用户名: 密码: 验证码:
构造煤结构演化及成因机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在构造煤宏观、微观变形及其结构特征深入研究的基础上,对构造煤进行了系统分类,探讨了构造煤变形序列及其演化特征。结合扫描电镜、压汞与二次压汞、低温液氮吸附和FT-IR、13C NMR结构分析实验,深刻揭示了构造煤的孔隙结构和大分子结构随构造煤变形序列及不同构造作用类型的演化机理及其控制因素。取得了如下主要成果:
     (1)基于构造煤结构和形成机制,将构造煤类型系统划分为碎裂煤、片状煤、碎斑煤、碎粒煤、鳞片煤、揉皱煤和糜棱煤7种类型及19种亚类,深入分析了构造煤宏观、微观变形及结构特征,进一步厘定了构造煤的变形演化序列,并提出构造煤变形序列具有“多种作用结合、整体错列增长”的新认识。
     (2)首次进行了构造煤摩擦面的变形特征和分类研究,根据其起伏程度及变形特征可分为P型、N型、S型、C型、W型和D型共计6大类16种类型。揭示了构造煤摩擦面相关发育和穿越效应及其对煤大分子结构演化的影响,随着构造煤变形序列的演化,摩擦面由N型向S型、C型、P型、W型和D型逐步过渡发育,摩擦面对煤大分子结构的影响远超出了不同类型构造煤间的差异,且不同类型摩擦面的影响作用也有所不同。
     (3)深入探讨了构造煤不同结构类型和构造作用类型对孔隙结构的影响方式、作用机理及其差异性,多重构造作用的影响程度不同且存在碎粒作用>剪切作用>揉皱作用>碎裂作用的递减顺序。随着构造作用的增强,所作用阶段孔容增幅也随之增长,而主要构造变形尺度则具有逐渐减小的趋势。进一步提出了平行型、反S型、尖棱型、M型、双S型和双弧线型六种孔隙结构类型与10峰、1000峰、1W峰和10W峰孔容增量峰形态特征及其构造成因意义。二次压汞揭示了构造煤的孔喉发育特征。同时分析了构造煤大分子结构特征及不同构造作用下的演化趋势,Z1和Z3对构造变形具有很好的指示作用,剪切作用强烈促进了芳构化程度的增高和芳香稠环的增大,韧性揉皱作用影响较弱,而碎粒碎斑化作用整体则不利于芳构化作用的进行。
     (4)提出了构造煤显微构造变形效应、显微复合变形构造及尺度分异效应的新观点,为构造煤显微变形分析及其成因机制探讨提供了新的途径,且在构造煤的变形成因标识和变形条件系统研究的基础上,提出了构造煤成因机制的13种作用类型,进一步从本质上揭示了构造煤的成因机制。
Based on the further research of macro-and microscopic deformation characteristicsand structural features of tectonically deformed coal, systematic classification, deformationsequence and corresponding evolution characteristics were discussed. In combination withthe tests of SEM, MIP, SMIP, LTNA, FT-IR and13C NMR, the evolution mechanism andcontrol factors of pore structure and molecular structure of tectonically deformed coal withthe difference of deformation sequences and deformation types were determined. Thefollowing conclusions have been made:
     (1) Tectonically deformed coal can be systematically divided into cataclasticstructural coal, schistose structural coal, mortar structural coal, granulitic structural coal,scaly structural coal, wrinkle structural coal and mylonitic structural coal,7types and19sub-types in total, based on the consideration of its structure and formation mechanism.Macro-and microscopic deformation characteristics and structural features were furtherdiscussed and the deformation evolution sequences, with the characteristics of multipleeffect combination and overall dislocation growth, were determined.
     (2) Deformation characteristics and classification of sliding surface of tectonicallydeformed coal were analyzed for the first time. According to the flatness and deformationcharacteristics, the sliding surface can be divided into types P, N, S, C, W and D,6typesand16sub-types in total. The effects of correlative and cross development and itsinfluence upon molecular structure evolution were discussed. Sliding surface transitedfrom type N to types S, C, P, W and D gradually, with the evolution of tectonicallydeformed coal deformation sequence.
     (3) The modes, mechanism and differences of effects on pore structure from differentstructural and deformation types were discussed systematically. The effects of differentdeformation types were different and presented a descending order of granulitic process,shear process, wrinkle process and cataclastic process. With the increase of structuraldeformation, the growth of corresponding stage pore volume was increased and thedeformation scale of coal was gradually reduced. Six types of pore structure, parallel type,reverse S type, angular type, M type, double S type and double curvature type were defined,as well as the pore volume incremental peak shape and their deformation originsignificance of10peak,1000peak,1W peak and10W peak. Pore throat developmentcharacteristics in tectonically deformed coal were determined by the SMIP. Tectonicallydeformed coal molecular structural features and their evolution trends with different structural deformation process were analyzed. Structural deformation is well indicated byparameters Z1and Z3. The increase of aromatization extent and aromatic fused ring wereintensively promoted by shear process, and the effect of ductile wrinkle process is weak,while the granulitic and mortar processes are unfavorable to aromatization.
