煤矿井下泡沫除尘理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿尘是煤矿生产中的主要灾害之一,它不仅造成尘肺病,而且会发生爆炸,导致重特大事故的发生,给矿工、企业和国家带来巨大的灾难和损失。目前矿山主要采用喷雾降尘技术,但该技术降尘效率低、喷嘴易堵塞和耗水量大。国外学者在上世纪50年代提出了泡沫除尘技术,但是至今国内外对该技术的研究还不够深入,其应用还不够广泛。为此,论文对煤矿井下泡沫除尘的理论与技术进行了系统研究,在泡沫的捕尘机理与除尘特性、发泡剂及泡沫除尘装置的研制、井下泡沫除尘工艺系统设计及应用等方面都取得了系列的成果。
     为给除尘泡沫的制备和应用提供理论基础,论文研究了泡沫除尘机理和除尘泡沫的基本性质。通过建立泡沫捕尘的理论模型,详细分析了泡沫捕尘的微观过程,提出了泡沫具有隔绝性能好、接触面积大、湿润速度快和黏附性能好的除尘特点。采用旋转粘度计测试了除尘泡沫的流变参数,指出除尘泡沫属于屈服假塑性流体,建立了泡沫流体的本构方程;研究了除尘泡沫的管道输运特性,根据除尘泡沫的状态方程,导出了泡沫在输送管道出口的膨胀倍数,定义了泡沫的压缩系数,给出了压缩系数与泡沫初始体积、膨胀后体积以及前后的压差三者之间的函数关系式;根据泡沫液膜的弹性和其抗变形能力成正比的原理,发明了一种测试除尘泡沫弹性的实验方法,并对除尘泡沫的弹性进行了实验测试与理论分析,研究了不同倍数和粉尘颗粒在液膜上的黏附对泡沫液膜排液的影响规律。
     为达到高效除尘的目的,论文采用Ross-Miles和水膜浮选两种实验方法,综合发泡和湿润两种性能,对数十种表面活性剂进行优选和复配,研制出了一种发泡倍数高、湿润能力强的除尘泡沫发泡剂。
     在上述研究的基础上,论文设计了泡沫除尘新工艺并研制了相应装备。根据粉尘产生及扩散机理,提出了除尘泡沫“集中发泡、多点除尘”的应用工艺;在充分分析国内外发泡器的原理及应用状况的背景下,以射流和涡流为理论基础,设计出了发泡器,并采用CFD技术对发泡器内部关键参数进行了模拟与优化。该发泡器内部没有运动部件,具备不堵塞、混合强度大、使用维护方便的优点;以管道内外泡沫的压缩与膨胀性能为理论基础,通过反复实验提出了泡沫喷头的设计原则,即喷头内部不能出现使泡沫流发生突变的结构,也不能靠撞击和挤压改变泡沫的流动方向,必须利用圆滑的导流边界使泡沫流线改变,充分利用泡沫的膨胀性能使其扩散。给出了喷头关键参数的确定方法,研制出了流量大、分布均匀和扩散角度大的喷头。
     在实验室构建了适应工业应用要求的大型泡沫实验系统,试验和验证了发泡剂、发泡装置及除尘泡沫的技术特性。将该技术在枣庄矿业集团新安煤矿新源12211轨顺掘进工作面进行了应用,现场测试结果表明泡沫对全尘和呼吸性粉尘的降尘效率分别是水雾除尘的2.11倍和1.72倍,有效地降低了井下采掘工作面的粉尘浓度,取得显著的防尘效果。该项技术的研究成果已申请7项专利,其中已获4项授权。
Mine dust, one of the major hazards in coal mines, not only makes quantities of coal miners suffering from pneumoconiosis, but also results in serious dust explosion incidents and enormous economic losses. At present, many coal mines use the water spraying dust suppression technology, which is ineffective and easy to block nozzles, consumes a large amount of water. In 1950s, some researchers firstly proposed the foam dust control technique, with high efficiency and water resource saving, but there were many defects in application for the technology. In view of this situation, the author carried out related research on the theory and techniques for dust control by foam, then developed a set of technology and equipment, and a series of achivements were obtained,such as the mechanism and characteristics of dust capture by foam,foaming agents,the related equipment, the application process in underground mines and so on .
