468-13469.
    [49]a) Z. Huang, X. Yu and X. Huang, J. Org. Chem.,2002,67,8261-8264; b) J. D. Hsi and M. Koreeda, J. Org. Chem.,1989,54,3229-3231; c) A. Li, L. Dai, X. Hou and M. Chen, J. Org. Chem.,1996,61,4641-4648.
    [50]F. G. West, B. N. Naidu, J.Am. Chem. Soc.1994,116,8420-8421.
    [51]J. P. Qu, Z. H. Xu, J. Zhou, C. L. Cao, X. L. Sun, L. X. Dai, Y. Tang, Adv. Synth. Catal.2009,351,308-312.
    [52]M. P. Doyle, D. C. Forbes, Chem. Rev.1998,98,911-935.
    [53]M. C. Pirrung, W. L. Brown, S. Rege, P. Laughton, J. Am. Chem. Soc.1991, 113,8561.
    [54]A. Padwa, K. E. Krumpe, Tetrahedron 1992,48,5385.
    [55]P. Baret, H. Buffet, J. L. Pierre,, Bull. Soc. Chim. Fr.1972,6,2493.
    [56]a) P. March, R. Huisgen, J. Am. Chem. Soc.1982,104,4952; b) R. Huisgen, P. March, J. Am. Chem. Soc.1982,104,4953.
    [57]S. Torssel, M. Kienle, P. Somfai, Angew. Chem. Int. Ed.2005,44,3096.
    [58]G. Y. Li, J. Chen, W. Y. Yu, W. Hong, C. M. Che, Org. Lett.2003,5,2153.
    [59]L. D. Lama, B. G. Christensen, Tetrahedron Lett.1978,19,4233.
    [60]C. F. Garcia, M. A. McKervey, T. Ye, Chem. Commun.1996,1465
    [61]a) B. Liu, S. F. Zhu, W. Zhang, C. Chen, Q. L. Zhou, J. Am. Chem. Soc.2007, 129,5834; b) B. Xu, S. F. Zhu, X. L. Xie, J. J. Shen, Q. L. Zhou, Angew. Chem. Int. Ed.2011,50,11483.
    [62]E. C. Lee, G. C. Fu, J. Am. Chem. Soc.2007,129,12066.
    [63]J. Xue, H. L. Luk, M. S. Platz, J. Am. Chem. Soc.,2011,133,1763.
    [64]O. Silberrad, C. S. Roy, J. Chem. Soc.1906,179
    [65]D. J. Miller, C. J. Moody, Tetrahedron 1995,51,10811
    [66]P. Bulugahapitiya, Y. Landais, L. Parra-Rapado, D. Planchenault, V. Weber, J. Org. Chem.1997,62,1630
    [67]T. C. Maier, G. C. Fu, J. Am. Chem. Soc.2006,128,4594.
    [68]a) C. Chen, S. F. Zhu, B. Liu, L. X. Wang, Q. L. Zhou, J. Am. Chem. Soc.2007, 129,12616; b) S. F. Zhu, C. Chen, Y. Cai, Q. L. Zhou, Angew. Chem. Int. Ed.2008, 47,932; c) S. F. Zhu, Y. Cai, H. X. Mao, J. H. Xie, Q. L. Zhou, Nature Chemistry 2010,2,546.
    [69]a) Z. Huang, X. Yu and X. Huang, J. Org. Chem.,2002,67,8261-8264; b) J. D. Hsi and M. Koreeda, J. Org. Chem.,1989,54,3229; c) A. Li, L. Dai, X. Hou and M. Chen, J. Org. Chem.,1996,61,4641.
    [70]Y. H. Wang, Y. X. Zhu, Z. Y. Chen, A. Q. Mi, W. H. Hu, M. P. Doyle, Org. Lett.2003,5,3923.
    [71]Y. H. Wang, Z. Y. Chen, A. Q. Mi, W. H. Hu, Chem. Commun.2004,2486
    [72]Y. G. Zhu, C. W. Zhai, Y. L. Yue, L. P. Yang, W. H. Hu, Chem. Commun.,2009, 1362.
    [73]C. D. Lu, H. Liu, Z. Y. Chen, W. H. Hu, A. Q. Mi, Org. Lett.2005,7,83.
    [74]X. Zhang, H. X. Huang, X. Guo, X. Y. Guan, L. P. Yang,W. H. Hu, Angew.Chem. Int. Ed.2008,47,6647.
