深海沉积物和共生关系中海洋微生物的多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋占据地球70%以上的表面积,是全球最大的生物栖息地,拥有高度多样的生境和巨大的生物多样性。海洋跟全球的生物地球化学元素循环、气候变化以及人类的健康生存密切相关。海洋中,在数量上和功能上占据主要地位的是“看不见的主导者”,即包括细菌和古菌在内的微生物。然而,栖息在各种海洋环境中的海洋微生物并没有得到很好的认识和研究,深海微生物尤其如此。因此,为了增加对海洋环境中微生物的了解,本论文针对多个深海环境中的微生物群体,从系统发育分类、功能、代谢能力以及与无脊椎动物的共生生活方式等多个角度展开了不同层次的研究,旨在探讨海洋微生物的多样性,了解海洋微生物资源并为开发和利用海洋微生物提供第一手资料。
     深海沉积物是地球上仅次于海水的第二大生物栖息系统,拥有巨大的微生物资源和丰富的多样性,其中绝大多数不为人知。本论文的第一部分集中探讨来自气水合物区(第二章)和富钻结壳区(第三章)的深海沉积物中细菌和古菌的多样性,以及群体组成。通过分子生态学的手段,利用非培养技术构建16S rRNA基因的序列文库。结果表明,在上述两个研究中均发现了较高的细菌多样性和极低的古菌多样性。不同的环境因素,例如气水合物区异常的甲烷气浓度或者富钴结壳区偏高的多金属含量,可能影响其微生物的种类和结构,而微生物群体又在一定程度上反应了对环境因素的适应性和喜好,例如在富钴结壳区发现了较多的微生物跟金属代谢微生物具有高度相似的16S序列,推测可能参与金属元素的循环。通过分析微生物群体组成,该部分的研究为将来进行功能基因、转录组学和原位分析提供了参考资料。
     微生物的多样性除了体现在系统发育类群上,也体现在功能方面。其中,酶是微生物功能多样性的承载者。琼胶降解细菌能分泌琼胶酶,水解海藻细胞壁中的主要成份琼脂糖,生成琼胶寡糖并最终转化为半乳糖供微生物利用。论文的第四章阐述了一个来自海洋细菌Vibrio sp. CN41的新琼胶酶基因的克隆和表达以及酶活性分析。该酶为GH50家族的琼胶酶,序列新颖,并具有商业应用的潜能。
     本论文最后部分从自由生存的海洋微生物过渡到共生细菌,集中研究了深海热液环境中的管虫和化能自养细菌之间的共生关系。互利共生是极为普遍的现象,在深海热液环境中尤为突出。关于共生最为主要的两个方面是共生菌的传递和营养物质的供应。共生菌的传递机制主要有两种:水平传递(即从环境中获取共生菌)和垂直传递(即共生菌在生殖细胞中由上一代传给后代)。已知管虫共生菌为水平传递,但是共生菌在热液环境中的分布丰度,以及在宿主体内和在环境中的多样性并没有报道,因此论文第五章主要集中解决这两个问题。通过在离管虫堆从近到远的四个不同位置放置玄武岩条块,定量PCR测定条块上总DNA提取物中共生菌单拷贝的16S和ITS(内转录间隔区)拷贝数,推测共生菌的丰度。结果发现只有在管虫聚集的地方共生菌丰度最高,剩下三个离其不同距离的位置仅有极低的共生菌基因拷贝数。这表明可能宿主通过某种方式重新接种共生菌到周围环境中,或者共生菌在管虫聚集区能大量增殖。焦磷酸测序宿主体内和海水中的共生菌ITS序列表明共生菌具有极低的菌株多样性,仅有一个主要的ITS类型和另外三个少数类型。针对该部分结果提出了有新意的假设,值得将来进一步研究和验证。
     关于共生的第二个主要方面是共生菌对营养物质的利用以及如何跟宿主分工合作。管虫无口无消化器官,因此依靠共生菌为其提供营养物质,包括碳、硫、氮和磷等。氮源(氨和或硝酸盐)及其利用(合成代谢和或呼吸作用)比较复杂,并且尚未弄清。因此,利用管虫Ridgeia piscesae作为模式系统,第六章探讨了两种Ridgeia表型,目Plong skinny (LS)和short fat (SF)表型,在具有不同氨氮浓度的热液环境中对氮源的利用情况。通过逆转录实时定量PCR检测氮源利用途径中相关基因的表达,结果表明在不同外界氮源浓度和不同的宿主表型中,氨可能是主要的氮源,而且主要由共生菌合成氨为有机氮。氮利用基因的表达在不同氮源条件和不同的宿主表型下有差异,表明氮的利用可能受到环境中氮源可获得性的影响。
     总之,本论文探讨了从自由生存的海洋微生物到海底热液管虫-化能合成共生菌系统,展现了一个宽广的视野。研究的结果补充和发展了现有的知识体系。论文中提出了多个值得进一步研究和验证的假设,能发展成为新的研究课题。
The ocean is the largest habitat on Earth, harboring diverse niches and tremendous biodiversity, and is closely related to global biogeochemical cycling, climate change, as well as human well-being. However, the unseen majority, i.e., bacteria and archaea, in marine environments is mostly unexplored. To understand diverse microbial communities in the deep sea, this thesis investigated marine microbial diversity in multiple habitats, from phylogenetic, functional and metabolic aspects, as well as in symbiotic association with invertebrates.
     Deep-sea sediments, the second largest habitat on Earth after the seawater column, harbor diverse microorganisms that are mostly unknown. The first part of this thesis (chapters2and3) focused on investigation of phylogenetic diversity of microorganisms in sediments from gas hydrates and cobalt-rich crust regions. Relatively high bacterial diversity, but low archaeal diversity was found in both studies. Special habitats may play a role in structuring microbial communities,﹕pecially their abnormal amount of chemicals, e.g., high methane concentrations in gas hydrate regions and enriched metals in cobalt-rich crust region. Interesting discoveries were found by examining the microbial communities, which have laid the foundation for future research into topics such as functional genes, transcriptomes and ecological associations studied through in situ hybridization.
     Microbial diversity can also be investigated through their functional differences, which are carried out by enzymes. To utilize agar, the cell wall component of algae, agarolytic microorganisms produce agarase to digest the neutral chain (agarose) and yield oligosaccharides, which is finally converted to galactose for utilization. The fourth chapter described cloning, expression and characterization of a new agarase from Vibrio strain, CN41. It is a GH50agarase, and has special characteristics that are promising for commercial applications.
     The last part of this thesis moved from free-living marine microorganisms to symbiotic microorganisms within tubeworms at deep-sea hydrothermal vents. It has been shown that tubeworm symbionts are acquired from the environment (horizontal transmission), rather than inherited from their parents (vertical transmission). However, it is unknown how abundant and diverse the symbionts are in the environment, critical for the acquisition and selection of symbionts from the environment. Hence, the fifth chapter aimed to answer these questions. To retrieve microorganisms in the vent environment, basaltic blocks were deployed for one year at four locations, i.e., among, adjacent and away from tubeworm aggregations, as well as off axis. Quantitative PCR was used to determine the copies of symbiont16S rRNA and ITS, which occur as single copy per genome. Results showed that the abundance of free-living symbionts was highest among tubeworm aggregation, but decreased dramatically with increasing distance. This indicated either replenishment of symbionts through hosts or proliferation of free-living symbionts. The symbiont diversity was investigated through pyrosequencing of ITS region from trophosome tissue and seawater filter. Surprisingly, results suggested tubeworm symbiont population was quite homogeneous within and outside tubeworms at vents, with only one dominant phylotype and three others were found.
     Another important question is how the symbionts utilize chemicals and produce nutrients for themselves and their hosts. Since these tubeworms are gutless and mouthless, they depend on their chemosynthetic symbionts for nutrients including carbon, nitrogen and sulfur etc. The source of nitrogen is of particular interest, since it is indispensible and various, but underemphasized. Tubeworm species, Ridgeia piscesae, was used as a model to examine nitrogen metabolism at various environmental nitrogen concentrations and of different Ridgeia phenotypes, i.e., long skinny (LS) and short fat (SF) Ridgeia. Gene expression analyses suggested that ammonium was assimilated by symbionts of both phenotypes at sites with different ammonium concentrations, but minor amounts of nitrate respiration and no nitrate assimilation were detected. Differences were found between phenotypes and vent sites, suggesting nitrogen utilization was probably influenced by environmental nitrogen availability and may be different between phenotypes.