     (4) New viewpoints of microscopic deformation effect, combination of microscopicdeformation structures and scale differentiation effect of tectonically deformed coal werepresented, which provides new methods for the analysis of microscopic deformation anddeformation mechanism of tectonically deformed coal. Based on the systematicallyresearch of deformation process signs and deformation conditions of tectonically deformedcoal,13effect types of structural deformation mechanism were presented, which reveal thedeformation mechanism of tectonically deformed coal essentially.
引文
Bustin R M. Heating during thrust faulting in the rocky mountain: friction or fiction [J]. Tectonophysics,1966,95:309-328.
    Bustin R M. Striated conical structures and related fractures in bituminous coal of the southernCanadian Rocky Mountains [J]. International Journal of Coal Geology,1982,2:1-16.
    Bustin R M, Clarkson C R. Geological controls on coalbed methane reservoir capacity and gas content[J]. International Journal of Coal Geology,1998,38:3-26.
    Bustin R M, Guo Y. Abrupt changes (jumps) in reflectance values and chemical compositions ofartificial charcoals and inertinite in coals[J]. International Journal of Coal Geology.1999,38(3-4):237-260.
    Cannon C G, Sutherland G B B M. The Infra-red absorption spectra of coals and coals extracts [J].Transactions of the Faraday Society,1945,41(5):279-288.
    Cao Y X, Mitchell G D, Davis A, et al. Deformation, metamorphism of bituminous and anthracite coalsfrom China [J]. International Journal of Coal Geology,2000,43:227-242.
    Cao Y X, He D D, Glick D C. Coal and gas outbursts in footwalls of reverse faults [J]. InternationalJournal of Coal Geology,2001,48:47-63.
    Cao Y X, Davis A, Liu R X, et al. The influence of tectonic deformation on some geochemicalproperties of coals—a possible indicator of outburst potential [J]. International Journal of CoalGeology,2003,53:69-79.
    Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties ofcoal: a laboratory and modeling study.1. Isotherms and pore volume distributions [J]. Fuel,1999,78:1333-1344.
    Close J C. Natural fractures in coal [J]. AAPG Studies in Geology,1993:119-132.
    Dehandschutter B, Vandycke S, Sintubin M, et al. Brittle fractures and ductile shear bands inargillaceous sediments: inferences from Oligocene Boom Clay (Belgium)[J]. Journal of StructuralGeology,2005,27:1095-1112.
    Dennis L W.13C NMR studies of Kerogen from Cretaceous black shale thermally altered by basaltic infrusion and laboratory simulations [J]. Geochimica et Cosmochimica Acta,1982,46(6):901-907.
    Evans H, Brown K M. Coal structures in outbursts of coal and firedamp conditions [J]. The MiningEngineer,1973,132:171-179.
    Gülbin G, Nam k M Y. Pore volume and surface area of the carboniferous coals from the Zonguldakbasin (NW Turkey) and their variations with rank and maceral composition[J]. InternationalJournal of Coal Geology,2001,48:133-144.
    Hou Q L, Li H J, Fan J J, et al. Structure and coalbed methane occurrence in tectonically deformedcoals[J]. Science China Earth Science,2012,55:1755-1763.
    IUPAC. Manual of symbols and terminology. Appendix2: Part1. Colloid and surface chemistry [J].Pure andApplied Chemistry,1972,52:2201.
    Jiang B, Qu Z H, Wang J L, et al. Research on coupling mechanism of mine structure and gasoccurrence [J]. Procedia Earth and Planetary Science,2009,1:1029-1036.
    Jiang B, Qu Z H, Wang G G X et al. Effects of structural deformation on formation of coalbed methanereservoirs in Huaibei coalfield, China [J]. International Journal of Coal Geology,2010,82,175-183.
    Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure: investigation andevaluation by quantitative X-ray CT imaging [J]. Fuel,2001,80(4):509-520.
    Karacan C O, Ruiz F A, Cotè M, et al. Coal mine methane: Areview of capture and utilization practiceswith benefts to mining safety and to greenhouse gas reduction [J]. International Journal of CoalGeology,2011,86:121-156.
    Krevelen D W. Coal [M]. Amsterdam: Elsevier Scientific Publishing Co.,1993.
    Laubach S E, Marrett R A, Olson J E, et al. Characteristics and origins of coal cleat: A review [J].International Journal of Coal Geology,1998,35:175-207.
    Li H Y. Major and minor structural features of a bedding shear zone along a coal seam and related gasoutburst, Pingdingshan coalfield, northern China [J]. International Journal of Coal Geology,2001a,47:101-113.
    Li H Y, Ogawa Y. Pore structure of sheared coals and related coalbed methane. Environ Geol,2001b,40:1455-1461.
    Li H Y, Ogawa Y, Shimada S H. Mechanism of methane flow through sheared coals and its role onmethane recovery [J]. Fuel,2003,82:1271-1279.
