PAN纤维热稳定化过程中化学结构形成与温度依赖性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PAN纤维的稳定化(预氧化)是制备碳纤维的关键步骤之一。研究PAN纤维官能团的化学反应,掌握PAN纤维热处理过程化学结构、化学反应与温度之间的关系,为今后稳定化控制PAN纤维预氧化结构的生成和最终碳纤维结构都有重要意义。本文以均聚PAN纤维作为研究对象,在氮气保护下,从低温到高温连续对PAN纤维进行热处理,研究了各温度下PAN纤维形成的化学结构,研究了PAN纤维官能团的优势反应与温度的依赖性,推测反应机理。
     借助DSC、FT-IR和NMR等手段研究了氮气气氛中均聚PAN纤维稳定化过程的热效应、化学结构、化学反应与温度的关系。研究发现:
     1、PAN纤维热稳定化过程中的热反应存在温度时间效应。在氮气下,PAN纤维热反应活化能大,达到反应能垒要较高的温度;在空气下,氧的参与使得PAN纤维热反应活化能降低,在较低温下发生热反应。同等温度下,PAN纤维在氮气中的化学反应常数远大于空气。
     2、在惰性气氛中,PAN纤维的官能团CN、CH2、CH化学反应活性不同,CN受热激发生成自由基的活化能较低,首先发生热化学反应,150℃时CN先形成自由基引发环化反应,形成C=N结构;CH2\CH受热激发生成自由基活化能较高,170℃时CH2\CH才表现出脱氢反应,生成C=C结构,此C=C结构与已生成的C=N转化为六元环上的-C=N-C=C-共轭结构。
     3、170℃-260℃温度区间,PAN纤维同时发生环化和脱氢反应,纤维内部-C=C-C=N-共轭骨架结构逐渐增加,230℃前环化反应程度大于脱氢反应,高于230℃氰基反应基本完成,但脱氢反应还很明显。
     4、高于260℃,PAN纤维分子内发生异构化反应,分子间发生交联反应,最终形成平面内稳定梯形结构。
The stabilization of polyacrylonitrile precursor fibers (pre-oxidation) process is one of the key steps of carbon fiber technology. Investigating the chemical reaction of PAN fiber functional groups, mastering the relationship between the chemical structures, chemical reactions and temperature, which have significant importance for controlling the structure that the PAN fiber stabilization turns forming and the final structure of carbon fiber.
     In this paper, we take PAN fibre from homopolymers as research target, taking heat treatment under N2 in temperature sequence from low to high in order to study the new generative structures at different temperature,then figure out how the dominant reactions of PAN fiber functional groups dependence on temperature and speculate the reaction mechanism.
     In virtue of DSC、FT-IR and NMR techniques, we work over the heat effect, chemical structures, the relationship between chemical reactions and temperature. And found that:
     1. Under N2 atmosphere, the heat reaction of PAN fibre has high activation energy, which means it need high temperature to reach to the energy barrier. Whereas, owing to the presence of oxygen under air, the activation energy is low so the heat reaction could be carry through at low temperature. And at the same temperature, the reaction constant under N2 is much bigger than that of under air.
     2. PAN fiber's functional groups CN, CH2, CH have different chemical reactivity, C=N bond in PAN molecules has a low activity energy prior to form free radicals, its initiate cyclization reaction and then transforms into a C=N bond at 150℃. CH2\CH group need a higher activation energy to initiate dehydrogenation. At 170℃, the C=N bond reacts with a C=C group that resulted from CH2/CH-functional-group dehydrogenation. This reaction contribute to the conjugate structure,-C=N-C=C-
     3. At the range of 170℃-260℃, Cyclization and dehydrogenation reactions occur during the heat treatment,then the conjugated skeleton structure of-C=C-C=N-is gradually increased. Before 230℃, nitrile group leads a dominant reaction, it evidently disappear at 230℃. Over 230℃, dehydrogenation reaction still happens.
     4. Over 260℃, Polyacrylonitrile intramolecular occurs isomerization reaction, and crosslinking reaction occurs between molecules,finally PAN fibers form the stable ladder structure in a plane.
引文
[1]程罡.PAN基碳纤维的制造及应用[J].安徽化工,2003,29(2):25-27
    [2]许登堡,吴叙健.聚丙烯腈基碳纤维原丝[J].广西化纤通讯,2000,28(2):19-25.
    [3]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [4]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用[J].机械制造与自动化,2004,33(4):41-43.
    [5]郭玉明,冯志海,王金明.高性能PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007,32(5):1-7.
    [6]张家杰.国内外碳纤维生产现状及发展趋势[J].化工技术经济,2005,23(4):12-19.
    [7]全国合成纤维科技信息中心.聚丙烯腈(PAN)基碳纤维的发展及应用[J].合成纤维,2004,33(5):1-3.
    [8]罗益锋.巡视国外高科技纤维动向[J].高科技纤维与应用,2006,31(4):1-15.
    [9]贺福,王润娥,赵建国.聚丙烯腈基碳纤维[J].化工新型材料,1999,27(1):6-11.
    [10]J.B.Dennet, R.C. Bansal著.李仍元,过梅丽(译).碳纤维[M].北京:科学出版社,1989.
    [11]贺福,杨永岗.突破原丝“瓶颈”是碳纤维产业化的必备条件[J].高科技纤维与应用,2001,26(6):1-5.
    [12]马向军,张裕卿.提高聚丙烯腈基碳纤维原丝质量的研究进展[J].合成纤维,2005,34(11):28-32.
    [13]杨策宇,李常清,谢怀玉,瓮龙明,徐樑华.热处理对PAN纤维环构化结构及后续反应的影响[J].材料热处理学报,2011,32(3):10-13.