     To summarize, this thesis was developed with a focus on microbial diversity from phylogenetic, metabolic, and functional perspectives. From free-living microorganisms to symbionts of vent invertebrates, this thesis demonstrated a broad view of marine microorganisms. Results promoted our understanding of marine microorganisms and updated the current knowledge. Interesting hypotheses proposed here can be developed into future projects.
引文
Allouch, J. et al.,2003. The three-dimensional structures of two beta-agarases. Journal of Biological Chemistry,278(47), pp.47171-47180.
    Araki, T., Lu, Z. & Morishita, T.,1998. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). Journal of Marine Biotechnology,6(3), pp.193-197.
    Arndt, C., Gaill, F. & Felbeck, H.,2001. Anaerobic sulfur metabolism in thiotrophic symbioses. Journal of experimental biology,204(Pt 4), pp.741-750.
    Bailly, X. et al.,2002. Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Molecular Biology and Evolution,19(9), pp.1421-1433.
    Banakar, V. et al.,2000. Oceanic ferromanganese deposits:future resources and past-ocean recorders. The Indian Mineralogist,34, pp.41-56.
    Bernard, B.B., Brooks, J.M. & Sackett, W.M.,1976. Natural gas seepage in the Gulf of Mexico. Earth and Planetary Science Letters,31(1), pp.48-54.
    Blunt, J.W. et al.,2012. Marine natural products. Natural product reports,29(2), pp.144-222.
    Boetius, A. et al.,2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature,407(6804), pp.623-626.
    Bohrmann, G. & Torres, M.E.,2006. Gas hydrates in marine sediments. Marine geochemistry, pp.481-512.
    Brasier, M.D. et al.,2002. Questioning the evidence for Earth's oldest fossils. Nature, 416(6876), pp.76-81.
    Briggs, B.R. et al.,2012. Bacterial dominance in subseafloor sediments characterized by methane hydrates. FEMS Microbiology Ecology,81(1), pp.88-98.
    Bright, M. & Bulgheresi, S.,2010. A complex journey:transmission of microbial symbionts. Nature Reviews Microbiology,8(3), pp.218-230.
    Bright, M. & Lallier, F.H.,2010. The Biology of Vestimentiferan Tubeworms. Oceanography and Marine Biology:an Annual Review,48, pp.213-265.
    Carney, S.L. et al.,2007. Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,146(3), pp.326-337.
    Cary, S.C. et al.,1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Molecular marine biology and biotechnology,2(1), pp.51-62.
    Cavanaugh, C.M. et al.,1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones:possible chemoautotrophic symbionts. Science, 213(4505), pp.340-342.
    Chandrasekaran, M. & Rajeev, K.,2002. Marine microbial enzymes. Encyclopedia of life support sustems (EOLSS) developed under the auspices of the UNESCO. Oxford, UK:Eolss Publishers.
    Chao, A.,1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, pp.265-270.
    Chen, J., Zhang, F. & Bian, L.,1997. Ultra-microbes are the minerogenetic constructors of oceanic polymetallic nodules. Chinese Science Bulletin,42(8), pp.617-624.
    Chi, W.J., Chang, Y.K. & Hong, S.K.,2012. Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology,94(4), pp.917-930.
    Childress, J.J. et al.,1991. Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biological Bulletin,180(1), pp.135-153.
    Corliss, J.B. et al.,1979. Submarine thermal springs on the galapagos rift. Science, 203(4385), pp.1073-1083.
    Cragg, B.A. et al.,1996. Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146:Cascadia Margin). Earth and Planetary Science Letters,139(3), pp.497-507.
    Curtis, T.P., Sloan, W.T. & Scannell, J.W.,2002. Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the United States of America,99(16), pp.10494-10499.
    Millikan, D.S., Felbeck, H. & Stein, J.L.,1999. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Applied and environmental microbiology,65(7), pp.3129-3133.
    Desbruyeres, D. et al.,2000. A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge:dispersal vs. environmental controls. Hydrobiologia,440, pp.201-206.
    Di Meo, C.A. et al.,2000. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Applied and environmental microbiology, 66(2), pp.651-658.
    Dong, J.H. et al.,2006. Cloning of the novel gene encoding beta-agarase C from a marine bacterium, Vibrio sp strain PO-303-, and characterization of the gene product. Applied and environmental microbiology,72(9), pp.6399-6401.
    Dong, J.H., Tamaru, Y. & Araki, T.,2007a. A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp strain PO-303. Applied Microbiology and Biotechnology,74(6), pp.1248-1255.
    Dong, J.H., Tamaru, Y. & Araki, T.,2007b. Molecular cloning, expression, and characterization of a beta-agarase gene, agaD, from a marine bacterium, Vibrio sp strain PO-303. Bioscience Biotechnology and Biochemistry,71(1), pp.38-46.
    Dore, J.E. et al.,2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences,106(30), pp.12235-12240.
    Ehrlich, H.L.,1968. Bacteriology of manganese nodules. Ⅱ. Manganese oxidation by cell-free extract from a manganese nodule bacterium. Applied microbiology, 16(2), pp.197-202.
    Ehrlich, H.L.,1963. Bacteriology of manganese nodules:Ⅰ. Bacterial action on manganese in nodule enrichments. Applied microbiology,11(1), pp.15-19.
    Ekborg, N.A. et al.,2006. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Applied and environmental microbiology,72(5), pp.3396-3405.
    Felbeck, H.,1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (vestimentifera). Science,213(4505), pp.336-338.
    Felbeck, H. & Jarchow, J.,1998. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Physiological zoology,71(3), pp.294-302.
    Feldman, R.A. et al.,1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Molecular marine biology and biotechnology,6(3), pp.268-277.
    Fisher, C.R., Takai, K. & Le Bris, N.,2007. Hydrothermal vent ecosystems. Oceanography,20(1), pp.14-23.
    Fry, J.C. et al.,2008. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiology Ecology,66(2), pp.181-196.
    Fu, X.T. & Kim, S.M.,2010. Agarase:review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs,8(1), pp.200-218.
    Fu, X.T. et al.,2009. Gene cloning, expression, and characterization of a beta-agarase, agaB34, from Agarivorans albus YKW-34. Journal of Microbiology and Biotechnology,19(3), pp.257-264.
    Fu, X.T., Lin, H. & Kim, S.M.,2008. Purification and characterization of a novel beta-agarase, AgaA34, from Agarivorans albus YKW-34. Applied Microbiology and Biotechnology,78(2), pp.265-273.
    Gardebrecht, A. et al.,2012. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. The ISME Journal,6(4), pp.766-776.
    Girguis, P.R. et al.,2000. Fate of nitrate acquired by the tubeworm Riftia pachyptila. Applied and environmental microbiology,66(7), pp.2783-2790.
    Glasby, G.P. et al.,1982. Manganese nodule formation in the Pacific Ocean:a general theory. Geo-Marine Letters,2(1-2), pp.47-53.
    Goffredi, S. et al.,1997a. Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton-equivalent ion transport by the worm. The Journal of experimental biology, 200(5), pp.883-896.
    Goffredi, S.K. et al.,1997b. Sulfide acquisition by the vent worm Riftia pachyptila appears to be via uptake of HS", rather than H2S. The Journal of experimental biology,200(20), pp.2609-2616.
    Grauls, D.,2001. Gas hydrates:importance and applications in petroleum exploration. Marine and Petroleum Geology,18(4), pp.519-523.
    Ha, S.C. et al.,2011. Crystal structure of a key enzyme in the agarolytic pathway, a-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochemical and Biophysical Research Communications.412(2), pp.238-244.
    Han, X. et al.,1997. Biogenesis and binary mineralization of organism and chemism of polymetallic nodules from Pacific Ocean. Science in China Series D:Earth Sciences,40(6), pp.656-661.
    Hanson, R.S. & Hanson, T.E.,1996. Methanotrophic bacteria. Microbiological reviews,60(2), pp.439-471.
    Harmer, T.L. et al.,2008. Free-living tube worm endosymbionts found at deep-sea vents. Applied and environmental microbiology,74(12), pp.3895-3898.
    He, G. & Chen, S.,2002. Trial discussion on the metallogenic mechanism of cobalt-rich crust. Geological Research of South China Sea,13, pp.35-40.
    Hehemann, J.H., Correc, G., et al.,2010a. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature,464(7290), pp.908-912.
    Hehemann, J.H., Michel, G., Barbeyron, T. & Czjzek, M.,2010b. Expression, purification and preliminary X-ray diffraction analysis of the catalytic module of a β-agarase from the flavobacterium Zobellia galactanivorans. Acta Crystallographica Section F,66(4), pp.413-417.