    Li M, Jiang B, Lin S F, et al. Tectonically deformed coal types and pore structures in Puhe andShanchahe coal mines in western Guizhou [J]. Mining Science and Technology,2011,21:353-357.
    Li M, Jiang B, Lin S F, et al. Structural controls on coalbed methane reservoirs in Faer coal mine,Southwest China[J]. Journal of Earth Science,2013a,24(3).
    Li M, Jiang B, Lin S F, et al. Characteristics of Coalbed Methane Reservoirs in Faer Coalfield, WesternGuizhou[J]. Energy Exploration&Exploitation,2013b,31(3):411-428.
    Li W, Zhu Y, Chen S, et al. Research on the structural characteristics of vitrinite in different coalranks[J]. Fuel,2013,107:647-652.
    Lowell S, Shields J E, Thomas M A, et al. Characterization of porous solids and powders: surface aera,pore size and density [M]. Netherlands: Kluwer Academic Publishers,2004.
    Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to variouscoals [J]. Carbon,2001,39:1821-1833.
    Mazumder S, Wolf K H A, Elewaut K, et al. Application of X-ray computed tomography for analyzingcleat spacing and cleat aperture in coal samples [J]. International Journal of Coal Geology,2006,68:205-222.
    Millais R., Murchison D G.. Properties of the coal macerals: Infrared spectra of alginites [J]. Fuel,1969,48:247–258.
    Murchison D G., Jones J M. Infrared spectra of resinite and their carbonized and oxidized products [J].Fuel,1966,27:141–158.
    Parkash S, Chakrabartty S K. Microporosity in Alberta Plains coals [J]. International Journal of CoalGeology,1986,6(1):55-70.
    Phillipson S E. The control of coal bed decollement-related slickensides on roof falls in North AmericanLate Paleozoic coal basins[J]. International Journal of Coal Geology,2003,53:181-195.
    Qu Z H, Wang G X, Jiang B, et al. Experimental study on the porous structure and compressibility oftectonized coals. Energy Fuels,2010,24:2964-2973.
    Salmas C, Androutsopoulos G. Mercury porosimetry: contact angle hysteresis of materials withcontrolled pore structure [J]. Journal of Colloid and Interface Science,2001,239(1):178-189.
    Slitcher C P. Principles of magnetic resonance [M]. New York: Spinger Verlag,1983.
    Suchy V, Frey M, Wolf M. Vitrinite reflectance and shear induced graphitization in orogenic belts: Acase study from the Kandersteg area, Helvetic Alps, Switzerland [J]. International Journal of CoalGeology,1997,34:1-20.
    Suuberg E M, Deevi S C, Yun Y. Elastic behaviour of coals studied by mercury porosimetry [J]. Fuel,1995,74:1522-1530.
    Teichmüller M, Teichmüller R. Geological causes of coalification [J]. Coal Science Advances inChemistry Series,1966,55:133-155.
    Tsakiroglou C D, Payatakes AC. Mercury intrusion and retraction in model porous media [J]. Advancesin Colloid and Interface Science,1998,75:215-253.
    Wardlaw N C, Mckellar M. Mercury porosimetry and the interpretation of pore geometry insedimentary rocks and artificial models [J]. Powder Technology,1981,29:127-143.
    Xu H, Zhang S H, Leng X, et al. Analysis of pore system model and physical property of coal reservoirin the Qinshui Basin [J]. Chinese Science Bulletin,2005,50(Supp.):52-58.
    Yang H M, Huo X Y, Zhang S J. Study on difference of outburst elimination effect between sub-layersof soft coal and hard coal under the condition of gas per-drainage [J]. Safety Science,2012,50:768-772.
    Yao Y B, Liu D M, Che Y, et al. Non-destructive characterization of coal samples from China usingmicrofocus X-ray computed tomography [J]. International Journal of Coal Geology,2009a,80:113-123.
    Yao Y B, Liu D M. Microscopic characteristics of microfractures in coals: an investigation intopermeability of coal [J]. Procedia Earth and Planetary Science,2009b,1:903-910.
    毕华,彭格林.湘中涟源煤盆测水组煤动力变质作用的特征及其成因探讨[J].地质地球化学.1997,(2):36-40.
    毕建军,苏现波,韩德馨等.煤层割理与煤级的关系[J].煤炭学报.2001,26(4):346-349.
    蔡顺益.用扫描电镜研究突出煤的微结构[J].矿业安全与环保.1986(4):25-35.
    蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发.2000,27(6):45-49.
    曹代勇,唐跃刚.煤中应变各向异性条纹的发现及意义[J].煤田地质与勘探.1994,22(3):14-16.
    曹代勇,关英斌,张杰琳.沁水煤田东部构造特征研究-兼论资源勘探阶段地质构造综合研究方法[M].重庆:重庆大学出版社,1996.
    曹代勇,张守仁,任德贻.构造变形对煤化作用进程的影响—以大别造山带北麓地区石炭纪含煤岩系为例[J].地质论评.2002,48(3):313-317.