    [75]a) M. Ueno, H. Ishitani, S. Kobayashi, Org. Lett.2002,4,3395; b) T. Isoda, R. Akiyama, H. Oymda, K. S. Kobayashi, Adv. Synth. Catal.2006,348,1813;
    [76]W. H. Hu, X. F. Xu, J. Zhou, W. J. Liu, H. X. Huang, J. Hu, L. P. Yang, L. Z. Gong, J. Am. Chem. Soc.,2008,130,7782.
    [77]X. F. Xu, Y. Qian, L. P. Yang, W. H. Hu, Chem. Commun.,2011,47,797.
    [78]X. Y. Guan, L. P. Yang, W. H. Hu, Angew. Chem. Int. Ed.2009,48,1.
    [79]a) B. Alcaide, P. Almendros,C. Aragoncillo, R. Callejo,M. P. Ruiz, M. R. Torres, J. Org. Chem.,2009,74,8421; b) B. Alcaide, P. Almendros, C. Aragoncillo, R. Callejo, M. P. Ruiz, M. R. Torres, European Journal of Organic Chemistry,2012,12, 2359
    [80]C. Y. Zhou, J. C. Wang, J. H. Wei, Z. J. Xu, Z. Guo, K. H. Low, C. M. Che, Angew. Chem. Int. Ed.2012,51,1.
    [81]L. Ren, X. L. Lian, L. Z. Gong, Chemistry-A European Journal,2013,19, 3315.
    [82]a) A. V. R. Rao, M. K. Gurjar, K. L. Reddy and A. S. Rao, Chem. Rev.,1995,95, 2135; b) D. Fles and B. Balenovic, J. Am. Chem. Soc.,1956,78,3072; c) K. C. Nicolaou, C. N. C. Boddy, H. Li, A. E. Koumbis, R. Hughes, S. Natarajan, N. F. Jain, J. M. Ramanjulu, S. Brase and M. E. Solomon, Chem. Eur. J.,1999,5,2602.
    [83]S. Kobayashi. Et al. J.Am. Chem.Soc,1998,120,431
    [84]T. Nishimura, Y. Maeda, T. Hayashi, Angew. Chem. Int. Ed.2012,122,7482.
    [85]a) A. Viso, RF de la Pradilla, A. Garcia, A. Flores, Chem. Rev.2005,105, 3167; b) K. R. Knudsen, K. A. Jφrgensen, Org. Biomol. Chem.,2005,3,1362; c) Z. Chen, H. Morimoto, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc.,2008,130, 2170.
    [86]X. X. Yan, Q. Peng, Q. Li, K. Zhang, J. Yao, X. L. Hou, Y. D. Wu, J. Am. Chem. Soc.,2008,130,14362.
    [87]R. G. Arrayas, J. C. Carretero, Chem. Soc. Rev.,2009,38,1940.
    [88]a) P. Yates, J. Am. Chem. Soc.1952,74,5376; b) H. E. Helson, W. L. Jφrgensen, J. Org. Chem.1994,59,3841; c) S. Bachmann, D. Fielenbach, K. A. Jφrgensen, Org. Biomol. Chem.2004,2,3044.
    [89]D. Uraguchi, K. Sorimachi, M. Terada, J. Am. Chem. Soc.2004,126,11804.
    [90]T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. Int. Ed.2004,43, 1566.
    [91]a) T. Akiyama, H. Morita, K. Fuchibe, J. Am. Chem. Soc.2006,128,13070; b) Terada, M. Chem. Commun.2008,4097.
    [92]a) R. G. Arrayas and J. C. Carretero, Chem. Soc. Rev.,2009,38,1940; b) Z. H. Chen, H. Morimoto, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc.,2008,130, 2170; c) G. A. Cutting, N. E. Stainforth, M. P. John, G. Kociok-Kohn and M. C. Willis, J. Am. Chem. Soc.,2007,129,10632; d) K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V. Gothelf and K. A. Jorgensen, J. Am. Chem. Soc.,2001,123,5843; e) M. S. Valle, M. F. Saraiva, P. Retailleau, M. V. de Almeida and R. H. Dodd, J. Org. Chem.,2012,77,5592; f) W. Q. Zhang, L. F. Cheng, J. Yu and L. Z. Gong, Angew. Chem. Int. Edit,2012,51,4085.