    Heijs, S.K. et al.,2008. Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiology Ecology,64(3), pp.362-377.
    Hein, J.R.,2000. Cobalt-rich ferromanganese crusts:Global distribution, composition, origin and research activities. Workshop on mineral resources of the international seabed area.-Kingston.
    Hein, J.R., Conrad, T.A. & Dunham, R.E.,2009. Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts. Marine Georesources & Geotechnology,27(2),pp.160-176.
    Hein, J.R., et al.,2000. Cobalt-rich ferromanganese crusts in the Pacific. Handbook of marine mineral deposits, (Cronan DS, ed.), pp.239-279.
    Henrissat, B.,1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J.,280(2), pp.309-316.
    Henrissat, B. & Davies, G.,1997. Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology,7(5), pp.637-644.
    Hentschel, U. & Felbeck, H.,1993. Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature,366(6453), pp.338-340.
    Hilario, A. et al.,2011. New perspectives on the ecology and evolution of Siboglinid tubeworms. PLoS ONE 6(2), pp.1-14.
    Hughes, J.B. et al.,2001. Counting the uncountable:statistical approaches to estimating microbial diversity. Applied and environmental microbiology,67(10), pp.4399-4406.
    Inagaki, F.,2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences,103(8), pp.2815-2820.
    Jam, M. et al.,2005. The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans:two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochemistry Journal,385(3), pp.703-713.
    Jiang, H. et al.,2007. Microbial diversity in the deep marine sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiology Journal,24(6), pp.505-517.
    J(?)rgensen, B.B. & Boetius, A.,2007. Feast and famine - microbial life in the deep-sea bed. Nature Reviews Microbiology,5(10), pp.770-781.
    Kim, H. et al.,2010. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40:an exo-type (3-agarase producing neoagarobiose. Applied Microbiology and Biotechnology,86(1), pp.227-234.
    Kirimura, K. et al.,1999. Purification and characterization of a novel beta-agarase from an alkalophilic bacterium, Alteromonas sp E-1. Journal of Bioscience and Bioengineering,87(4), pp.436-441.
    Knittel, K. & Boetius, A.,2009. Anaerobic oxidation of methane:progress with an unknown process. Annual Review of Microbiology,63(1):311-334.
    Kobayashi, R. et al.,1997. Neoagarobiose as a novel moisturizer with whitening effect. Bioscience Biotechnology and Biochemistry,61(1), pp.162-163.
    Kvenvolden, K.A.,1995. A review of the geochemistry of methane in natural gas hydrate. Organic Geochemistry,23(11-12), pp.997-1008.
    Lanoil, B.D. et al.,2001. Bacteria and archaea physically associated with Gulf of Mexico gas hydrates. Applied and environmental microbiology,67(11), pp.5143-5153.
    Lee, D.G. et al.,2006. Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnology Letters,28(23), pp.1925-1932.
    Li, Y.H. & Schoonmaker, J.E.,2003. Chemical composition and mineralogy of marine sediments. Treatise on Geochemistry,7, pp.1-35.
    Liao, L. et al.,2011. Cloning, expression, and characterization of a new beta-agarase from Vibrio sp. strain CN41. Applied and environmental microbiology,77(19), pp.7077-7079.
    Lin, B. et al.,2012. Draft genome sequence of the novel agarolytic bacterium Aquimarina agarilytica ZC1. Journal of Bacteriology,194(10), pp.2769-2769.
    Ling, H.F. et al.,2005. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth and Planetary Science Letters,232(3), pp.345-361.
    Liu, Y. & Whitman, W.B.,2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences,1125, pp.171-189.
    Long, M., Yu, Z. & Xu, X.,2010. A novel beta-agarase with high pH stability from marine Agarivorans sp. LQ48. Marine biotechnology,12(1), pp.62-69.
    Look, S.A. et al.,1986. The pseudopterosins:anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proceedings of the National Academy of Sciences of the United States of America,83(17), p.6238-6240.
    Lowenstam, H.A. & Weiner, S.,1989. On Biomineralization, Oxford University Press, USA.
    Lu, X. et al.,2009. Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp. Biotechnology Letters, 31(10), pp.1565-1570.
    Ma, C.P. et al.,2007. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. Journal of Biological Chemistry,282(6), pp.3747-3754.
    Markert, S. et al.,2007. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science,315(5809), pp.247-250.
    Markert, S. et al.,2011. Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics,11 (15), pp.3106-3117.
    Marsh, A.G. et al.,2001. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature,411(6833), pp.77-80.
    Maslin, M. et al.,2010. Gas hydrates:past and future geohazard? Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,368(1919), pp.2369-2393.
    McClain, C.R. & Hardy, S.M.,2010. The dynamics of biogeographic ranges in the deep sea. Proceedings. Biological sciences/The Royal Society,277(1700), pp.3533-3546.
    McMullin, E.R. et al.,2003. Phylogeny and biogeography of deep-sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis,34(1), pp.1-41.
    Michel, G. et al.,2006. Bioconversion of red seaweed galactans:a focus on bacterial agarases and carrageenases. Applied Microbiology and Biotechnology,71(1), pp.23-33.
    Moore, W.S. & Vogt, P.R.,1976. Hydrothermal manganese crusts from two sites near the Galapagos spreading axis. Geochimica et Cosmochimica Acta,29(2), pp.349-356.
    Nealson, K.,1997. Sediment bacteria:Who's there, what are they doing, and what's new? Annual Review of Earth and Planetary Sciences,25, pp.403-434.
    Nelson, K. & Fisher, C.R.,2000. Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis,28(1), pp.1-15.
    Newberry, C.J. et al.,2004. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environmental Microbiology,6(3), pp.274-287.
    Newman, D.J. & Hill, R.T.,2006. New drugs from marine microbes:the tide is turning. Journal of industrial microbiology & biotechnology,33(7), pp.539-544.
    Nitahara, S. et al.,2011. Molecular characterization of the microbial community in hydrogenetic ferromanganese crusts of the Takuyo-Daigo Seamount, northwest Pacific. FEMS Microbiology Ecology,321(2), pp.121-129.
    Nussbaumer, A.D., Fisher, C.R. & Bright, M.,2006. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature,441(7091), pp.345-348.
    Oh, C. et al.,2010. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. Journal of industrial microbiology & biotechnology,37(5), pp.483-494.
    Ohta, Y., Hatada, Y., et al.,2004a. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta-agarase from a deep-sea Microbulbifer-like isolate. Applied Microbiology and Biotechnology,66(3), pp.266-275.
    Ohta, Y., Hatada, Y., Ito, S., et al.,2005a. High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnology and Applied Biochemistry,41, pp.183-191.
    Ohta, Y., Hatada, Y., Miyazaki, M., et al.,2005b. Purification and characterization of a novel alpha-agarase from a Thalassomonas sp. Current Microbiology,50(4), pp.212-216.
    Ohta, Y., Nogi, Y., et al.,2004b. Enzymatic properties and nucleotide and amino acid sequences of a thermostable beta-agarase from the novel marine isolate, JAMB-A94. Bioscience Biotechnology and Biochemistry,68(5), pp.1073-1081.
    Pachiadaki, M.G. et al.,2011. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microbial ecology,62(3), pp.655-668.
    Parro, V. et al.,1997. Overproduction and purification of an agarase of bacterial origin. Journal of Biotechnology,58(1), pp.59-66.
    Pospesel, M., Hentschel, U. & Felbeck, H.,1998. Determination of nitrate in the blood of the hydrothermal vent tubeworm Riftia pachyptila using a bacterial nitrate reduction assay. Deep-sea Research Part Ⅰ:Oceanographic Research Papers,45(12), pp.2189-2200.
    Potin, P. et al.,1993. Purification and characterization of the a-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. European Journal of Biochemistry,214(2), pp.599-607.
    Rebuffet, E. et al.,2011. Discovery and structural characterization of a novel glycosidase family of marine origin. FEMS Microbiology Ecology,13(5), pp.1253-1270.
    Reed, D.W. et al.,2002. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Applied and environmental microbiology, 68(8), pp.3759-3770.
    Rees, D.A.,1969. Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Advances in Carbohydrate Chemistry and Biochemistry,24, pp.267-332.
    Roh, H. et al.,2012. Genome sequence of Vibrio sp. strain EJY3, an agarolytic marine bacterium metabolizing 3,6-anhydro-1-galactose as a sole carbon source. Journal of Bacteriology.194(10), pp.,2773-2774.
    Rullkotter, J., Schulz, H. & Zabel, M.,2000. Marine geochemistry. Marine geochemistry.