    曹代勇,张守仁.大别山北麓高煤级煤的变形—变质类型[J].地质科学.2003,38(4):470-477.
    曹代勇,李小明,魏迎春等.构造煤与原生结构煤的热解成烃特征研究[J].煤田地质与勘探.2005,33(4):39-41.
    曹代勇,李小明,张守仁.构造应力对煤化作用的影响—应力降解机制与应力缩聚机制[J].中国科学:D辑.2006,36(1):59-68.
    曹代勇,李小明,邓觉梅.煤化作用与构造-热事件的耦合效应研究—盆地动力学过程的地质记录[J].地学前缘.2009,16(4):52-60.
    曹运兴.煤的韧性变形机制及其识别标志[J].焦作矿业学院学报.1992(3):39-44.
    曹运兴,彭立世.顺煤断层的基本类型及其对瓦斯突出带的控制作用[J].煤炭学报.1995,20(4):413-417.
    曹运兴,张玉贵,李凯琦等.构造煤的动力变质作用及其演化规津[J].煤田地质与勘探.1996,24(4):15-18.
    常会珍,秦勇,王飞.贵州珠藏向斜煤样孔隙结构的差异性及其对渗流能力的影响[J].高校地质学报.2012,18(3):544-548.
    陈德玉,蓝芳友,刘高魁等.沉积岩有机质的红外光谱及其在石油有机地球化学中的初步应用[J].地球化学.1977(04):262-276.
    陈飞.青龙煤矿构造对瓦斯赋存的控制机理研究[D].中国矿业大学,2008.
    陈富勇.芦岭矿特厚构造煤储层特征及抽取性评价[D].安徽理工大学,2005.
    陈富勇.淮北矿区芦岭煤矿构造煤发育特征[J].中国煤炭地质.2008,20(2):12-14.
    陈富勇,李翔.淮北芦岭煤矿构造煤发育特征及成因探讨[J].中国煤炭地质.2009,21(6):17-20.
    陈洪伟.平顶山煤田煤储层特征研究[D].安徽理工大学,2012.
    陈练武.煤层割理研究在韩城矿区煤层气评价中的意义[J].西安工程学院学报.1998,20(1):33-35.
    陈善庆.鄂、湘、粤、桂二叠纪构造煤特征及其成因分析[J].煤炭学报.1989(4):1-10.
    陈悦,李东旭.压汞法测定材料孔结构的误差分析[J].硅酸盐通报.2006,25(4):198-201.
    陈贞龙,汤达祯,许浩等.黔西滇东地区煤层气储层孔隙系统与可采性[J].煤炭学报.2010,35(S1):158-163.
    董庆年.红外光谱法[M].北京:石油化学工业出版社,1979.
    董树文,张岳桥.中国侏罗纪构造变革与燕山运动新论释[J].地质学报.2007,81(11):1449-1461.
    杜玉娥.煤的孔隙特征对煤层气解吸的影响[D].西安科技大学,2010.
    段连秀,王生维.河东煤田煤储层中气胀节理的发现及其研究意义[J].地球科学:中国地质大学学报.1999,24(1):54-56.
    樊明珠,王树华.煤层气勘探开发中的割理研究[J].煤田地质与勘探.1997,25(1):29-32.
    范俊佳,琚宜文,侯泉林等.不同变质变形煤储层孔隙特征与煤层气可采性[J].地学前缘.2010,17(5):325-335.
    傅雪海,陆国桢,秦杰等.用测井响应值进行煤层气含量拟合和煤体结构划分[J].测井技术.1999,23(2):32-35.
    傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
    高飞.构造煤微观结构与甲烷吸附相关性研究[D].河南理工大学,2011.
    高凌蔚,窦廷焕,苗康运.煤系地层中常见的碎裂变质岩[J].煤田地质与勘探.1979(2):78-87.
    郭德勇,韩德馨,张建国.平顶山矿区构造煤分布规律及成因研究[J].煤炭学报.2002,27(3):249-253.
    郭德勇,袁崇孚.平顶山十矿构造煤结构成因研究[J].中国煤田地质.1996,8(3):22-25.
    郭盛强,穆桂松,华四良等.煤中剪切指向标志的类型讨论[J].煤田地质与勘探.2005,33(3):5-7.
    郭盛强,苏现波.煤晶体结构受构造变形影响的研究[J].河南理工大学学报:自然科学版.2010,29(5):607-611.
    韩树棻.两淮地区成煤地质条件及成煤预测[M].北京:地质出版社.1990.
    韩树棻,朱彬,齐文凯.淮北地区浅层煤成气的形成条件及资源评价[M].北京:地质出版社,1993,171-173.
    韩树棻.安徽淮北煤成气形成条件及其资源[J].华北地质矿产杂志.1997,12(1):9-16.
    何学秋,王恩元.孔隙气体对煤体变形及蚀损作用机理[J].中国矿业大学学报.1996,25(1):6-11.
