钻孔抽放瓦斯流固耦合分析及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主要能源之一。在煤炭的生产过程中,由瓦斯产生的灾害事故严重影响着煤矿的安全生产。同时,煤矿瓦斯又是一种热值非常高的宝贵能源。我国煤层瓦斯储量较大,其储量大致与天然气的储量相当。如何利用好治理好煤矿瓦斯是世界各国研究的重点。钻孔抽放瓦斯技术是利用和治理瓦斯最主要的方法和途径。
     瓦斯在煤层中运移规律是煤矿瓦斯抽放或者瓦斯灾害防治研究领域中的基础问题之一,其对瓦斯的抽放等具有重要的理论和工程指导作用。本文根据含瓦斯煤岩具有的特点,利用流固耦合、有限元分析相关理论,运用数值模拟的方法,对煤层瓦斯运移和钻孔抽放瓦斯进行了深入系统的研究,得到了一些有益的研究成果:
     ①阐述了含瓦斯煤岩相关物理特性。从煤的变形机制出发,根据孔隙率的基本定义,考虑到钻孔抽放瓦斯的过程中,游离瓦斯压力变化较剧烈并对煤岩体产生变形的影响,建立了含瓦斯煤岩孔隙率的表达式。利用一系列假设和Terzaghi有效应力理论,建立了含瓦斯煤岩体变形控制方程。论述了瓦斯运移的相关参数。通过Carman-Kozeny方程推导出了含瓦斯煤渗透率的数学表达式。基于以往的假设和质量守恒定律得出了瓦斯流固耦合控制方程。
     ②对不同条件下单孔抽放瓦斯运移变化的规律进行了研究。在瓦斯抽放初期,瓦斯压力变化较大,瓦斯压力梯度较大。随着抽放时间的推移,抽放范围逐渐扩大,有效应力逐渐增加,煤层孔隙率和渗透率逐渐减小,抽放难度加大。分析了不同埋藏深度条件下和不同抽放负压条件下,瓦斯压力、孔隙率以及渗透率的变化和分布。通过对不同钻孔半径条件下抽放瓦斯的分析,得出了不同钻孔半径条件下,有效抽放半径与时间的关系图。分析了不同的初始渗透率对抽放瓦斯的影响,初始渗透率越大,瓦斯越易抽放。
     ③分析了在顺层多个钻孔抽放瓦斯条件下,瓦斯运移规律。随着抽放时间的延长,各个钻孔的抽放范围不断扩大,钻孔之间产生相互影响。对于不同钻孔间距,间距越小,钻孔之间的影响作用加强,煤层瓦斯压力降低较快。
     ④同时对两种不同的钻孔方式(倾斜(向上)、水平钻孔)抽放瓦斯进行了模拟分析。在相同的时间内,倾斜(向上)对煤层瓦斯影响较大。相同抽放条件下,利用倾斜钻孔抽放瓦斯,瓦斯压力减小速度较快。
Coal is the primary energy source in China. In the process of coal production, the disasters of gas have seriously affected the safety. Meanwhile, the coal gas is a kind of precious resource with very high calorific value. In our country, the reserve of coal gas is as large as natural gas reserve .How to make good use of coal mine gas is the focus of the world study. Gas drainage from boreholes is a main method of utilization and management of coal seam gas.
     The law of gas in the coal seam is the basic problem in the research of mine gas drainage and prevention of disaster caused by gas, and it provides important theoretical and engineering guidance for gas drainage. Based on the characteristics of the coal rock , by using the theory of Fluid-structure interaction,Finite element and Numerical simulation method, this paper conducted the research systematically into seam gas migration on the coal and gas drainage from boreholes. The main research results are followed:
     ①The basic physical properties of the coal rock are described. Based on the deformation mechanism of coal mine and the definition of the porosity, the equation of porosity in coal rock containing gas is deduced. By using the effective stress in porous media theory( (Terzaghi effective stress theory) and a series of assumptions,the deformation equations of coal rock is derived, and the relevant parameters of gas migration are discussed. The mathematical expression of the permeability is derived based on Carman-Kozeny equation. Based on a series of basic assumptions of gas migration and the principle of conservation of mass, the equation of gas migration is derived.