    Ruppel, C.,2011. Methane Hydrates and the Future of Natural Gas. MITEI natural gas report.
    Sassen, R. et al.,1998. Bacterial methane oxidation in sea-floor gas hydrate: significance to life in extreme environments. Geology,26(9), pp.851-854.
    Schrenk, M.O., Huber, J.A. & Edwards, K.J.,2010. Microbial provinces in the subseafloor. Annual review of marine science,2(1), pp.279-304.
    Scott, S.D.,2011. Marine minerals:Their occurrences, exploration and exploitation. OCEANS 2011, pp.1-8.
    Sogin, M.L. et al.,2006. Microbial diversity in the deep sea and the underexplored "rare biosphere." Proceedings of the National Academy of Sciences of the United States of America,103(32), pp.12115-12120.
    Southward, A.J. et al.,1979. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora). Journal of the Marine Biological Association of the United Kingdom,59(01), pp.133-148.
    Stewart, F.J. & Cavanaugh, C.M.,2006. Symbiosis of thioautotrophic bacteria with Riftia pachyptila. Progress in Molecular and Subcellular Biology,41, pp.197-225.
    Sugano, Y., Matsumoto, T., et al.,1993a. Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Applied and environmental microbiology,59(11), pp.3750-3756.
    Sugano, Y., et al.,1993b. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Applied and environmental microbiology,59(5), pp.1549-1554.
    Temuujin, U. et al.,2012. Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo-and endo-type β-agarase-producing neoagarobiose. Journal of Bacteriology,194(1), pp.142-149.
    Temuujin, U. et al.,2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2):an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Applied Microbiology and Biotechnology,92(4), pp.749-759.
    Collett, T. et al.,2009. Natural gas hydrates:a review. T. Collett (Ed.) et al., Natural gas hydrates:energy resource potential and associated geologic hazards, AAPG Memoir, pp.146-219.
    Tivey, M.,2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography,20(1), pp.50-65.
    Usui, A. & Okamoto, N.,2010. Geophysical and geological exploration of cobalt-rich ferromanganese crusts:an attempt of small-scale mapping on a micronesian seamount. Marine Georesources & Geotechnology,28(3), pp.192-206.
    Van Dover, C.L. et al.,2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science,295(5558), pp.1253-1257.
    Verlaan, P.A.,1992. Benthic recruitment and manganese crust formation on seamounts. Marine Biology,113(1), pp.171-174.
    Wacey, D. et al.,2011. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience,4(10), pp.698-702.
    Wang, X.H. & Muller, W.E.G.,2010. Are polymetallic nodules, crusts and vents biominerals? Journal des Sciences Halieutique et Aquatique,2, pp.5-20.
    Wang, X.H. & Muller, W.E.G.,2009. Marine biominerals:perspectives and challenges for polymetallic nodules and crusts. Trends in biotechnology,27(6), pp.375-383.
    Wang, X.H. et al.,2009. Biogenic origin of polymetallic nodules from the Clarion-Clipperton Zone in the Eastern Pacific Ocean:electron microscopic and EDX evidence. Marine Biotechnology,11(1), pp.99-108.
    Wang, X.H. et al.,2008. Paleoenvironmental implications of high-density records in Co-rich seamount crusts from the Pacific Ocean. Science in China Series D: Earth Sciences,51(10), pp.1460-1469.
    Whitman, W.B., Coleman, D.C. & Wiebe, W.J.,1998. Prokaryotes:the unseen majority. Proceedings of the National Academy of Sciences of the United States of America,95(12), pp.6578-6583.
    Widdick, D.A. et al.,2008. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. Journal of Molecular Biology,375(3), pp.595-603.
    Yang, J. et al.,2011. Cloning and characterization of (3-agarase AgaYT from Flammeovirga yaeyamensis strain YT. Journal of Bioscience and Bioengineering,112(3), pp.225-232.
    Zal, F. et al.,1996. The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. Journal of Biological Chemistry,271(15), pp.8875-8881.
    Zhang, C. & Kim, S.K.,2010. Research and application of marine microbial enzymes: status and prospects. Marine Drugs,8(6), pp.1920-1934.
    Zhang, W.W. & Sun,L.,2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp strain V134. Applied and environmental microbiology,73(9), pp.2825-2831.
    Ashelford, K.E. et al.2005. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Applied and Environmental Microbiology,71(12), pp.7724-7736.
    Baker, G.C., Smith, J.J. & Cowan, D.A.,2003. Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods,55(3), pp.541-555.
    Chao, A.,1987. Estimating the population-size for capture recapture data with unequal catchability. Biometrics,43(4), pp.783-791.
    Church, M.J. et al.2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography,48(5), pp.1893-1902.
    Coolen, M.J.L. et al.2002. Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science,296(5577), pp.2407-2410.
    Dojka, M.A. et al.1998a. Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Applied and Environmental Microbiology,64(10), pp.3869-3877.
    Eden P.A. et al.1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. International Journal of Systematic Bacteriology,41(2), pp.324-325.
    Delong, E.F.,1992. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America,89(12), pp.5685-5689.
    Xu, F. et al.2004. Phylogenetic diversity of bacteria and archaea in the Nansha marine sediments, as determined by 16S rDNA analysis. Oceanologia et Limnologia Sinica,35(1), pp.89-94 (in Chinese).
    Gillan, D.C. & Danis, B.,2007. The archaebacterial communities in Antarctic bathypelagic sediments. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography,54(16-17), pp.1682-1690.
    Hugenholtz, P. et al.1998. Novel division level bacterial diversity in a Yellowstone hot spring. Journal of Bacteriology,180(2),pp.366-376.
    Hughes, J.B. et al.2001. Counting the uncountable:statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology,67(10), pp.4399-4406.
    Inagaki, F. et al.2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences of the United States of America,103(8), pp.2815-2820.
    Jiang, H.C. et al.2007. Microbial diversity in the deep marine sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiology Journal,24, pp.505-517.
    Karner, M.B., Delong, E.F. & Karl, D.M.,2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature,409(6819), pp.507-510.
    Konneke, M. et al.2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature,437(7058), pp.543-546.
    Kvenvolden, K.A.1995. A review of the geochemistry of methane in natural gas hydrate. Organic Geochemistry,23(11-12), pp.997-1008.
    Lai, X.T. et al.2006. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial community composition in deep-sea sediments of the South China Sea.. World Journal of Microbiology and Biotechnology,22, pp.1337-1345.
    Leininger, S. et al.2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature,442(7104), pp.806-809.
    Li, T., Wang, P. & Wang, P.X.,2008a. Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea. WeishengwuXuebao, 48(3), pp.323-329 (in Chinese).
    Li, T., Wang, P. & Wang, P.X.,2008b. Microbial diversity in surface sediments of the Xisha Trough, the South China Sea. Acta Ecologica Sinica,28(3), pp.1166-1173.
    Lien, T. et al.1998. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. International Journal of Systematic Bacteriology, 48(2), pp.469-474.
    Lin, W.D. et al.2005. Geochemical characteristics and source of hydrocarbon gases of recent sediment from South China Sea. Acta Sedimentologica Sinica,23(1), pp.170-174 (in Chinese).
    Maidak, B.L. et al.2001. The RDP-Ⅱ (Ribosomal Database Project). Nucleic Acids Research,29(1), pp.173-174.
    Mills, H.J. et al.2005. Characterization of microbial community structure in gulf of Mexico gas hydrates:comparative analysis of DNA- and RNA-derived clone libraries. Applied and Environmental Microbiology,71(6), pp.3235-3247.
    Niemann, H. et al.2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature,443(7113), pp.854-858.
    Pernthaler, A. et al.2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proceedings of the National Academy of Sciences of the United States of America,105(19), pp.7052-7057.
    Polymenakou, P.N. et al.2005. Links between geographic location, environmental factors, and microbial community composition in sediments of the Eastern Mediterranean Sea. Microbial Ecology,49(3), pp.367-378.
    Massana, R. et al.1997. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Applied and Environmental Microbiology,63(1), pp.50-56.
    Hatzenpichler, R. et al.2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America,105(6), pp.2134-2139.
    Saitou, N. & Nei, M.,1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,4(4), pp.406-425.
    Schloss, P.D. & Handelsman, J.,2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology,71(3), pp.1501-1506.
    Singleton, D.R. et al.2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Applied and Environmental Microbiology, 67(9), pp.4374-4376.
    Tanner, M.A. et al.1998. Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Applied and Environmental Microbiology,64(8), pp.3110-3113.