    何学秋,薛二龙,聂百胜等.含瓦斯煤岩流变特性研究[J].辽宁工程技术大学学报:自然科学版.2007,26(2):201-203.
    贺天才,秦勇.煤层气勘探与开发利用技术[M].徐州:中国矿业大学出版社,2007.
    洪世铎,孙士孝,刘玉龙.碳酸盐岩孔隙结构与退汞效率的研究[J].新疆石油地质.1986,7(3):54-63.
    侯泉林,李培军,李继亮.闽西南前陆褶皱冲断带[M].北京:地质出版社,1995.
    胡广青,姜波,吴胡.中梁山矿区煤的孔隙特征及其对吸附性的影响[J].中国煤炭地质.2011,23(5):8-12.
    胡广青,姜波,陈飞等.不同类型构造煤特性及其对瓦斯突出的控制研究[J].煤炭科学技术.2012,40(2):111-112.
    胡雷,吴基文,范景坤等.祁南煤矿72煤层构造煤分布特征及其成因探讨[J].能源技术与管理.2006(6):30-32.
    黄第藩,秦匡宗,王铁冠等.煤成油的形成和成烃机理[M].北京:石油工业出版社,1995.
    霍多特.1966.煤与瓦斯突出[M].宋世钊,王佑安译.北京:中国工业出版社.
    霍永忠,张爱云.煤层气储层的显微孔裂隙成因分类及其应用[J].煤田地质与勘探.1998,26(6):28-32.
    姜波,金法礼.煤镜质组反射率光性组构变形实验研究[J].煤田地质与勘探.1997a,25(2):11-15.
    姜波,秦勇.煤变形的高温高压实验研究[J].煤炭学报.1997b,22(1):80-84.
    姜波,秦勇.变形煤的结构演化机理及其地质意义[M].徐州:中国矿业大学出版社,1998a.
    姜波,秦勇.高温高压下煤超微构造的变形特征[J].地质科学.1998b,33(1):17-24.
    姜波,秦勇.高温高压实验变形煤XRD结构演化[J].煤炭学报.1998c,23(2):188-193.
    姜波,秦勇.高煤级构造煤的XRD结构及其构造地质意义[J].中国矿业大学学报.1998d,27(2):115-118.
    姜波,秦勇.实验变形煤结构的13C NMR特征及其构造地质意义[J].地球科学.1998e,23(6):36-39.
    姜波,秦勇.实验变形煤结构演化的电子顺磁共振研究[J].长春科技大学学报.1998f,28(4):411-416.
    姜波,秦勇.变形煤的EPR结构演化及其构造地质意义[J].高校地质学报.1999a,5(3):335-339.
    姜波,秦勇.变形煤镜质组反射率演化的地化机理及其地质意义[J].煤田地质与勘探.1999b,27(5):19-22.
    姜波,秦勇,范炳恒等.淮北地区煤储层物性及煤层气勘探前景[J].中国矿业大学学报.2001,30(5):433-437.
    姜波,琚宜文.构造煤结构及其储层物性特征[J].天然气工业.2004,24(5):27-29.
    姜波,秦勇,琚宜文等.煤层气成藏的构造应力场研究[J].中国矿业大学学报.2005,34(5):564-569.
    姜波,屈争辉,李明等.矿井瓦斯评价与预测的构造动力学方法[J].中国煤炭地质.2008,21(1):13-16.
    姜波,秦勇,琚宜文等.构造煤化学结构演化与瓦斯特性耦合机理[J].地学前缘.2009,16(2):262-271.
    降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报.2011,36(04):609-614.
    焦希颖,王一.阳泉矿区地质构造特征及形成机制分析[J].煤炭技术,1999,18(6):34-39.
    焦作矿业学院地质系瓦斯地质课题组.用扫描电子显微镜对瓦斯突出煤层的研究[J].煤矿安全技术.1983(4):21-28.
    焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990.
    金奎励,刘大锰,姚素平.中国油、气源岩有机成分成因划分及地化特征[J].沉积学报,1997,15(2):160-163.
    琚宜文.海孜煤矿煤层断层层滑构造发育规律分析[J].煤矿现代化.1999(1):44-47.
    琚宜文,王桂梁,胡超.海孜煤矿构造变形及其对煤厚变化的控制作用[J].中国矿业大学学报.2002,31(4):374-379.
    琚宜文,王桂梁,姜波.浅层次脆性变形域中煤层韧性剪切带微观分析[J].中国科学:D辑.2003,33(7):626-635.
    琚宜文,姜波,侯泉林等.构造煤结构-成因新分类及其地质意义[J].煤炭学报.2004,29(5):513-517.
    琚宜文,姜波,王桂梁等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005a.
    琚宜文,姜波,侯泉林等.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报.2005b,79(2):269-285.
    琚宜文,姜波,侯泉林等.煤岩结构纳米级变形与变质变形环境的关系[J].科学通报.2005c,50(17):1884-1892.
    琚宜文,林红,李小诗等.煤岩构造变形与动力变质作用[J].地学前缘.2009,16(1):158-166.