    [93]a) Y. N. Belokon, N. I. Chernoglazova, A. S. Batsanov, N. S. Garbalinskaya, V. I. Bakhmutov, Y. T. Struchkov and V. M. Belikov, Russ. Chem. Bull.,1987,36,779; b) D. Ciez, Tetrahedron,2007,63,4510; c) E. Fernandezmegia, M. M. Paz and F. J. Sardina, J. Org. Chem.,1994,59,7643; d) Y. Ozaki, T. Iwasaki, M. Miyoshi and K. Matsumoto, J. Org. Chem.,1979,44,1714; e) M. Serizawa, Y. Ukaji and K. Inomata, Tetrahedron-Asymmetr.,2006,17,3075; f) K. Zeitler and W. Steglich, J. Org Chem, 2004,69,6134.
    [94]a) T. Ooi, M. Kameda, J. Fujii and K. Maruoka, Org. Lett.,2004,6,2397; b) K. R. Knudsen and K. A. Jorgensen, Org. Biomol. Chem.,2005,3,1362; c) A. Puglisi, L. Raimondi, M. Benaglia, M. Bonsignore and S. Rossi, Tetrahedron Lett.,2009,50, 4340.
    [95]A. Q. Siddiqui, C. Ballatore, C. McGuigan, E. De Clercq and J. Balzarini, J. Med. Chem.,1999,42,393.
    [96]a) K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V. Gothelf, Jφrgensen, K. A. J. Am. Chem. Soc.2001,123,5843; b) N. Nishiwaki, K. R. Knudsen, K. V. Gothelf, Jorgensen, K. A. Angew. Chem., Int. Ed.2001,40,2992; c) T. Ooi, M. Kameda, J. i. Fujii, K. Maruoka, Org. Lett.2004,6,2397; d) G. A. Cutting, N. E. Stainforth, M. P. John, G. Kociok-Kohn, M. C. Willis, J. Am. Chem. Soc.2007,129,10632; e) J. Hernandez-Toribio, R. G. Arrayas, J. C. Carretero, J. Am. Chem. Soc.2008,130, 16150; f) Z. Chen, H. Morimoto, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2008,130,2170; g) A. Singh, J. N. Johnston, J. Am. Chem. Soc.2008,130,5866; h) Y. Park, S. Kang, Y. J. Lee, T. S. Kim, B. S. Jeong, H. G. Park, S. S. Jew, Org. Lett. 2009,11,3738; i) G. Liang, M. C. Tong, H. Tao, C. J. Wang, Adv. Synth. Catal. 2010,352,1851; j) H. Zhang, S. Syed, C. F. Barbas, III Org. Lett.2010,12,708. (k) R. G. Arrayas, J. C. Carretero, Chem. Soc. Rev.2009,38,1940.
    [97]For review, see:P. Perlmutter, Conjugate Addition Reaction in Organic Synthesis Pergamon:Oxford,1992.
    [98]Kurosu,M.; Marcin,L.R. Grinsteiner,T. J.; Kishi, Y. J. Am. Chem. Soc. 1995,117,11839.
    [99]C. Czekelius, E. M. Careita, Angew. Chem. Int. Ed.2005,44,612.
    [100]B. List, P. Peter, H. J. Matin, Org. Lett.2001,3,2423.
    [101]D. Enders,M. R. M. Huttl, C. Grondal, G. Raabe, Nature 2006,441,861.
    [102]M. S. Taylor, E.N. Jacobsen, Angew.Chem. Int. Ed.2006,45,1520-1543.
    [103]H. B. Huang, E. N. Jacobsen, J. Am. Chem. Soc.,2006,128,7170
    [104]S. H. MoCooey, S. J. Connon Org. Lett.2007,9,599.
    [105]H. M. Li, Y. Wang, L. Tang, L. Deng. J. Am. Chem. Soc.2004,126,9906.
    [106]Q. H. Deng, H. W. Xu, A. W. H. Yuen, Z. J. Xu, C. M. Che, Org. Lett.2008,10, 1529.
    [107]a) C. M. Che, J. S. Huang, Coord. Chem. Rev.2002,231,151. Maas, G. Chem. Soc. Rev.2004,33,183; b) M. P. Le, T. Roisnel, Ⅰ. Nicolas, G. Simonneaux, Organometallics 2008,27,3037; c) W. W. Chan, S. H. Yeung, Z. Zhou, A. S. C. Chan, W. Y. Yu, Org. Lett.2009,12,604.
    [108]G. J. Aune, T. Furuta, Y. Pommier, Anti-Cancer Drugs,2002,13,545.
