复杂公路路基瑞利波探测中的频散曲线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瑞雷面波勘探法是一种新型的工程地球物理勘探方法。由于该方法具有操作简便,探测速度快、对检测场地要求不高且能一次获得与深度相关的地层瑞雷面波速度参数的特点,因而在工程地质勘察和工程质量检测领域得到了广泛的应用。应用瞬态瑞雷面波法对公路工程的质量检测,具有非破损性、高代表性的优点,能很好的适应公路工程快速发展的需求。
     了解复杂公路路基中瑞利波的传播规律,对于分析研究复杂公路路基介质结构具有指导性作用。本文以公路路基中瑞利波的传播特性为基础,用有限元方法模拟实际公路路基中可能存在的缺陷情况,并对这些公路路基中的频散曲线进行了深入的分析与研究,本文研究的主要内容及成果如下:
     (1)基于公路路基各方面的参数资料,通过反复调整模型参数进行有限元计算和结果的对比分析,设计了符合实际公路完整路基情况的地层模型。
     (2)计算了公路路基第二层存在横向存在硬软分区的有限元模型,讨论了两种情况下横向软弱层波速、厚度、埋深和软硬分界线的位置的改变对频散曲线的影响,并进行了分析,发现公路路基中存在第二层存在硬软型横向分层与软硬型横向分层有明显的区别,并且频散曲线能反映出软区的波速、厚度以及软硬分界线的位置。
     (3)计算了公路路基第二层存在空洞的有限元模型,研究了空洞位于检测系统中不同水平位置时的频散曲线,指出了当空洞位于检波器下时,检测系统能最好地检测出空洞的特征。研究了空洞位于检波器下时长度、宽度、高度和埋深对公路路基频散曲线的影响,发现频散曲线次高频被拉出和频散曲线低频部分呈现出明显的“阶梯”形是公路路基存在空洞的重要特征,并且空洞的长度、宽度、高度与埋深的大小与“阶梯”形频散曲线有明显的对应关系。
     (4)通过研究了空洞的四个参数的雅克比矩阵Js并分析计算出它们的敏感性曲线,得出了空洞各个参数对频散曲线的敏感性大小。
     (5)本文将数值模拟计算结果与实测结果进行了比较,进一步验证了数值方法研究瑞雷波地基检测过程的可行性。
     本研究得出的结论,为工程技术人员用瑞利波法对公路路基进行检测提供了可靠的依据。
The Rayleigh surface wave prospecting is a new method of the engineering geophysical exploration.It has been widely used in the domains of engineering geological exploration and engineering quality testing, since it is very easy and quick to operate and directly gets surface wave velocity relating to the depth of the strata.The method using transient Rayleigh surface wave has advantages of non-destructive test and good representation to meet the needs of the highly-developed highway engineering.
     The propagation disciplinarian of Rayleigh wave plays a guiding role in the analysis of complex roadbed structure. Based on Rayleigh wave propagation nature in roadbed, we have used the finite element method to simulate actual roadbed which is exist soft layer and cavity. Afterwards, dispersion curve of the roadbed have been analyzed and researched.The main content and conclusions are as follows:
     (1) The highway roadbed model which is in according with the actual situation has been designed, by consulting parameters’information of the roadbed and adjusting parameters of finite element.
     (2) The finite element model of the highway roadbed containing hard and soft district in the second layer has been calculated. The two situations have been discussed about different weak layer’s wave velocity, thickness, burying depth, the soft and hard boundary position changed, and the influences of these changes on frequency dispersion curve have been researched. We discover the result as follows: obvious differences are exist between the two situations’dispersion curve, and the dispersion curve can reflect the soft layer’s wave velocity, height and the position of the soft and hard boundary.
     (3) The roadbed model has been calculated in which the second layer containing cavity. The dispersion curves have been discussed when the horizontal location of cavity change, the result indicated that the examination system can get the best examination of empty characteristic when cavity is under the detector.When the cavity is under detector, the dispersion curve’s characteristics have been discussed when the cavity’s length, width, height and burying depth are changed.The result indicate that the high frequency of dispersion curve is pulled out and“steps and ladders”dispersion curve are the important characteristic when highway’s roadbed exists cavity, and“steps and ladders”dispersion curve can reflect the cavity’s length,width,height and burying depth.