    Wang, P. & Li, T.,2008. Phylogenetic analysis of bacterial community in deep-sea sediment from northern slope of the South China Sea. Marine Sciences,32(4), pp.36-39 (in Chinese).
    Wang, P., Xiao, X. & Wang, F.,2005. Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool. Extremophiles,9(3), pp.209-217.
    Wu, N.Y. et al.2008. Preliminary discussion on gas hydrate reservoir system of shenhu area, north slope of south china sea. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), pp. Vancouver, British Columbia, CANADA, July 6-10,2008.
    Yu, X.H. et al.2004. Primary discussion on accumulation conditions for sedimentation of gas hydrate and its distribution in South China Sea. Earth Science Frontiers (China University of Geosciences, Beijing),11(1), pp.311-315 (in Chinese).
    Zhang, W., Ki, J.S. & Qian, P.Y.,2008. Microbial diversity in polluted harbor sediments I:Bacterial community assessment based on four clone libraries of 16S rDNA. Estuarine Coastal and Shelf Science,76, pp.668-681.
    Alonso, A., Sanchez, P. & Martinez, J.L.,2000. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother,44, pp.1778-1782.
    Altschul, S.F. et al.,1990. Basic local alignment search tool. Journal of Molecular Biology,215, pp.403-410.
    Amaral-Zettler, L.A. et al.,2009. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One,4(7), pp.e6372.
    Amaral-Zettler, L.A. et al.,2008. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita. Environmental Science and Technology Publications,42, pp.9072-9078.
    Anzai, Y.,2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. InternationalJournal of Systematic and Evolutionary Microbiology,50, pp.1563-1589.
    Baker, G.C., Smith, J.J. & Cowan, D.A.,2003. Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods,55, PP.541-555.
    Cha, A. & Lee, S.M.,1992. Estimating the number of classes via sample coverage. Journal of the American Statistical Association,87, pp.210-217.
    Church, M.J., et al.,2003. Abundance and distribution of planktonic archaea and bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography,48, pp.1893-1902.
    Cole,J.R., et al.,2003. The Ribosomal Database Project (RDP-Ⅱ):previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research,31, pp.442-443.
    Delong, E.F.,1992. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences,89, pp.5685-5689.
    Dojka, M.A., et al.,1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Applied and Environmental Microbiology,64, pp.3869-3877.
    Edwards, K.J., et al.,2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic a-and y-Proteobacteria from the Deep-sea. Applied and Environmental Microbiology,69, pp.2906-2913.
    Emerson, D. & Moyer, C.,1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Applied and Environmental Microbiology, 63, pp.4784-4792.
    Francis, C.A., Co,E-M. & Tebo, B.M.,2001. Enzymatic manganese(Ⅱ) oxidation by a marine a-Proteobacterium. Applied and Environmental Microbiology,67, pp.4024-4029.
    Gao, H.C., et al.,2006. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. InternationalJournal of Systematic and Evolutionary Microbiology,56, pp.1911-1916.
    Gillan, D.C. & Danis, B.,2007. The archaebacterial communities in Antarctic bathypelagic sediments. Deep-sea Research Part Ⅱ-Topical Studies in Oceanography,54, pp.1682-1690.
    Glasby, G., et al.,1982. Manganese nodule formation in the Pacific Ocean:a general theory. Geo-marine Letters,2, pp.47-53.
    Glasby, G.P.,2000. ECONOMIC GEOLOGY:lessons learned from deep-sea mining. Science,289, pp.551-553.
    Glasby, G.P.,2007. Co-rich Mn crusts from the Magellan Seamount cluster:the long journey through time. Geo-marine Letters,27, pp.315-323.
    Halfar, J. & Fujita, R.M.,2002. Precautionary management of deep-sea mining. Marine Insurance Policy,26, pp.103-106.
    Hauben, L., et al.,1999. Genomic diversity of the genus Stenotrophomonas. International Journal of Systematic Bacteriology,49, pp.1749-1760.
    Heijs, S.K., et al.,2008. Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiology Ecology,64, pp.362-377.
    Hein, J.R., et al.,2000. Cobalt-rich ferromanganese crusts in the Pacific. Handbook of marine mineral deposits, (Cronan DS, ed.), pp.239-279.
    Karner, M.B., DeLong, E.F. & Karl, D.M.2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature,409, pp.507-510.
    Kemp, P.F. & Aller, J.Y.2004. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiology Ecology,47, pp.161-177.
    Konishi, Y., Asai, S. & Sawada, Y.,1997. Leaching of marine manganese nodules by acidophilic bacteria growing on elemental sulfur. Metallurgical and Materials Transactions B-Process,28, pp.25-32.
    Konneke, M. et al.,2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature,437, pp.543-546.
    Krishnan, K.P.,2006. Tolerance and immobilization of cobalt by some bacteria from ferromanganese crusts of the Afanasiy Nikitin Seamounts. Geomicrobiology Journal,23, pp.31-36.
    Kurata, A.,1974. Cobalt content in the shallow sea sediments. Journal of Oceanography,30, pp.199-202.
    Lee, Y. & Tebo, B.M.,1994. Cobalt(Ⅱ) oxidation by the marine manganese(Ⅱ)-oxidizing Bacillus sp. strain SG-1. Applied and Environmental Microbiology,60, pp.2949-2957.
    Li, H., et al.,2008a. Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles,13, pp.233-246.
    Li, Y.X., et al.,2008b. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (approximately 13 degrees N). Extremophiles,12, pp.573-585.
    Liang, D. & Zhu, B.,2000. Distribution and classification of cobalt-rich crust. Journal of China University of Geosciences,11, pp.146-149.
    Liao, L., et al.,2009. Bacterial and archaeal communities in the surface sediment from the northern slope of the South China Sea. Journal of Zhejiang University SCIENCE B,10, pp.890-901.
    Ling, H.F., et al.,2005. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth'and Planetary Science Letters,232, pp.345-361.
    Mason, O.U., et al.,2007. The phylogeny of endolithic microbes associated with marine basalts. Environmental Microbiology,9, pp.2539-2550.
    McCallum, J.A.F., & Davis, A.A.,1992. Novel major archaebacterial group from marine plankton. Nature,356, pp.148-149.
    Murray, K.J., et al.,2007. Indirect oxidation of Co(Ⅱ) in the presence of the marine Mn(Ⅱ)-oxidizing bacterium Bacillus sp strain SG-1. Applied and Environmental Microbiology,73, pp.6905-6909.
    Nealson, K.H.,2006. The manganese-oxidizing bacteria. Prokaryotes, vol.5 (Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, eds), pp. 222-231. Springer, New York.
    Nicholls, G.D. & Islam, M.R.,1971. Geochemical investigations of basalts and associated rocks from the ocean floor and their implications. Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences,268, pp.469-486.
    Northup, D.E., et al.,2003. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environmental Microbiology,5, pp.1071-1086.
    Pages, D., et al.,2008. Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS ONE,3:e1539.
    Palleroni, N.J. & Bradbury, J.F.,1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al.1983. International Journal of Systematic Bacteriology,43, pp.606-609.
    Polymenakou, P.N., et al.,2005. Bacterial community composition in different sediments from the Eastern Mediterranean Sea:a comparison of four 16S ribosomal DNA clone libraries. Microbial Ecology,50, pp.447-462.
    Reynolds, J.R., et al.,1992. Spatial and temporal variability in the geochemistry of basalts from the East Pacific Rise. Nature,359, pp.493-499.
    Roh, Y., et al.,2006. Metal reduction and iron biomineralization by a psychrotolerant Fe(Ⅲ)-reducing bacterium, Shewanella sp. Strain PV-4. Applied and Environmental Microbiology,72, pp.3236-3244.
    Rosson, R.A. & Nealson, K.H.,1982. Manganese binding and oxidation by spores of a marine bacillus. Journal of Bacteriology,151, pp.1027-1034.
    S(?)rensen, K.B., Lauer, A. & Teske, A.,2004. Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology,2, pp.151-161.
    Saitou, N. & Nei, M.,1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,4, pp.406-425.
    Santelli, C.M., et al.,2008. Abundance and diversity of microbial life in ocean crust. Nature,453, pp.653-657.
    Schloss, P.D. & Handelsman, J.,2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology,71, pp.1501-1506.
    Schloss, P.D., et al.,2009. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology,75, pp.7537-7541.
    Sorokin, D.Y., et al.,2002. Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. InternationalJournal of Systematic and Evolutionary Microbiology,52, pp.2175-2182.
    Stein, L.Y., et al.,2001. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environmental Microbiology,3, pp.10-18.