    康天合,靳钟铭.煤体内裂隙的结构特征与分布规律研究[J].西安矿业学院学报.1994,14(4):318-323.
    庫哈連柯TA,錢秉鈞.中国煤的红外光谱[J].科学通报.1961(12):47-49.
    李康,钟大赉.煤岩的显微构造特征及其与瓦斯突出的关系—以南桐鱼田堡煤矿为例[J].地质学报.1992,66(2):148-157.
    李明,姜波,林寿发等.黔西发耳矿区构造演化及煤层变形响应[J].煤炭学报.2011,36(10):1668-1673.
    李明,姜波,兰凤娟,屈争辉,窦新钊.黔西—滇东地区不同变形程度煤的孔隙结构及其构造控制效应[J].高校地质学报.2012,18(3):533-538.
    李涛,高凌蔚,刘天林.煤岩流变分析[A].煤炭科学院勘探分院文集(1)[C].西安:陕西人民出版社,1987.
    李小明,曹代勇,张守仁等.不同变质类型煤的XRD结构演化特征[J].煤田地质与勘探.2003,31(3):5-7.
    李小明,曹代勇,张守仁等.构造煤与原生结构煤的显微傅立叶红外光谱特征对比研究[J].中国煤田地质.2005,17(3):9-11.
    李小明,曹代勇.不同变质类型煤的电子顺磁共振特征对比分析[J].现代地质.2009,23(3):531-534.
    李小明,曹代勇.不同变质类型煤的结构演化特征及其地质意义[J].中国矿业大学学报.2012,41(1):74-81.
    李小诗,琚宜文,侯泉林等.煤岩变质变形作用的谱学研究[J].光谱学与光谱分析.2011,31(08):2176-2182.
    李小诗,琚宜文,侯泉林等.不同变形机制构造煤大分子结构演化的谱学响应[J].中国科学:地球科学.2012,42(11):1690-1700.
    李学富.五沟煤矿地质特征及层间滑动对10煤层的影响[J].煤矿安全.2010(8):131-134.
    林沝,吴平平,周文敏等.实用付里叶变换红外光谱学[M].北京:中国环境科学出版社,1991.
    刘大锰,杨起,汤达祯.鄂尔多斯盆地煤显微组分的micro-FTIR研究[J].地球科学.1998,23(1):81-86.
    刘大锰,姚艳斌,刘志华等.华北安鹤煤田煤储层特征与煤层气有利区分布[J].现代地质.2008,22(5):787-793.
    刘洪林,康永尚,王烽等.沁水盆地煤层割理的充填特征及形成过程[J].地质学报.2008,82(10):1376-1381.
    刘俊来,杨光,马瑞.高温高压实验变形煤流动的宏观与微观力学表现[J].科学通报.2005,50(B10):56-63.
    刘玉龙.关于毛细管压力回线测定与分析的几个问题[J].石油实验地质.1987,9(3):283-286.
    鲁洪江,邢正岩.压汞和退汞资料在储层评价中的综合应用探讨[J].油气采收率技术.1997,4(2):48-53.
    聂继红,孙进步.瓦斯突出煤的显微结构研究[J].东北煤炭技术.1996(6):40-42.
    秦勇,李毓琼.焦作煤的大分子结构演化特征及其地质意义[J].河南地质.1991,9(2):15-20.
    秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    曲星武,王金城.煤的X射线分析[J].煤田地质与勘探,1980a,8(2):33-39.
    曲星武,王金城.煤的结构与变质因素的关系[J].煤田地质与勘探.1980b,(3):20-28.
    屈争辉,姜波,汪吉林等.淮北地区构造演化及其对煤与瓦斯的控制作用[J].中国煤炭地质.2008,20(10):34-37.
    屈争辉.构造煤结构及其对瓦斯特性的控制机理研究[D].中国矿业大学,2010.
    屈争辉,姜波,汪吉林等.构造煤结构演化及其应力-应变环境[J].高校地质学报.2012,18(3):453-459.
    山西省地质矿产局.山西省区域地质志[M].北京:地质出版社.1989.
    史小卫.祁东矿井瓦斯地质规律与瓦斯预测[D].河南理工大学,2007.
    四川矿业学院.煤和瓦斯突出的防治[M].北京:煤炭工业出版社,1979.
    宋鸿林.构造动力学中的显微构造研究[A].肖庆辉等.当代地质科学前沿[C].武汉:中国地质大学出版社,1993.
    宋鸿林.五十年来中国小型构造研究的回顾和展望[J].地质论评.2002,48(2):158-165.
    苏现波,方文东.煤储层的渗透性及其分级与分类[J].焦作工学院学报.1998,17(2):94-99.
    苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤田地质与勘探.2002,30(4):21-24.
    苏现波,谢洪波,华四良.煤体脆—韧性变形微观识别标志[J].煤田地质与勘探.2003,31(6):18-21.
    苏现波,宁超,华四良.煤层气储层中的流体压裂裂隙[J].天然气工业.2005,25(1):127-129.