     (4) The Jacobian matrixs Js of the cavity’s parameter have been studied, and the parameter’s sensitive curves have been analyzed.Finally, the value of parameter’s sensitivity to the frequency dispersion curve have been obtained.
     (5) This article also compares numerical simulation results with actual dispersion curve, and the feasibility of processing of Rayleigh wave stratum exploration by numerical simulation is verified.
     The conclusions of this paper provide reliable reference for engineer and technician to detect the roadbed using Rayleigh wave method.
引文
1 L. Rayleigh. On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematic Society. 1887, 17:4~11
    2 W.T. Thomson. Transmission of elastic waves through a stratified solid medium. Journal Application. 1938,14:56~68
    3 N.A. Haskall. The dispersion of surface waves on multilayered media. Bull Seismsoc Amer.1953, 18:703~715
    4 J.H. Rosebaum. A note on the computation of Rayleigh wave dispersion curves for layered elastic media. Bull Seismsoc Amer. 1964, 53(3): 1013~1019
    5 E.N. Thrower. The computation of the dispersion of elasticwaves in layered media. Journal of Sound and Vibration. 1965, 2(3):210~226
    6 J. Dorman, M. Ewing. Numerical inversion of seismic surfacewave dispersion data and Crust mantle structure in the New York Pennsylvania area. Journal of Geophysical. 1956, 5(3):70~79
    7 F.K. Chang. Rayleigh wave dispersion technique for rapid subsurface exploration. 42 session of international geophysics annual meeting. 1950, (21):89~93
    8 F. Schwab, L. Knopoff. Surface waves on multilayered anelastic media. BullSeism. Soil Science Society of America. 1971, 6l(4):893~912
    9 G. Bukchin, A.L. Levshin. Propageation of Love waves across a vertical discontinuity. Wave Motion. 1980,2: 293~302
    10 J. Dorman, M. Ewing. Numerical inversion of seismic surfacewave dispersion data and crust2mantle structure in the New York Pennsylvania area. Journal of Geophysical Research. 1962, 67:5227~5241
    11 R.W. Meier, G.J. Rix. Initial study of surface wave inversion using artificial neural networks.Geotechnical Testing Journal. 1993,16(4):425~431
    12佐藤长范.用GR-810激光激振系统进行地基勘察.日本VIC株式会社,国际地球物理年会. 1962, 67:5227~5241
    13 K.H. Stokoe, S. Nazarian. Effectiveness of ground improvement fromspectral analysis of surface waves. Process of 8th European Conference Mechanics and Foundation Engineering. 1983, 136~148
    14 S. N. Bhattachnrya. Extended formulation for Rayleigh wave computation at highfrequencies in spherical layered earth. Geophysical Journal Red Astrsoc Section. 1986, 293~311
    15 S.C. Kirwood.The significance of isotropic inversion of anisotropic surface wave dispersion. Geophys Journal of the Royal Astronomical Society . 1978, (55):131~142
    16 A.L. Barbara,H .Kenneth and StokoeⅡ. Application of SASW Method Underwater.Journal of Geotechnical and Geoenvionmental Engineering. 1998, 523~531