    Tamura, K., et al.,2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution,24, pp.1596-1599.
    Tebo, B.M., et al.,1997. Bacterially mediated mineral formation; insights into manganese(Ⅱ) oxidation from molecular genetic and biochemical studies. Reviews in Mineralogy and Geochemistry,35, pp.225-266.
    Templeton, A., Staudigel, H. & Tebo, B.M.,2005. Diverse Mn(Ⅱ)-oxidizing bacteria isolated from submarine basalts at Loihi Searnount. Geomicrobiology Journal,22, pp.127-139.
    Tourova, T.P., et al.,2007. hylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57, pp.2387-2398.
    Wang, C.S., et al.,2010. Bacterial diversity in the sediment from polymetallic nodule fields of the Clarion-Clipperton Fracture Zone. International Journal of Systematic and Evolutionary Microbiology,48, pp.573-585.
    Wang, X.H. & Muller, W.E.G.,2009. Marine biominerals:perspectives and challenges for polymetallic nodules and crusts. Trends in Biotechnology,27, pp. 375-383.
    Wang, X.H., et al.,2009a. Biogenic origin of polymetallic nodules from the Clarion-Clipperton Zone in the Eastern Pacific Ocean:electron microscopic and EDX evidence. Marine Biotechnology,11, pp.99-108.
    Wang, X.H.,2009b. Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean:implications of biologically induced mineralization. Micron,40, pp.526-535.
    Wedepohl, K.H.,1995. The composition of the continental crust. Geochimica et cosmochimica acta,59, pp.1217-1232.
    Weidler, GW., et al.,2007. Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Applied and Environmental Microbiology,73, pp.259-270.
    Weinberger, J., Proops, D.W. & Hawke, M.,1986. Casts and crusts of the tympanic membrane. Acta oto-laryngologica,102, pp.44-51.
    Xu, H.X., et al.,2008. Bacterial diversity in deep-sea sediment from northeastern Pacific Ocean. Acta Ecologica Sinica,28, pp.479-485.
    Xu, M.X., et al.,2005. Microbial diversity at a deep-sea station of the Pacific Nodule Province. Biodiversity and Conservation,14, pp.3363-3380.
    Xu, M.X., et al.,2007. Construction and preliminary analysis of a metagenomic library from a deep-sea sediment of east Pacific Nodule Province. FEMS Microbiology Ecology,62, pp.233-241.
    Zhang, W., Ki, J.S. & Qian, P.Y.,2008. Microbial diversity in polluted harbor sediments I:bacterial community assessment based on four clone libraries of 16S rDNA. Estuarine Coastal and Shelf Science,76, pp.668-681.
    Zuo, Y., et al.,2008. Isolation of the exoelectrogenic bacterium ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology,74, pp.3130-3137.
    Allouch, J,, et al.2003. The three-dimensional structures of two beta-agarases. Journal of Biological Chemistry,278, pp.47171-47180.
    Altschul, S.F., et al.1990. Basic local alignment search tool. Journal of Molecular Biology 215, pp.403-410.
    Belas, R., Bartlett, D. & Silverman, M.,1988. Cloning and gene replacement mutagenesis of a Pseudomonas atlantica agarase gene. Applied and Environvrionmental Microbiology,54, pp.30-37.
    Bendtsen, J.D., et al.2004. Improved Prediction of Signal Peptides:Signal P 3.0. Journal of Molecular Biology,340, pp.783-795.
    Bradford, M.M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72, pp.248-254.
    Chomczynski, P. & Sacchi, N.1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry,162, pp.156-159.
    Dojka, M.A., et al.1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Applied and Environmental Microbiology,64, pp.3869-3877.
    Dong, J. H., et al.2006. Cloning of the novel gene encoding beta-agarase C from a marine bacterium, Vibrio sp strain PO-303, and characterization of the gene product. Applied and Environmental Microbiology,72, pp.6399-6401.
    Dong, J.H., Tamaru, Y. & Araki, T.2007. Molecular cloning, expression, and characterization of a beta-agarase gene, agaD, from a marine bacterium, Vibrio sp strain PO-303. Bioscience Biotechnology and Biochemistry,71, pp.38-46.
    Flament, D., et al.2007. Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Applied and Environmental Microbiology,73, pp.4691-4694.
    Fu, X.T. & Kim, S.M.2010. Agarase:review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs,8, pp.200-218.
    Fu, X.T., et al.2009. Gene cloning, expression, and characterization of a beta-agarase, agaB34, from Agarivorans albus YKW-34. Journal of Microbiology and Biotechnology,19, pp.257-264.
    Giordano, A., et al.2006. Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnology Journal,1, pp.511-530.
    Gouet, P., Robert, X. & Courcelle, E.2003. ESPript/ENDscript:extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Research,31, pp.3320-3323.
    Hatada, Y., Ohta, Y. & Horikoshi, K.2006. Hyperproduction and application of alpha-agarase to enzymatic enhancement of antioxidant activity of porphyran. Journal of Agricultural and Food Chemistry,54, pp.9895-9900.
    Henikoff, S., et al.1995. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene,163, pp.17-26.
    Jam, M., et al.2005. The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans:two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochemical Journal,385, pp.703-713.
    Li, A.N., & Li, D.C.2009. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. Journal of Applied Microbiology 106, pp.369-380.
    Kapitonov, D., Bieberich, E. & Yu, R.K.1999. Combinatorial PCR approach to homology-based cloning:Cloning and expression of mouse and human GM3-synthase. Glycoconjugate Journal,16, pp.337-350.
    Kim, H., et al.2010. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40:an exo-type β-agarase producing neoagarobiose. Applied Microbiology and Biotechnology,86, pp.227-234.
    Kobayashi, R., et al.1997. Neoagarobiose as a novel moisturizer with whitening effect. Bioscience Biotechnology and Biochemistry,61, pp.162-163.
    Kong, J.Y., et al.1997. Cloning and expression of an agarase gene from a marine bacterium Pseudomonas sp w7. Biotechnology Letters,19, pp.23-26.
    Long, M., Yu, Z. & Xu, X.2010. A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Marine Biotechnology,12, pp.62-69.
    Morrice, L.M., et al.1983. β-Agarases Ⅰ and Ⅱ from Pseudomonas atlantica purifications and some properties. European Journal of Biochemistry,135, pp.553-558.
    Lu, X., et al.2009. Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp. Biotechnology Letters,31(10), pp.1565-1570.
    Miller, G.L.1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry,31, pp.426-428.
    Ohta, Y., et al.2005. High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp JAMB-All in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnology and Applied Biochemistry,41, pp.183-191.
    Ohta, Y., et al.2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta-agarase from a deep-sea Microbulbifer-like isolate. Applied Microbiology and Biotechnology,66, pp.266-275.
    Rose, T.M., Henikoff, J.G. & Henikoff, S.2005. CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Research,31(13), pp. 3763-3766.
    Rose, T.M., et al.1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research,26, pp.1628-1635.
    Shi, Y.L., Lu, X.Z. and Yu, W.G.,2008. A new (3-agarase from marine bacterium Janthinobacterium sp. SY12. World Journal of Microbiology and Biotechnology,24, pp.2659-2664.
    Shin, M.H., et al.2010. Global metabolite profiling of agarose degradation by Saccharophagus degradans 2-40. New Biotechnology,27(2), pp.156-168.
    Sugano, Y., Matsumoto, T. & Noma, M.1994. Sequence analysis of the agaB gene encoding a new P-agarase from Vibrio sp. strain JT0107. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,1218, pp.105-108.
    Syn, C.K.C. & Swarup, S.2000. A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Analytical Biochemistry,278, pp.86-90.
    Tan, G., et al.2005. SiteFinding-PCR:a simple and efficient PCR method for chromosome walking. Nucleic Acids Research,33, pp.e122.
    Voget, S., et al.2003. Prospecting for novel biocatalysts in a soil metagenome. Applied and Environmental Microbiology,69, pp.6235-6242.
    Wang, J., et al.2010. Cloning and expression of the beta-agarase gene agaD02 from Agarivorans albus QM38. Marine Sciences,34, pp.6-10 (in Chinese).
    Wang, J.X., et al.2004. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. Journal of Applied Phycology,16, pp.333-340.
    Weiner, R.M., et al.2008. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40T. PLoS Genetics,4, pp.e1000087.
    Zobell, C.E.1941. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. Journal of Marine Research,4, pp.42-75.
    Bright, M. & Bulgheresi, S.,2010. A complex journey:transmission of microbial symbionts. Nature Reviews Microbiology,8(3), pp.218-230.