     ②The analysis and research have been conducted to the law of the variation of gas migration under different conditions of single-hole drainage. Early in the gas drainage, the change of underground pressure is greater and gas pressure gradient is larger. With the advance of gas drainage, the area of gas drainage is gradually expanded; the effective stress is increasing; porosity and permeability of coal decreases, gas drainage is more difficult. The analysis and research have been conducted to the changes and distribution of gas pressure, porosity and permeability under the conditions of different burial depth and different negative pressure. The diagram of effective drainage radius and time is obtained by the analysis of gas drainage under different drainage radius conditions. The analysis has been conducted to the impact of different initial permeability on gas drainage, and the result is that the larger the initial, permeability, the more easily gas drainage is.
     ③The law of gas migration under gas drainage in a number of boreholes along coal seam is analyzed. With the drainage time going on, the drainage areas of each drilling hole expanded and the interaction between boreholes is created. For different spacing of boreholes, the smaller the spacing, the stronger mutual influence between boreholes is created and the more quickly gas pressure is reduced .
     ④Two different gas drainage drilling methods which are the tilt (up) and horizontal drilling method, respectively, have been simulated and analyzed. Within the same time slot, the tilt (up) method has a greater impact on the coal seam gas. Under the same drainage conditions, gas pressure decreases faster using the tilt (up) method.
引文
[1]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [2]鲜学福.我国煤层气开采利用现状及其产业化展望[J].重庆大学学报(自然科学版),2002,3:1-5.
    [3]周世宁,孙辑正.煤层瓦斯流动理论辑其应用[J].煤炭学报,1965,2(1):24-37.
    [4]郭勇义.煤层瓦斯一维流场流动规律完全解[J].中国矿业大学学报,1984,2:19-28.
    [5]谭学术,肖勤学.矿井煤层渗流方程的建立和讨论[J].福州大学学报,1987,4(4):103-115.
    [6]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):11-10.
    [7]吴世跃,刘国利.二维瓦斯流动移动边界的分析解及应用[J].东北煤炭技术,1995,1:49-53.
    [8]吴世跃.煤层中瓦斯渗流的物理数学模型及其解析解[J].矿业安全与环保,1990,2:8-12.
    [9]张力,何学秋,李侯全.煤层渗流方程及数值模拟[J].天然气工业,2002,22(1):23-25.
    [10]狄军贞,刘建军.基于COMSOL Multiphysic的煤层甲烷拟稳态吸附—运移数值模拟[J].中国煤层气,2007,4(3):25-27
    [11]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [12] Gawuga.J. Flow of gas through stressed carboniferous strata.Univ. of Nottingham,Ph.D.thesis,1979.
    [13] Khodot,V.V. Role of methane in the stress state of a coal seam. Fiziko Tekhnicheskie Problemy Razrabotki Poleznykh iskopaemykh,1980(5).
    [14] Harpalain,S.Gas flow through stressed coal .Univ. ofCalifornia Berkeley,Ph.D.thesis,1979.
    [15] Paterson L.A model for outburst in coal[J].Int.J.Rock Mech.Min.Sci.,1986,23(4):327– 332.
    [16] Litwiniszyn J.A model for the initiation of coal-gas outbursts[J].Int.J.Rock Mech.Min.Sci. Geomech.Abstr.,1985,22(1):39–46.
    [17] Valliappan S,Zhang W H.Numerical modeling of methane gasmigration in dry coal seams[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(8): 571–593.
    [18] Zhao Chongbin,Valliappan S.Finite element modeling of methane gas migration in coal seams[J].Computers and Structures,1995,55(40):625–629.
    [19]赵阳升,等.煤层瓦斯流动的固—气耦合数学模型及数值解法的研究[J].固体力学学报,1994,15 (1):49-57.