     In the thesis, in order to provide theoretical fundamentals for producing and utilizing of the foam. The author studied the mechanism for dust removal and the fundamental characteristics of the foam. By establishing the model for analyzing the dust capture process in microcosmic view, the model describes the regimes of the reaction between foam and dust in detail, then depicted comprehensively that the foam has a high efficiency in dust capture. When spraying on the dust generating points, the foam will cover these points without gaps; When spraying into the air with dust, foam has large volume and area; The foam film contains special foaming agents can increase the rate of wetting for dust; The foam with good viscosity, will quickly be adhered to sediment.The characteristic of foam’rheological dynamics was tested by rotary viscosimeter, it was pointed out that foam is shear-thinning non-Newtonian pseudoplastic fluid, then the constitutive equation of foam was derivated; The fluidal characteristics were studied by establishing mathematical model. Based on the state equations of the foam, the author deduced the expansion multiples in the outlet of pipelines, the compression coefficient ,and the quantitative relationship between the volume and pressure before and after the expansion; On the basis of direct proportion between elasticity and non-deformability of foam, a new testing method for elasticity was invented, then studied the elasticity of foam combining experiment and thory; Self-designed apparatus was used to study the effect of different multiples and dust particle sizes on the foam drainage.
     Inorder to inhence the efficiency of dust control by foam, the author worked out the high efficiency foaming agent. By using the Ross-Miles method and water film flotation method,which were combined with two main factors,foaming and wetting properties, the author screened and built foam agent from quantities of surfactantst, and worked out its adding proportion.
     The author designed the new application process and related equipment for dust control by foam. After analyzing of the foam generator around the world, the author put forward a new kind of foam generator, and used CFD to simulate and optimize the key parameters inside the generator. The generator has many merits such as strong mixing intensity, maintenance conveniently and nonclogging; Take the roadway head for example, the author studied on the dust generation and spread mechanism, and gave the application process principle, "Generate foam together, and remove dust in different points"; Based on a large number of experiments, it was concluded that the nozzle should avoid suddenly internal change, the smooth border line was used to change flow lines, as well as the expansion to make the foam spread. The internal structure of generator was also studied, with method been proposed to determine the key parameters of the nozzle, as a result, the nozzles, can get uniform distribution, with wide spread angle, and great flow rate.
     Building a laboratory experimental system which can simulate the conditions in underground mines, to test the performances of foam agent, foam generator and nozzle, then high-performance foams were produced. The foam dust control technology was applied in Zaozhuang Coal Mining Group Xinyuan 12,211 roadway head, the results showed that ,foam dust removal efficiency were 2.11 times and 1.72 times higher than water spray respectively, the new technology reduced dust concentration effectively, with great significance in dust control. Now the technology has been applied for six patents, three of which have been authorized.
引文
[1]范维澄.能源化工行业安全形式分析与关键技术[M].合肥:中国科技大学出版社,2002:109-117.
    [2]濮洪九.煤炭工业多种经营持续发展战略和对策[C].21世纪中国煤炭工业第五次全国会员代表大会暨学术研讨会论文集,5:2001.9:7-12.
    [3]樊晶光,杨力.我国粉尘职业危害防治进展[J].职业卫生.2004,5:20~23.
    [4]彭小兰,吴超.化学抑尘剂新进展研究[J].中国安全生产科学技术.2005,5:44~45.
    [5]薄以匀,吕琳等.我国粉尘职业危害现状[J].安全.1998,19(1),4~7.
    [6]李华炜.煤矿呼吸性粉尘及其综合控制[J].中国安全科学学报.2005,15(7):67~69.
    [7]熊爱军.矿井综合防尘技术探讨[J].河北煤炭.2007,1:25~27.
    [8]潘伟尔.2005年全国煤矿安全状况评析[J].煤炭经济研究.2006(3),4~13.