    Bright, M. & Lallier, F.H.,2010. The biology of vestimentiferan tubeworms. Oceanography and Marine Biology:an annual review.
    Bulgheresi, S. et al.,2011. Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine nematode symbioses. The ISME Journal,5(6), pp.986-998.
    Cavanaugh, C.M. et al.,2006. The Prokaryotes M. Dworkin et al., eds., Springer New York.
    Di Meo, C.A. et al.,2000. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Applied and environmental microbiology,66(2), pp.651-658.
    Dubilier, N., Bergin, C. & Lott, C.,2008. Symbiotic diversity in marine animals:the art of harnessing chemosynthesis. Nature Reviews Microbiology,6(10), pp.725-740.
    Feldman, R.A. et al.,1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Molecular marine biology and biotechnology,6(3), pp.268-277.
    Ferrari, J. & Vavre, F.,2011. Bacterial symbionts in insects or the story of communities affecting communities. Philosophical transactions of the Royal Society of London. Series B, Biological sciences,366(1569), pp.1389-1400.
    Gardebrecht, A. et al.,2012. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. The ISME Journal, 6(4), pp.766-776.
    Girguis, P.R. & Childress, J.J.,2006. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. The Journal of experimental biology,209, pp.3516-3528.
    Hadfield, M.G.,2011. Biofilms and Marine Invertebrate Larvae:What Bacteria Produce That Larvae Use to Choose Settlement Sites. Annual review of marine science,3(1), pp.453-470.
    Harmer, T.L. et al.,2008. Free-living tube worm endosymbionts found at deep-sea vents. Applied and environmental microbiology,74(12), pp.3895-3898.
    Huber, J.A. et al.,2010. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiology Ecology,73, pp.538-549.
    Janczarek, M.,2011. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. International journal of molecular sciences, 12(11), pp.7898-7933.
    Johnson, S.B. et al.,2006. Migration, isolation, and speciation of hydrothermal vent limpets (Gastropoda; Lepetodrilidae) across the Blanco Transform Fault. Biological Bulletin, 210(2), pp.140-157.
    Jones, M.L.,1981. Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proceedings of The Biological Society of Washington,93, pp.1295-1313.
    Karl, D., Wirsen, C. & Jannasch, H.,1980. Deep-sea primary production at the Galapagos hydrothermal vents. Science (New York, N.Y.),207(4437), pp.1345-1347.
    Katoh, H. et al.,2002. Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera:Termitidae) in the Ryukyu Archipelago. Molecular Ecology,11 (8), pp.1565-1572.
    Kiers, E.T. et al.,2003. Host sanctions and the legume-rhizobium mutualism. Nature, 425(6953), pp.78-81.
    Klappenbach, J. et al.,2001. rrndb:the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Research,29(1),pp.181-184.
    Laguerre, G. et al.,1996. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Applied and environmental microbiology,62(6), pp.2029-2036.
    Lee, K.H. & Ruby, E.G.,1994. Effect of the Squid Host on the Abundance and Distribution of Symbiotic Vibrio fischeri in Nature. Applied and environmental microbiology,60(5), pp.1565-1571.
    Mandel, M.J.,2010. Models and approaches to dissect host-symbiont specificity. Trends in microbiology,18(11), pp.504-511.
    Mandel, M.J. et al.,2009. A single regulatory gene is sufficient to alter bacterial host range. Nature,458(7235), pp.215-218.
    Marsh, A.G. et al.,2001. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature,411(6833), pp.77-80.
    Mergaert, P. et al.,2006. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proceedings of the National Academy of Sciences of the United States of America,103(13), pp.5230-5235.
    Moran, N.A., McCutcheon, J.P. & Nakabachi, A.,2008. Genomics and evolution of heritable bacterial symbionts. Annual review of genetics,42, pp.165-190.
    Ni, Y., Wan, D. & He, K.,2008.16S rDNA and 16S-23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Acidithiobacillus phylogeny. Microbiology,154(8), pp.2397-2407.
    Nussbaumer, A.D., Fisher, C.R. & Bright, M.,2006. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature,441(7091), pp.345-348.
    Nyholm, S.V. & Nishiguchi, M.K.,2008. The evolutionary ecology of a sepiolid squid-Vibrio association:from cell to environment. Vie et milieu (Paris, France:1980),58(2), p.175.
    Oke, V. & Long, S.R.,1999. Bacteroid formation in the Rhizobium-legume symbiosis. Current opinion in microbiology,2(6), pp.641-646.
    Polz, M. et al.,2000. When bacteria hitch a ride. Asm News,66(9), pp.531-539.
    Robidart, J.C. et al.,2008. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environmental Microbiology,10(3), pp.727-737.
    Ruby, E.G. & Lee, K.H.,1998. The Vibrio fischeri-Euprymna scolopes Light Organ Association:Current Ecological Paradigms. Applied and environmental microbiology, 64(3), pp.805-812.
    Sanchez-Contreras, M. et al.,2007. Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philosophical transactions of the Royal Society of London. Series B, Biological sciences,362(1483), pp.1149-1163.
    Southward, E.,1988. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera):implications for relationship between Vestimentifera and Pogonophora. J mar biol Ass UK.
    Stewart, F. & Cavanaugh, C.,2005. Symbiosis of thioautotrophic bacteria with Riftia pachyptila. Molecular Basis of Symbiosis (Overmann J, ed). Progress in Molecular and Subcellular Biology.
    Stewart, F.J. & Cavanaugh, C.M.,2007. Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. Journal of molecular evolution,65(1), pp.44-67.
    Stewart, F.J., Baik, A.H.Y. & Cavanaugh, C.M.,2009. Genetic subdivision of chemosynthetic endosymbionts of Solemya velum along the Southern New England coast. Applied and environmental microbiology,75(18), pp.6005-6007.
    Sunamura, M. et al.,2004. Two bacteria phylotypes are predominant in the Suiyo seamount hydrothermal plume. Applied and environmental microbiology,70(2), pp.1190-1198.
    Vrijenhoek, R.C., Duhaime, M. & Jones, W.J.,2007. Subtype variation among bacterial endosymbionts of tubeworms (Annelida:Siboglinidae) from the Gulf of California. Biological Bulletin,212(3), pp.180-184.
    Yip, E.S. et al.,2005. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri. Molecular Microbiology,57(5), pp.1485-1498.
    Young, C.R., Fujio, S. & Vrijenhoek, R.C.,2008. Directional dispersal between mid-ocean ridges:deep-ocean circulation and gene flow in Ridgeia piscesae. Molecular Ecology, 17(7), pp.1718-1731.
    Andersen, A.C., Flores, J.F. & Hourdez, S.,2006. Comparative branchial plume biometry between two extreme ecotypes of the hydrothermal vent tubeworm Ridgeia piscesae. CanadianInternationalJournal of Systematic and Evolutionary Microbiology of Zoology,84, pp.1810-1822.
    Andersen, C.L.,2004. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research,64, pp.5245-5250.
    Arp, A.J., Childress, J.J.,1981. Blood function in the hydrothermal vent vestimentiferan tube worm. Science,213, pp.342-344.
    Black, M., et al.,1997. Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Marine Biology,130, pp.141-149.
    Black, M., Lutz, R., & Vrijenhoek, R.,1994. Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the eastern Pacific. Marine Biology,120, pp.33-39.
    Black, M.B., et al.,1998. Population genetics and biogeography of vestimentiferan tube worms. Deep-sea Research Part Ⅱ-Topical Studies in Oceanography,45, pp.365-382.
    Bourbonnais, A., et al.,2012. Subseafloor nitrogen transformations in diffuse hydrothermal vent fluids of the Juan de Fuca Ridge evidenced by the isotopic composition of nitrate and ammonium. Geochemistry Geophysics Geosystems, 13.pp.1-23.
    Bright, M., & Lallier, F.H.,2010. The biology of vestimentiferan tubeworms. Oceanography and Marine Biology,48, pp.213-265.
    Carney, S.L., et al.,2007. Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology,146, pp.326-337.
    Cavanaugh, C.M., et al.,1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones:possible chemoautotrophic symbionts. Science,213, pp.340-342.
    Charlou, J.L., et at.,2000. Compared geochemical signatures and the evolution of Menez Gwen (37°50'N) and Lucky Strike (37°17'N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chemical Geology,171, pp.49-75.
    Childress, J.J., et al.,1991. Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biology Bulletin,180, pp.135-153.
    Cifuentes, L.A., et al.,1989. Biogeochemical factors that influence the stable nitrogen isotope ratio of dissolved ammonium in the Delaware Estuary. Geochimica et cosmochimica acta,53, pp.2713-2721.