    苏现波,王庆伟,林晓英.安阳矿区双全井田岩性结构与煤体变形的关系[J].煤田地质与勘探.2008,36(1):1-4.
    谭静强,琚宜文,张文永等.淮北煤田中南部大地热流及其煤层气资源效应[J].中国科学:地球科学.2010,40(7):855-865.
    汤友谊,田高岭,孙四清等.对煤体结构形态及成因分类的改进和完善[J].焦作工学院学报.2004,23(3):161-164.
    陶士振,刘德良.动力变质作用形成的天然气分析[J].大地构造与成矿学.2000,24(1):24-30.
    陶树,王延斌,汤达祯等.沁水盆地南部煤层孔隙-裂隙系统及其对渗透率的贡献[J].高校地质学报.2012,18(3):522-527.
    万天丰.中国大地构造学[M].北京:地质出版社.2011.
    王恩营,刘明举,魏建平.构造煤成因-结构-构造分类新方案[J].煤炭学报.2009a,34(5):656-660.
    王恩营,邵强,韩松林.正断层形成的力学分析及其对构造煤的控制[J].煤炭科学技术.2009b,37(9):104-106.
    王恩营,邵强,杜云宽等.逆断层两盘构造煤成因机理与分布[J].矿业安全与环保.2010a,37(1):4-6.
    王恩营,邵强,王红卫等.华北板块晚古生代煤层构造煤区域分布的大地构造控制及演化[J].煤矿安全.2010b,424(2):86-89.
    王桂梁,曹代勇,姜波等.华北南部的逆冲推覆、伸展滑覆与重力滑动构造[M].徐州:中国矿业大学出版社,1992.
    王桂梁,朱炎铭.论煤层流变[J].中国矿业学院学报.1988a,(3):19-28.
    王桂梁,姜波,曹代勇等.徐州—宿州弧形双冲—叠瓦扇逆冲断层系统[J].地质学报.1998b,72(3):228-236.
    王桂荣,辛峰,王富民等.用简单立方体随机网络模型模拟多孔介质的进-退汞过程[J].石油学报(石油加工).2001,17(5):42-48.
    王红岩.山西沁水盆地高煤阶煤层气成藏特征及构造控制作用[D].中国地质大学,2005.
    王骊,冯光瑛,杨惠星.煤裂解反应红外光谱研究[J].物理化学学报.1987,3(3):242-247.
    王明寿,汤达祯,魏永佩等.沁水盆地北端煤层气储层特征及富集机制[J].石油实验地质.2006,28(05):440-444.
    王生维,陈钟惠,张明.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学.1995a,20(5):557-561.
    王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报.1995b,14(1):53-59.
    王生维,张明.煤储层裂隙形成机理及其研究意义[J].地球科学:中国地质大学学报.1996,21(6):637-640.
    王生维,侯光久,张明等.晋城成庄矿煤层大裂隙系统研究[J].科学通报.2005,50(B10):38-44.
    王伟,姜波,姚曹节等.朱仙庄矿断裂分形研究及其对瓦斯赋存的控制[J].中国煤炭地质.2010,22(5):10-13.
    王向浩,王延斌,高莎莎等.构造煤与原生结构煤的孔隙结构及吸附性差异[J].高校地质学报.2012,18(3):528-532.
    王延斌,韩德馨.渤海湾盆地石炭纪—二叠纪煤的有机组分红外光谱研究[J].地质学报.1999,73(4):370-375.
    王一,秦怀珠,焦希颖.阳泉矿区地质构造特征及形成机制浅析[J].煤田地质与勘探.1998,(6):24-27.
    王佑安,杨思敬.煤和瓦斯突出危险煤层的某些特征[J].煤矿安全.1980(1):3-9.
    韦重韬,桑树勋.河东煤田乡宁地区主煤层储层物性特征及意义[J].中国矿业大学学报.1997,26(4):47-50.
    卫明明.沁水盆地南部高煤级煤构造变形及其对煤层气富集区渗透率的制约[D].昆明理工大学,2011.
    翁成敏,潘治贵.峰峰煤田煤的X射线衍射分析[J].地球科学.1981(1):214-221.
    吴俊,金奎盛.煤孔隙理论及在瓦斯突出和抽放评价中的应用[J].煤炭学报.1991,16(3):86-95.
    吴立新,王金庄.煤岩流变特性及其微观影响特征初探[J].岩石力学与工程学报.1996,15(4):25-29.
    吴诗勇,胡宝林,姚多喜等.祁东矿地质构造特征及演化规律[J].兰州大学学报(自然科学版).2010,46(S1):64-67.
    肖贤明,任德贻.滑动构造引起煤动力变质作用的发现及初步研究[J].煤田地质与勘探.1987(4):29-34.
    徐龙君,鲜学福,刘成伦等.用X射线衍射和FTIR光谱研究突出区煤的结构[J].重庆大学学报.1999,22(4):23-27.