    [9]中国疾病预防控制中心, [EB/OL]. (2007-12-19)[2009-04-15].http://www.chinacdc.net.cn/n272 442/n272530/n3246177/28127.html.
    [10]国家安全生产监督管理总局,煤矿安全生产“十一五”规划[R],2006.
    [11]国家安全生产监督管理总局,国家安全生产科技发展规划煤矿领域研究报告[R],2004~2010.
    [12]网易新闻中心, [EB/OL](.2006-6-15)[2009-04-15].http://news.163.com/08/0522/22/4CJ48DC800 01124J.html..
    [13]中国安全天地网, [EB/OL](.2007-3-12)[2009-04-15].http://www.aqtd.cn/abzx/HTML/51129.html.
    [14]胡千庭.芦岭煤矿.“5.13”瓦斯煤尘爆炸事故分析[J].劳动保护.2005,3.
    [15]山东省安全生产监督管理局, [EB/OL].(2005-8-13)[2009-04-15].http://www.sdaj.gov.cn/Web/ sysfiles/info/newsread.asp?InfoID=3454.
    [16]冉启平.木冲沟煤矿“9. 27”特大瓦斯煤尘爆炸事故分析[J].煤矿安全2002, 33(2):39~40.
    [17]刘亮,刘毅,刘明举.2002~2003年我国煤矿死亡事故统计分析[J].煤炭科学技术.2005,33(1),74~76.
    [18]刘玉洲,张林华, 2003年1月~2005年6月煤矿瓦斯死亡事故的统计分析[J].河南理工大学学报.2005,24(4),259~262.
    [19]李守钊. 1979年~1997年雁同地区地方煤矿瓦斯煤尘重大事故简析[J].煤矿安全.1999,8,40~42.
    [20]王宝兴,经建生,高云生.黑龙江七台河东风煤矿矿难是瓦斯爆炸引起的煤尘爆炸[J].消防技术与产品信息.2006(4),45~46.
    [21]王宝春.矿井连续瓦斯爆炸事故的原因及其分类[J].煤矿安全.1999(3),38~39.
    [22]国家煤矿安全监察局人事司.全国煤矿特大事故案例选编[M].北京:煤炭工业出版社,2000.
    [23]吴洪波,陆守香,张立.煤尘爆炸事故及其综合评判[J].劳动保护2005,34(5),28~31.
    [24]李学勇.从三起瓦斯、煤尘爆炸事故谈今后应采取的防范措施[J].山东煤炭科技. 2002,1.
    [25]时训先,蒋仲安等.煤矿综采工作面防尘技术研究现状及趋势[J].中国安全生产科学技术.2005,2:41~43.
    [26]宋马俊.国外煤矿粉尘控制措施的新进展[J].中国职业安全卫生管理体系认证.2003,3:21~23.
    [27]赵从国.煤层注水工艺与效果分析[J].煤炭科技.2005,1:45~47.
    [28]黄声树.我国煤矿粉尘防治技术的现状及进展[J].煤炭工程师.1998,3:13~16.
    [29]金龙哲,黄元平等.德国煤矿防尘技术及其发展前景[J].矿业世界.1996,2.
    [30]张延松,司荣军.瓦斯煤尘爆炸防治技术的筛选及适用性研究[R].2008:69~108.
    [31]李德文.复合除尘机理及其应用的研究[D].徐州:中国矿业大学,2003.
    [32]钱尊兴,李玉元.采煤机高压喷雾及负压二次降尘技术[J].山东煤炭科技.2001,3:31~32.
    [33]宋马俊.国外煤矿粉尘控制的新技术[J].矿山安全.2003,,3:21~23.
    [34]黄声树,王茂吉.煤矿粉尘防治技术的现状及发展方向[J].煤炭工程师.1993(5),41~45.
    [35]王德明.矿井通风与安全[M].徐州:中国矿业大学出版社.2007,10:395~403.
    [36]严兴中.工业防尘手册[M],北京:劳动人事出版社,1989.10.