    [20]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [21]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [22]李树刚.综放开采围岩活动影响下瓦斯运移规律及其控制[D].西安科技学院,2000.
    [23]汪有刚,刘建军,杨景贺等.煤层瓦斯流固耦合数值热分析[J].煤炭学报,2002,26(3):286-289.
    [24]李祥春.煤层瓦斯渗流过程中流固耦合问题研究[D].太原理工大学,2002.
    [25]唐巨鹏,潘一山,李成全,等.固流耦合作用下煤层气解吸-渗流实验研究[J].中国矿业大学学报,2006,35(2):274-277.
    [26]黄启翔,尹光志,姜永东,等.型煤试件在应力场中的瓦斯渗流特性分析[J].重庆大学学报,2008,31(12):1436-1439.
    [27]尹光志,王登科,张东明,等.含瓦斯煤岩固气耦合动态模型与数值模拟研究[J].岩土工程学报,2008,10 (4):1430-1435.
    [28]杨天鸿,徐涛,刘建新,等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实验中的应用[J].岩石力学与工程学报,2005,24(16):2900-2905.
    [29]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报(自然科学版),1999,18(5):483-486.
    [30]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学,2004.
    [31]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报(自然科学版),2001,20(1):36-39.
    [32]李志强,鲜学福,姜永东等.地球物理场中煤层气渗流控制方程及其数值解[J].岩石力学与工程学报,2009,28(1):3226-3233.
    [33]鲜学福,辜敏,杜云贵.变形场、煤化度和外加电场对甲烷在煤层中渗流的影响[J].西安石油大学学报(自然科学版),2007,22(2):89-91.
    [34]王宏图,杜云贵,鲜学福,等.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报,2002,21(5):644-646.
    [35]易俊,姜永东,鲜学福,等.声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J].岩土力学,2009,30(10):2945-2949.
    [36]俞启香.矿井瓦斯防治[M] .徐州:中国矿业大学出版社,1992.
    [37]刘泽功.高位巷道抽放采空区瓦斯实践[J].煤炭科学技术,2001,29(12) :10-13.
    [38]王佰顺,傅昆岚,胡祖祥.高瓦斯煤层掘进工作面水力挤排瓦斯技术[J].煤炭科学技术,2008,36(5):56-58.
    [39]梁运培.淮南矿区地面钻井抽采瓦斯技术实践[J].采矿与安全工程学报,2007,24(4):409-413.
    [40]肖勤学,吴泽源,谭学术.煤层瓦斯渗流方程及其在瓦斯抽放中的应用[J].重庆大学学报,1986,2:113-121.
    [41]周红星,程远平,谢战良.计算机模拟确定瓦斯抽放有效半径的方法研究[J].能源技术与管理,2005,4:81-82.
    [42]汪有刚,王继仁,杨景贺.交叉钻孔抽放瓦斯的数值模拟分析[J].煤矿开采,2000,4:65-67.
    [43]肖远见.沿层钻孔周围瓦斯-(真实气体)渗流压力方程及三维数值分析[J].矿业安全与环保,2004,31(3):41-43.
    [44]王晓亮.煤层瓦斯流动理论模拟研究[D].太原理工大学,2003.
    [45]冯增朝.低渗透煤层瓦斯抽放理论与应用研究[D].太原理工大学,2005.
    [46]姚尚文.高瓦斯低透气性煤层强化增透抽放瓦斯技术研究[D].安徽理工大学,2005.
    [47]汪有清.底抽巷上向穿层钻孔抽放远程卸压瓦斯技术研究[D].安徽理工大学,2006.
    [48] C.?. Karacan , W.P. Diamond, S.J. Schatzel. Numerical analysis of the influence of in-seam horizontal methane drainage boreholes on longwall face emission rates[J]. International Journal of Coal Geology, 2007(72) :15–32.