    17 J. Xia, R.D. Miller, C.B. Park. Estimation of near surface shear wave velocity by in version of Rayleigh waves. Geophysics. 1999, 64(3): 691~700
    18吴世明,曾国熙,陈云敏等.利用表面波频谱分析测试土层波速.地震工程与工程振动. 1988, 8(4):27~32
    19夏唐代,陈云敏,吴世明.利用瑞利波速度弥散特性反演地基参数.振动工程学报. 1991, 4(4):31~37
    20张忠苗,魏玉伦,陈云敏,吴世明.瞬态面波测试技术在地基处理评价中的应用.物探与化探. 1992, 16(1):48~55
    21陈云敏,吴世明,曾国熙.表面波谱分析方法及其应用.岩土工程学报. 1992, 14(3):61~65
    22陈云敏,吴世明,夏唐代.用表面波谱分析方法检测道路结构的质量.浙江大学学报. 1993, 27 (3):309~314
    23杨成林.瑞利波勘探原理及其应用.物探与化探. 1989, 13(6):465~ 468
    24张忠苗等.瞬态面波测试技术在地基处理评价中的应用.物探与化探. 1992, 1(1):49~54
    25刘云桢,王振东.瞬态面波法的数据采集处理系统及其应用实例.物探与化探. 1996, 20(1):28~34
    26佟玉霞,朱元清. F-k域分析在上海地震台阵建设中的应用.西北地震学报. 1995, 38(2):317~320
    27于海英,朱元清.上海台阵的f-k域分析.地震地磁观测与研究. 2002, 23(2):56~64
    28罗圣贤,李录明. f-k与多波变速波场分离.物探化探计算技术. 1999, 21 (2):126~132
    29张森斌,何樵登,方云峰.频散波数域预测和减去法压制多次波.吉林大学学报. 2002, 32(1):96~99
    30顾汉明,王家映.频率-波数域递推计算海底多分量地震记录中的反射系数.地球物理学报. 2002(2):130~139
    31胡家富,段永康,胡毅力,等.利用Rayleigh波反演浅土层的剪切波速度结构.地球物理学报, 1997, 20(3):421~425
    32胡家富. Rayleigh波在工程勘探中的解释方法探讨.岩土工程学报. 1999, 25(5):599~602
    33胡家富,段永康.影响面波勘探精度的因素探讨.地震研究. 2000, 23(3):333~328
    34张碧星,肖柏勋,杨文杰,曹思远,牟永光.瑞利波勘探中“之”形频散曲线的形成机理及反演研究.地球物理学报. 2000, 43(4):557~567
    35凡友华,刘家琦.层装介质中瑞利面波的频散研究.哈尔滨工业大学学报. 2001, 33(5):577~581
    36 X.F. Chen. A systematic and efficient method of computing normal modes multilayered half-spaced.Geophysical Journal International. 1993, 115:391~398
    37 X.F. Chen. Seismogram synthetic in multi-layered half-spaced: (1) Theretical Formukation. Earthquake Research(in china). 1999, 13(115): 335~358
    38 H. Zhang and X.Chen. Self-adaptive Filon’s integration method and its application to computing synthetic seismograms. Physics Letter.2001, 18:313~315
    39 H. Zhang, X. Chen and S. Chang. An efficient method for computing synthetic seismograms for a layered half-space with sources and receivers at close or same depth. Pure and Applied Geophysics. 2003, 160:467~486
    40夏唐代,张忠苗,吴世明. Rayleigh面波法原理的数值模拟.浙江大学学报.1996,28(11):94~97
    41贾学名,杨建国,赖思静.路基边界对瑞利波检测影响的数值模拟研究.岩土力学. 2004, (25):256~264
    42赖思静,贾学名,杨建国.软弱地层中瑞利波的传播的数值模拟研究.公路交通技术. 2005, 10.(5):57~62
    43范留名,闫娜,李宁.薄弹性软弱夹层的动力响应模型.岩土力学与工程学报. 2006, 25:89~92
    44杜修力.近场波动模拟的人工应力边界条件.力学学报. 2005, 1: 100~104
    45肖伯勋.高模式瑞利波及其正反演研究.博士论文. 2000, 45~65
    46凡友华.考虑高阶模的Rayleigh波勘探应用研究.博士后研究工作报告. 2003, 10~80
    47夏宇靖.稳态瑞利波实测洞穴频散曲线的类型.煤田地质与勘探. 1996, 54~63
    48单娜琳,程志平,刘云桢.工程地震勘探.冶金工业出版社, 2006, 80~102
    49单娜琳,黄英娣.软土地基强夯加固效果评价.桂林工学院学报. 1997, 120~132
    50单娜琳,程志平.高阶模态面波在在软弱薄层探测中的应用.桂林工业学院学报. 2004, 24(2):155~158
    51章哲辉.瑞利波勘探在空洞探测中的应用.湖南水利水电. 2003
    52宗志刚.地震勘探方法在探测煤矿采空区中的应用研究.硕士学位论文.中国地质大学硕士学位论文. 2006, 32~80
    53陈灯.岩土工程地下空洞瑞利波探测技术的应用研究.硕士学位论文.中南大学硕士学位论文. 2005, 20~72
    54杜立志.瞬态瑞利波勘探中的数字处理技术研究.硕士学位论文.吉林大学硕士学位论文. 2005, 14~17
    55贾辉.瞬态瑞利波法在隐伏断层探测中的应用研究.硕士学位论文.中国地震局地球物理研究所硕士学位论文.2007,45~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700