    [37] WALENTY FRYDEL, MARCIN STEINDOR. Dust-colleting system of 10-600 type and the WIR 700W vortex ventube. Proceedings: Respirable Dust Hazard Control in the World Mining Industry. International[C].Scientific and Technical Conference 17-19 September 1996, SZCZYRK, Poland.
    [38] JAN KUCZA, EUGENIUSZ PENKALA. Dust Hazard Control When Driving the Roadways with Roadheading Mechines, Proceedings: Respirable Dust Hazard Control in the World Mining Industry[C]. International Scientific and Technical Conference 55-59 September 1996, SZCZYRK, Poland.
    [38]王海桥施式亮刘荣华等综采工作面空气幕隔尘研究及应用[J].湘潭矿业学院学报. 1999.14(1):11~14.
    [39]赵瑞华译.抽吸式装置对空气中粉尘的抑制.第四届国际矿井通风会议论文集[C].北京:中国统配煤矿总公司安全管理部、煤炭科技情报所,1989.3.
    [40]李岚,周维奇译.吸尘滚筒原理及其除尘效果[J].世界煤炭技术,1994(1).
    [41]彭小兰,吴超.化学抑尘剂新进展研究[J].中国安全生产科学技术.2005,1(5)44~47.
    [42] N.Aziz, Air-Powered venturi scrubbers for airborne dust control in a longwall face[J].Australia coal, 1993(39).
    [43]王晋育,冉文清等.煤矿综采放顶煤工作面高浓度粉尘的综合防治[J].中国安全科学报.1999,9(1):6~10.
    [44]赵栋等.矿井综合防尘措施[J].矿业安全与环保.2003,6:111~112.
    [45]金龙哲.矿井粉尘防治[M].北京:煤炭工业出版社.1993,11.
    [46]李华炜.煤矿呼吸性粉尘及其综合控制[J].中国安全科学学报.2005,15(7).
    [47]周威明,余澄海.粉尘控制新技术[J].工业安全与环保.2004,30(3),6~8.
    [48]时训先,蒋仲安等.煤矿综采工作面防尘技术研究现状及趋势[J].中国安全生产技术.2005,1(1),42~43.
    [49]段树华,赵书田.我国煤矿粉尘危害的综合治理[J].工业安全与防尘.1990,1.
    [50]牛朝旭.综采工作面的粉尘分布及治理对策[J].煤炭科学技术.2006,34(4),29~30.
    [51] Zimon D A. Adhesion of Dust and Powder. 2nd ed. New York:Consultants Burea[J]. A Division of Plenum Publishing Corporation,1982,196~219.
    [52] W.J.Cooper, N.M. Rosoher and R.A.S1ifker, Research and Technology[J] Journal of AWWA, 1982, 7,362-367.
    [53]陈文明.泡沫法除尘与其它湿法除尘的比较[J].维普资讯.
    [54]谭鹤翔.泡沫除尘[J].煤矿安全,1987年第2期.
    [55]王海宁.表面活性剂在矿山防尘中的应用[J].煤矿安全.1996年第4期.
    [56]煤炭科学研究院重庆研究分院编译.矿井粉尘译文集[C] .北京:煤炭工业出版社,1974.
    [57] A.M.MOPEB(苏联).曾昭慧译.苏联马可尼在煤矿防尘方面的科研工作[J].国外防尘技术.1982,127~134.
    [58] Steven J.Page , Jon C. Volkwein. Foams For Dust Control [J] ENGINEERING AND MINING JOURNAL .1986,187(10): 50-54.
    [59] I.O.Salyer, S.M.Sun, J.L.Schwendeman, A.L.Wrustner. Foam Suppression of Respirable Coal Dust[M]. D.C.:U.S.Department of the Interior Bureau of Mines Open File Report,1970.
    [60] New foam creates air-water barrier,suppresses mine dust and fire. Coal Age[J].1971,76 (7):96-100.
    [61] F.W.Parrett. Foam suppressants-an alternative for dust control. Industrial Minerals[J].Jan 1986,No.220:52-53.
    [62] Sandip K.Mukherjee, Spraying Foam Helps Control Longwall Dust[C], SME-AIME annual meeting in LA.1984.