    [49] L.D. Connell.Coupled flow and geomechanical processes during gas production from coal seams[J]. International Journal of Coal Geology,2009,79:18-28
    [50] MandelbrotB.B.Fractal:forms chance and dimension[M].san Francisco:W.H.freeman.
    [51]傅雪海,秦勇,张万红.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(1):51-55.
    [52]王桂荣,王富民,辛峰,等.利用分形几何确定多孔介质的孔尺寸分布[J].石油学报,2002,18(3):86-91.
    [53]周世宁.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1998.
    [54]李传亮,孔祥言,徐献芝,等.多孔介质双重有效应力[J].自然杂志,1999,21(5):288-297.
    [55]卢平,沈兆武,朱贵旺,等.岩样应力应变全过程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002 ,32 (6) :6782-6784.
    [56]李培超,等.饱和多孔介质流固耦合渗流的数学模型[J].水动力力学研究与进展,2003,18 (4):419—426.
    [57]张国枢.通风安全学[M].徐州:中国矿业大学出版,2004.
    [58]谢克昌.煤的结构和反应性的多方位认识和研究煤的结构[J].煤炭转化,1992,15 (1):24 -30.
    [59]孙维吉.不同孔径下瓦斯流动机理及模型研究[M].辽宁工程技术大学,2007.
    [60]秦匡宗,郭绍辉,李术元.煤结构的新概念与煤成油机理的再认识[J].科学通报,1998,43 (18):1912 -1918.
    [61]徐龙君,顾乐观,鲜学福.分形吸附模型[J].煤炭转化,2000,23(1):91-93.
    [62]陈昌国,辜敏,鲜学福.煤的原子分子结构及吸附甲烷机理研究进展[J].煤炭转化,2003,26(4):5-10.
    [63]李祥春,聂百胜.煤吸附水特性的研究[J].太原理工大学学报,2006,37(4):417-419.
    [64]葛家理.油气层渗流力学[M].北京:石油工业出版社,1982.
    [65]孙培德.Sun模型及应用[M].浙江:浙江大学出版社,2000.
    [66] WANG Liang, CHENG Yuan-ping, LI Feng-rong,.Fracture evolution and pressure relief gas drainage from distant protected coal seams under an extremely thick key stratum[J]. J China Univ Mining & Technology2008 (18): 0182–0186.
    [67] Peter J. Crosdale ,. Basil Beamish , Marjorie Valix . Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology .1998(18):147–158.
    [68]程瑞端,陈海炎,鲜学福,等.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998,1:13-15.
    [69]王宏图,杜云贵,鲜学福,等.地电场对煤中瓦斯渗流特性的影响[J].重庆大学学报,2000 ,23.
    [70]孔祥言.高等渗流力学[M].北京:中国科学技术出版社,1999.
    [71]卢平,沈兆武,朱贵旺,等.岩样应力应变全过程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002 ,32.
    [72] ZHOUY,RAJAPAKSE R,GRAHAM J.a coupled thermo poroelastic model with thermo-osmosis and thermal-filtration[J].Infernational Journal of Solids and Structure ,1998,35:18-23.
    [73]孙培德.多物理场耦合模型及数值模拟导论[M].北京:中国科学技术出版社,2007.
    [74]狄军侦.应力作用下煤层气非稳定耦合渗流模型及数值模拟[J].中国煤田地质,2007,19 (4):36-38.
    [75] C.?. Karacan, J.P. Ulery, G.V.R. Goodma A numerical evaluation on the effects of impermeable faults on degasification efficiency and methane emissions during underground coal mining[J]. International Journal of Coal Geology.2008, (75): 195–203.
    [76] G.B.C.Young. Computer modeling and simulation of coalbed methane resources[J]. International Journal of Coal Geology , 1998(35):369–379.
    [77]王恩志,王洪涛,王慧明.“以缝代井列”—排水孔幕模拟方法探讨[J].岩石力学与工程学报,2002,21(1):98-101
    [78]杨天鸿.COMSOL系统在岩土工程中应用[C].上海:上海COMSOL软件应用交流汇报,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700