    徐茂政.淮北煤田瓦斯富集过程的地质构造控制[J].煤矿安全.2008(2):73-77.
    徐耀琦,石淑娴,任玉琴.突出煤与非突出煤的结构探讨—电子显微镜在瓦斯研究上的应用[J].煤矿安全.1980(1):10-15.
    许亚坤.构造煤的微观和超微观结构特征研究[D].河南理工大学,2010.
    薛光武,刘鸿福,要惠芳等.韩城地区构造煤类型与孔隙特征[J].煤炭学报.2011,36(11):1845-1851.
    杨光,刘俊来,马瑞.沁水盆地煤岩高温高压实验变形分析[J].天然气工业.2005,25(1):70-73.
    杨光,刘俊来,马瑞.沁水盆地煤岩高温高压实验变形特征[J].吉林大学学报:地球科学版.2006,36(3):346-350.
    姚多喜,吕劲.淮南谢一矿煤的孔隙性研究[J].中国煤田地质.1996,8(4):31-33.
    姚艳斌,刘大锰,汤达祯等.沁水盆地煤储层微裂隙发育的煤岩学控制机理[J].中国矿业大学学报.2010,39(1):6-13.
    姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报.1988(1):4-10.
    叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    尹小涛,丁卫华,李春光等.中等应变速率对砂岩破坏形态和力学性质的影响[J].浙江大学学报:工学版,2010,44(10):1944-1949.
    袁崇孚.构造煤和煤与瓦斯突出[J].煤炭科学技术.1986(1):32-33.
    袁亮.我国煤层气开发利用的科学思考与对策[J].科技导报.2011,29(22):3.
    曾勇,屈永华.煤层裂隙系统及其对煤层气产出的影响[J].江苏地质.2000,24(2):91-94.
    张春光,姜波,朱慎刚等.淮北祁南井田瓦斯赋存规律及影响因素分析[J].中国煤炭地质.2010,22(1):27-31.
    张代钧,鲜学福.煤的大分子结构与超细物理结构研究(Ⅰ)煤的大分子结构[J].煤炭转化.1992,15(3):46-50.
    张红日,刘常洪.吸附回线与煤的孔结构分析[J].煤炭工程师.1993a,(2):23-27.
    张红日,杨思敬.煤的低温氮吸附试验研究[J].山东矿业学院学报.1993b,12(3):245-249.
    张红日.下花园矿构造煤的特征及成因探讨[J].煤.1995,4(1):47-51.
    张红日.下花园煤矿构造煤的成因探讨[J].矿业安全与环保.1999a,(5):31-34.
    张红日.构造煤的孔隙特征—河北下花园矿Ⅰ3及Ⅲ3煤层分析[J].山东矿业学院学报.1999b,18(1):12-16.
    张红日,王传云.突出煤的微观特征[J].煤田地质与勘探.2000,28(4):31-33.
    张慧,王晓刚.煤的显微构造及其储集性能[J].煤田地质与勘探.1998,26(6):33-36.
    张慧.煤孔隙的成因类型及其研究[J].煤炭学报.2001,26(1):40-44.
    张慧,王晓刚,员争荣等.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志.2002,21(3):278-284.
    张慧,李小彦,郝琦等.中国煤的扫描电子显微镜研究[M].地质出版社,2003.
    张慧,李小彦.扫描电子显微镜在煤岩学上的应用[J].电子显微学报.2004,23(4):467.
    张井,于冰.瓦斯突出煤层的孔隙结构研究[J].中国煤田地质.1996,8(2):71-74.
    张胜利.煤层割理及其在煤层气勘探开发中的意义[J].煤田地质与勘探.1995,23(4):27-30.
    张胜利,李宝芳.煤层割理的形成机理及在煤层气勘探开发评价中的意义[J].中国煤田地质.1996,8(1):72-77.
    张守仁.造山带外缘煤的演化特征研究及其应用[D].中国矿业大学(北京),2001.
    张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报.2000,19(4):531-532.
    张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    张玉贵.构造煤演化与力化学作用[D].太原理工大学,2006.
    张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    中国煤炭工业协会.2012年煤炭行业经济运行情况及2013年预测[J].中国经贸导刊.2013,(7):20-21.
    中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1988.
    钟玲文.煤内生裂隙的成因[J].中国煤田地质.2004,16(3):6-9.
    周建勋.煤的变形与光性组构的高温高压变形实验研究—及煤田构造中石英的显微构造与组构[D].中国矿业大学,1991.
    周建勋,王桂梁.煤的高温高压实验变形研究[J].煤炭学报.1994,19(3):324-332.
    朱兴珊,徐凤银.破坏煤分类及宏观和微观特征[J].焦作矿业学院学报.1995,14(1):38-44.
    朱之培,高晋生.煤化学[M].上海科学技术出版社,1984.
    朱志澄.构造地质学[M].武汉:中国地质大学出版社,1990.
    邹艳荣,杨起.煤中的孔隙与裂隙[J].中国煤田地质.1998,10(4):39-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700