    [63] Sandip K.Mukherjee, New Techniques for Spraying Dust[J], Coal Age, 1984,89(1):54-57.
    [64] N·查罗尼兹(美国).李春玉译.简单泡沫装置可有效地控制长壁工作面的粉尘[J].国外煤炭.1991(2):26~27.
    [65]山尾信一郎,梅津富.机采工作面的泡沫除尘[J].煤矿安全.1984年第4期.
    [66]陈东生.全岩掘进机的泡沫灭尘[J].维普资讯.
    [67]周长根.凿岩泡沫除尘[J].维普资讯.
    [68]周长根,王冠英.凿岩泡沫除尘器及泡沫除尘剂:中国,CN87106798A[P],1988-03-16.
    [69]周长根,王冠英.凿岩泡沫除尘方法:中国,申请号:90100732.3[P],1990-07-25.
    [70]蒋仲安,李怀宇,杜翠凤.泡沫除尘机理与泡沫药剂配方的要求[J].中国矿业.1995,4 (6):61~63.
    [71]蒋仲安,李怀宇,杜翠凤.泡沫发生器性能和除尘效率的试验研究与分析[J].金属矿山.1996,239(5):41~43.
    [72]蒋仲安,金龙哲,靳瑞英等.泡沫除尘中相似准则数的探讨[J].辽宁工程技术大学学报(自然科学版).1999,18(4):445~447.
    [73]蒋仲安,李怀宇.泡沫除尘技术的研究与应用[J].中国安全科学学报.1997,7(3):53~56.
    [74]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988:150~182.
    [75]何伯泉,陈祥涌译.泡沫浮选表面化学[M].北京:冶金工业出版社,1987:570~594.
    [76] Rao C S. Environmental pollution control engineering [M]. John Wiley&Sons.1991.
    [77]吴琨.荷电水雾振弦栅除尘机理与性能研究[D].北京化工大学硕士研究生学位论文.2004.
    [78]丁立亲等.浮选的理论和实践[M].北京:煤炭工业出版社,1987.
    [79]胡为柏.浮选[M].北京:冶金工业出版社,1988.
    [80]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984.
    [81]张福田,分子界面化学基础[M],上海:上海科学技术文献出版社,2006.
    [82] Ranz, William E. Wall Flows in a Cyclone Separator: A Description of Internal Phenomena [J]. Aerosol Science and Technology, 1985, p 417-432.
    [83] M Corn. The Adhesion of Solid Particles to Solid Surfaces [J]. Air Pollute. Contr.Ass.11:566(1961).
    [84]陈文芳.非牛顿流体力学[M].北京:科学出版社,1984.
    [85]沈崇棠,刘鹤年.非牛顿流体力学及其应用.北京:高等教育出版社,1989.
    [86]秦波涛.王德明,陈建华.防灭火三相泡沫流体特性实验研究[J].辽宁工程技术大学学报.2006,25(4):489-492.
    [87]林柏泉.三相泡沫流体密封技术及其应用.徐州:中国矿业大学出版社,1997.
    [88]陈矛章.粘性流体力学.北京:高等教育出版社,1993.
    [89]孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999.
    [90]郭楚文,李意民等.工程流体力学.徐州:中国矿业大学出版社,2002.
    [91]邓英尔,刘慈群等.高等渗流理论与方法[M].北京:科学出版社,2004.
    [92]沈钟,赵振国,王果庭.胶体与表面化学(第三版)[M].北京:化学工业出版社,2004,8.
    [93] R. C. DARTON, K. H. SUN. The effect of supfactant on foam and froth properties[J]. Institution of Chemical Engineers. 1999(l 77),Part A:535~543.
    [94] B. M. Mbama Gaporaud, Ph. Sajet and G. Antonini,Three-phase foam equation of state[J].Chemical Engineering Science, Vol.53, No.4, 735~741, 1998.
    [95]蒋庆哲,宋昭峥,赵密福,柯明.表面活性剂科学与应用[M].北京:中国石化出版社,2006:286~299.