    [109]a) J. M. Frincke, D. J. Faulkner, J. Am. Chem. Soc.1982,104,265-269; b) H. He, D. J. Faulkner, J. Org. Chem.1989,54,5822-5824; c) B. S. Davidson, Tetrahedron Lett.1992,33,3721-3724; d) P. S. Parameswaran, C. G. Naik, S. Y. Kamat, B. N. Pramanik, Ind. J. Chem.1998,37B,1258-1263; e) A. Fontana, P. Cavaliere, S.; Naik, C. G. Wahidulla, G. Cimino, Tetrahedron 2000,56,7305.
    [110]For synthetic work toward quinocarcin, see:a) S. J. Danishefsky, P. J. Harrison, R. R. Webb, Ⅱ, B. T. O'Neill, J. Am. Chem. Soc.1985,107,1421; b) H. Saito, T. Hirata, Tetrahedron Lett.1987,28,4065; c) S. Saito, O. Tamura, Y. Kobayashi, F. Matsuda, T. Katoh, S. Terashima, Tetrahedron 1994,50,6193; d) S. Saito, K. Tanaka, K. Nakatani, F. Matsuda, T. Katoh, S. Terashima, Tetrahedron 1994,50,6209; e) T. Katoh, Y. Nagata, Y. Kobayashi, K. Arai, J. Minami, S. Terashima, Tetrahedron 1994, 50,6221; f) T. Katoh, M. Kirihara, T. Yoshino, O. Tamura, F. Ikeuchi, K. Nakatani, F. Matsuda, K. Yamada, K. Gomi, T. Ashizawa, S. Terashima, Tetrahedron 1994,50, 6259; g) M. E. Flanagan, R. M. Williams, J. Org. Chem.1995,60,6791; h) M. C. McMills, D. L. Wright, J. D. Zubkowski, E. J. Valente, Tetrahedron Lett.1996,37, 7205; i) O. Koepler, S. Laschat, A. Baro, P. Fischer, B. Miehlich, M. Hotfilder, C. le Viseur, Eur. J. Org. Chem.2004,3611; (?)) U. Schneider, X. Pannecoucke, J. C. Quirion, Synlett 2005,1853.
    [111]H. S. Kang, E. M. Jun, S. H. Park, et al. JNat Prod,2007,70,1043.
    [112]W. Y. Wang, T. C. Li, R. Milburn, et al. Bioorg Med Chem Lett,1998,8,1579.
    [113]N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto,J. Am. Chem. Soc.,2002,9, 765.
    [114]X. Q. Yao, C. J. Li, Org. Lett.,2006,8,1953.
    [115]T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Chem. Eur. J.2007, 13,5632.
    [116]a) K. C. Nicolaou, T. Montagnon, G. Vassilikogiannakis, Chem.Commun.2002, 2478; b) K. C. Nicolaou, T. Montagnon, G. Vassilikogiannakis, C. J. N. Mathison, J. Am. Chem. Soc.2005,127,8872; c) S. Tu, L. H. Xu, C. R. Yu, Synth. Commun. 2008,38,2662; d) B. Vacher, P. Funes, P. Chopin, D. Cussac, P. Heusler, A. Tourette, M. Marien, J. Med. Chem.2010,53,6986; e) K. E. Wilson, N. N. Tsou, Z. Q. Guan, C. L. Ruby, F. Pelaez, J. Gorrochategui, F. Vicente, H. R. Onishi, Tetrahedron Lett. 2000,41,8705.
    [117]Y. G. Zhu, C. W. Zhai, L. P. Yang, W. H. Hu, Chem. Commun.2010,46,2865.
    [118]a) H. W. Gibson, M. A. G. Berg, J. C. Dickson, P. R. Lecavalier, H. Wang, J. S. Merola, J. Org. Chem.2007,72,5759; b) K. He, Z. H. Zhou, G. F. Zhao, C. C. Tang, Heteroat. Chem 2006,17,317; c) Y. Kubo, M. Yoshioka, S. Nakajima, I. Inamura, Tetrahedron Lett 1999,40,2335; d) R. Takagi, M. Hashizume, M. Nakamura, S. Begum, Y. Hiraga, S. Kojima, K. Ohkata, J. Chem. Soc. Perkin. Trans.2002,179.
    [119]D. Lucet, T. Le. Gall, C. Mioskowski, Angew. Chem. Int. Ed.1998,37,2581.
    [120]a) D. G. I. Kinston, Chem. Commun.2001,867; b) S. B. Horwitz, J. Natural Prod.2004,67,136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700