    De Cian, M., Regnault, M. & Lallier, F.H.,2000. Nitrogen metabolites and related enzymatic activities in the body fluids and tissues of the hydrothermal vent tubeworm Riftia pachyptila.International Joumal of Systematic and Evolutionary Microbiology of experimental biology,203, pp.2907-2920.
    Di Meo, C.A., et al.,2000. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Applied and Environmental Microbiology,66, pp.651-658.
    Ding, K., et al.,2001. In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge. Earth and planetary science letters,186, pp.417-425.
    Felbeck, H.,1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (vestimentifera). Science,213, pp.336-338.
    Felbeck, H., Jarchow, J.,1998. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Physiological and biochemical zoology,71, pp.294-302.
    Feldman, R.A., et al.,1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Marine Biology biotechnology,6, pp.268-277.
    Fisher, C.R., & Childress, J.J.,1984. Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (Phylum pogonophora). Marine Biology letters,5, pp.171-183.
    Flores, J.F., et al.,2005. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proceedings of the national academy of sciences of the united states of America,102, pp.2713-2718.
    Gardebrecht, A., et al.,2012. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. ISMEInternationalJournal of Systematic and Evolutionary Microbiology,6, pp.766-776.
    Girguis, P.R., & Childress, J.J.,2006. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature.InternationalJournal of Systematic and Evolutionary Microbiology of experimental biology,209, pp.3516-3528.
    Girguis, P.R., et al.,2000. Fate of nitrate acquired by the tubeworm Riftia pachyptila. Applied and Environmental Microbiology,66, pp.2783-2790.
    Goffredi, S., et al.,1997. Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton-equivalent ion transport by the worm.InternationalJournal of Systematic and Evolutionary Microbiology of experimental biology,200, pp.883-896.
    Granger, J.,2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochimica et cosmochimica acta,74, pp.1030-1040.
    Hahlbeck, E., et al.,2005. Proposed nitrate binding by hemoglobin in Riftia pachyptila blood. Deep-sea Research Part I-Oceanographic Research Papers, 52, pp.1885-1895.
    Hentschel, U. & Felbeck, H.,1993. Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature,366, pp.338-340.
    Hoch, M.P., Fogel, M.L. & Kirchman, D.L.,1992. Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnology and oceanography, 37, pp.1447-1459.
    Johnson, K.S.,1988. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep-sea Research Part I-Oceanographic Research Papers,35, pp.1723-1744.
    Jones, M.L.,1985. On the Vestimentifera, new phylum:six new species, and other taxa, from hydrothermal vents and elsewhere. Bull Biol Soc Wash,6, pp.117-158.
    Karl, D.M., et al.,1988. A microbiological study of Guaymas Basin high temperature hydrothermal vents. Deep-sea Research Part Ⅰ-Oceanographic Research Papers,35, pp.777-791.
    Kraft, B., Strous, M. & Tegetmeyer, H.E.,2011. Microbial nitrate respiration-Genes, enzymes and environmental distribution.InternationalJournal of Systematic and Evolutionary Microbiology of biotechnology,155, pp.104-117.
    Lee, R., Robinson, J. & Cavanaugh, C.,1999. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase.InternationalJournal of Systematic and Evolutionary Microbiology of experimental biology,202. pp.289-300.
    Lee, R.W. & Childress, J.J.,1994. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Applied and Environmental Microbiology,60, pp.1852-1858.
    Lilley, M.,1993. Anomalous CH4 and ammonium concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature,364, pp.45-47.
    Markert, S., et al.,2007. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science,315, pp.247-250.
    Markert, S., et al.,2011. Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics,11, pp.3106-3117.
    McMullin, E.R., et al.,2003. Phylogeny and biogeography of deep-sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis,34, pp.1-41.
    Minic, Z.,2001. Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tube worm Riftia .pachyptila.InternationalJournal of Systematic and Evolutionary Microbiology of biological chemistry,276, pp.23777-23784.
    Minic, Z. & Herve, G.,2003. Arginine metabolism in the deep-sea tube worm Riftia pachyptila and its bacterial endosymbiont.IntemationalJournal of Systematic and Evolutionary Microbiology of biological chemistry,278, pp.40527-40533.
    Montoya, J.P., Korrigan, S.G. & McCarthy, J.J.,1991. Rapid, storm-induced changes in the natural abundance of 15N in a planktonic ecosystem, Chesapeake Bay, USA. Geochimica et cosmochimica acta,55, pp.3627-3638.
    Montoya, J.P. & McCarthy, J.J.,1995. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture.InternationalJournal of Systematic and Evolutionary Microbiology of plankton research,17, pp.439-464.
    Moreno-Vivian, C., et al.,1999. Prokaryotic nitrate reduction:molecular properties and functional distinction among bacterial nitrate reductases.InternationalJournal of Systematic and Evolutionary Microbiology of bacteriology,181, pp.6573-6584.
    Needoba, J.A. & Harrison, P.J.,2004. Influence of low light and a light:dark cycle on nitrateuptake, intracellular nitrate, and nitrogen isotope fractionation by marine phytoplankton. FEMS Microbiology Ecology,40, pp.505-516.
    Nyholm, S.V., Robidart, J. & Girguis. P.R.,2008. Coupling metabolite flux to transcriptomics:insights into the molecular mechanisms underlying primary productivity by the hydrothermal vent tubeworm Ridgeia piscesae. Biology Bulletin,214, pp.255-265.
    Nyholm, S.V., et al.,2012. Expression and putative function of innate immunity genes under in situ conditions in the symbiotic hydrothermal vent tubeworm Ridgeia piscesae. PLoS ONE,7, pp.e38267.
    Pospesel, M., Hentschel, U.&Felbeck, H.,1998. Determination of nitrate in the blood of the hydrothermal vent tubeworm Riftia pachyptila using a bacterial nitrate reduction assay. Deep-sea Research Part I-Oceanographic Research Papers, 45, pp.2189-2200.
    Reitzer, L.,2003. Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology,57, pp.155-176.
    Richardson, D.J., et al.,2001. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cellular and Molecular Life Sciences,58, pp.165-178.
    Robidart, J.C., et al.,2008. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environmental Microbiology,10, pp.727-737.
    Robidart, J.C., et al.,2011. Linking hydrothermal geochemistry to organismal physiology:physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. PLoS ONE,6, pp.e21692.
    Scott, K.M., et al.,2012. Response of hydrothermal vent vestimentiferan Riftia pachyptila to differences in habitat chemistry. Marine Biology,159, pp.435-442.
    Sigman, D.M., et al.,2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry,73, pp.4145-4153.
    Simon, J.R.,2002. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiology Review,26, pp.285-309.
    Southward, E.C., Tunnicliffe, V. & Black, M.,1995. Revision of the species of Ridgeia from northeast Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones (Pogonophora:Obturata=Vestimentifera). CanadianIntemationalJournal of Systematic and Evolutionary Microbiology of Zoology,73, pp.282-295.
    Stewart F.J. & Cavanaugh. C.M.,2005. Symbiosis of thioautotrophic bacteria with Riftia pachyptila. Progress of Molecular Subcell Biology,41, pp.197-225.
    Urcuyo, I. et al.,2007. Growth and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow habitats of the Juan de Fuca Ridge. Marine Ecology Progress Series,344, pp.143-157.
    Urcuyo, I., et al.,2003. Habitat, growth and physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca Ridge. Deep-Sea Research Part Ⅰ-Oceanographic Research Papers,50, pp.763-780.
    Urcuyo, I., et al.,1998. In situ growth of the vestimentiferan Ridgeia piscesae living in highly diffuse flow environments in the main Endeavour Segment of the Juan de Fuca Ridge. Cahiers de Biologie Marine,39, pp.267-270.
    Vandesompele, J., et al.,2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology,3, pp.1-11.
    Wada, E.,1980. Nitrogen isotope fractionation and its signifi-cance in biogeochemical processes occurring in marine environments. In:Goldberg ED, Horibe Y, Saruhashi K (eds) Isotope marine chemistry. Uchida-Rokakuho, Tokyo, pp.375-398.
    Wada, E. & Hattori, A.,1978. Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiology International Journal of Systematic and Evolutionary Microbiology,1, pp.85-101.
    Waser, N.A., et al.,1998. Nitrogen isotope fractionation during nitrate, ammonium and urea uptake by marine diatoms and coccolithophores under various conditions of N availability. Marine Ecology Progress Series,169, pp.29-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700