    [96] John van der Schaaf,Ruud G.C.Beerkens. A model for foam formation,stability,and breakdown in glass-melting furnaces[J].Journal of Colloid and Interface Science.2006(295),218~229.
    [97] S.A.Koehler,S.Hilgenfeldt,H.A.Stone.Flow along two dimensions of liquid pulses in foams:Experiment and theory[J].EUROPHYSICS LETTERS.2001(5),335~341.
    [98] H A Stone,S A Koehler,S Hilgenfeldt,M Durand.Perspectives on foam drainage and the influence of interfacial rheology[J].Journal of Physica Condensed Mstter.2003(15),283~290.
    [99] B.S.Gariner,B.Z.Dlugogorski,G.J.Jameson.The steady shear of three-dimensional wet polydispersefoams[J].J.Non-Newtonian Fluid Mech.200(92),151-166.
    [100]孙其诚,黄晋.液态泡沫结构及其稳定性[J].物理.2006,12(35):1050~1053.
    [101]韩国彬,吴金添,徐晓明.二维泡沫稳定性与拓扑学性质的关系研究[J].高等学校化学学报.2001,22(7):1177~1180.
    [102]周凤山,钻井液用泡沫性能评价方法[J].钻井液与完井液,1990,7(3):1-6.
    [103] DIN 53902-81, Tilel:《Prmfung Von Tensiden und Textilhifsmitleln, Bertimmung des Schaumver-mogens, Lochscheiben-Schlaverfahren》,DIN,1981.
    [104] ASTM D 1173-53(80):《Standard Test Method for Foaming Properties of Surface Agents》.ASTM Committee, Apr, 1985.
    [105] QB385-64,《肥皂试验方法》[M].北京:轻工业出版社,1964.
    [106] ISO 696-75,《Surface Active Agents Measurement of Foaming Powder-Modified Ross-Miles Method》,ISO,1st Ed, July, 1975.
    [107]吴超,彭小兰,李明,吴国珉.粉尘湿润剂的性能测定新方法及其应用.中国有色金属学报.2007,17(5):831~835.
    [108]吴超,左治兴,欧家才,周勃等.不同实验装置测定粉尘湿润剂的湿润效果相关性.中国有色金属学报.2005,15(10):1614~1617.
    [109]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000.
    [110]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社.2003.
    [111]申瑞臣.泡沫发生器结构设计综述[J].石油机械.1993,21(5).
    [112]张巨松,扬合,刘军华.泡沫混凝土泡沫发生器的研制.混凝土[J].2001.135(1):51~53.
    [113]陆宏圻.射流泵技术的理论及应用[M].水利电力出版社,1989,6.
    [114]张择业,PQ-Ⅰ型泡沫发生器中喷射系统和涡轮泡沫分散切割器的设计,成都理工学院学报,1997,24(4).
    [115]陈文义,肖建立.气泡发生器结构分析及设计[J].煤矿机械.2000,10.
    [116]平浚.射流理论基础及应用[M].北京:宇航出版社.1995.
    [117]孔玲.工程流体力学[M].北京:中国电力出版社,1992.
    [118]余常昭.环境流体力学导论[M].北京:清华大学出版社,1992.
    [119]梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999.
    [120]颜延褶.基于CFD模拟的迷宫滴头工作性能研究[D].北京:中国农业科学院..2008,6.
    [121]田森平.挤出发泡成型中气泡膨胀过程的数学模型研究及简化[D].广州:华南理工大学.1999,4.
    [122]张晓东,董志国等.扁平扇形喷嘴设计及试验研究[J].机械设计与研究.2008,24(1):89~91.
    [123] Laura Juslin, Osmo Antikainen, PasiMerkku, et al. Drop let size measurement: I. Effect of three I ndependent variables on drop let size distribution and sp ray angle from a pneumatic nozzle [J]. In2 ternational Journal of Pharmaceutics, 1995, 123: 247~256.
    [124]周俊虎,周林华等.新型扇形雾化喷嘴的实验研究[J].过程工程学报.2007,7(4):652~656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700