    [14]刘焕章,王成国,王延相.聚丙烯腈纤维预氧化工艺条件对其结构和性能的影响[J].高科技纤谁与应用,2006,31(1):31-34.
    [15]Olive GH, Olive S. Molecular interactions and macroscopic properties of polyacrylonitrile and model substances[J]. Advances in Polymer Science,1979,32:123-152.
    [16]刘杰,李佳,王雷.预氧化温度对聚丙烯腈纤维皮芯结构形成的影响[J].北京化工大学学报,2006,33(1):41-45.
    [17]Zhang WX, Liu J, Liang JY. New evaluation on the preoxidation extent of different PAN p recursors[J]. Journal o f Materials Science a nd Technology,2004,20 (4):369-372.
    [18]吕春样,吴刚平,吕永根,李开喜,李永红,梁晓铎,贺福,凌立成.聚丙烯腈原丝预氧化工艺的研究[J].新型炭材料,2003,18(3):186-190.
    [19]Layden GK. Retrograde core formation during oxidatioin of polyacrylonitrile filaments[J]. Carbon 1972.10:59-63.
    [20]Sivy GT, Gordon B, Coleman MM. Studies of the degradation of copolymers of acrylonitrile and acrylamide in air at 200 ℃-Speculations on the role of the preoxidation step in carbon fiber formation[J]. Carbon 1983;21 (6):573-578.
    [21]Houtz R C. Orlon. acrylic fiber:chemistry and properties[J]. Textile Research Journal,1950, 20(11):786-801.
    [22]Burlant W J, Prasons J L. Pyrolysis of polyacrylonitrile [J]. Journal of Polymer Science,1956, 22(101):249-256.
    [23]La Combe E M. Color formation in polyacrylonitrile [J]. Journal of Polymer Science,1957, 24(105):152-154.
    [24]Grass N, Hay JN. Coloration in acrylonitrile and methacrylonitrile polymers [J] Journal of Polymer Science,1958,31(122):205-206.
    [25]Schur Z J. Discoloration effects in Acrylonitrile polymers [J].Journal of Polymer Science, 1958,28(117):438-439.
    [26]Grassie N, Hay J N. Thermal coloration and insolubilization in polyacrylonitrile [J]. Journal of Polymer Science,1962,56(163):189-202.
    [27]Conly R T, Bieron J F. Examination of oxidative degradation of polyacrylonitrile using infrared spectroscopy [J]. Journal of Applied Polymer Science,1963,7(5):1757-1773.
    [28]Peebles L H, Brandrup J. A chemical means of distinguishing between conjugated and conjugated bonds [J]. Die Makromoekulare Chemie,1966,98(1):189-203.
    [29]Bahl O P, Manocha L M. Characterization of oxidized PAN fibers [J]. Carbon,1974,12 (4): 417-423.
    [30]Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN based carbon fibers[J]. Carbon,1996,34(11):1427-1445.
    [31]Warner S B, P eebles L H. Oxidative stabilization of acrylic fibres.Part 1:Oxygen uptake and general modelJ]. Journal of Materials Science,1979,14(3):556-564.
    [32]张旺玺,孙春峰,王成国.用DSC研究选择聚丙烯腈原丝的共聚单体[J].高科技纤谁与应用,2003,28(2):44-47.
    [33]Watt W, Johnson W. Mechanism of oxidization of polyacrylonitrile fibers [J]. Nature,1975, 257,210-212.
    [34]Mukesh K Jain, Balasubramanian M, Desai P. Conversion of acrylonitrile-based precursors to carbon fibres,Paert 2 Precursor morphology and thermo oxidative stabilization [J]. Journal of Materials Science,1987,22:301-312.
    [35]Bashir Z. A critical review of the stabilization of PAN [J]. Carbon,1991,29(8):1081-1090.
    [36]杨茂伟,王成国,王延相.聚丙烯睛原丝的预氧化过程研究[J].合成纤维工业,2005,28(6):5-8.
    [37]Gupta A, Harrison R. New aspects in the oxidative stabilization of PAN based carbon fibers [J]. carbon,1996,34(11):1427-1445.
    [38]Beltz LA, Gustapson R R. Cyclization kinetics of polyacrylonitrile[J].carbon,1966.34(5):561-566.
    [39]梁涛,赵根样,侯树元.用动态反射光度法研究PAN原丝表面的预氧化过程[J].合成纤维工业,1989,12(3):29-33.
    [40]王少军,沈新元.聚丙烯氰基预氧化纤维环化程度及力学性能的表征[J].合成纤维工业,2009,32(2):4-10.
    [41]温月芳,李辉,曹霞.聚丙烯腈纤维预氧化程度的表征[J].纺织学报,2008,29(12):1-5.
    [42]于美杰,王成国,朱波,徐勇.聚丙烯氰基碳纤维原丝热稳定化研究进展[J].材料工程,2006,11:62-66.
    [43]Chen H, Ou R, Wang Q, Liang Y, Wang C. Degradation of acrylonitrile-ammonium itaconate copolymers[J] Journal of Applied Polymer Science,2009,98(4):1708-1711.
    [44]Devasia R, Reghunadhan C P, Sivadasan P, Katherine B K, Ninan K N. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer:An isothermal differential scanning calorimetry kinetic study[J] Journal of Applied Polymer Science,2003,88(4):915-920.
    [45]于美杰,聚丙烯腈纤维预氧化过程中的热行为与结构演变[M].2007,山东大学.
    [46]Jie L, Wang-xi Z. Comparative study on structural changes during thermal PAN precursors [J]. Journal of Applied Polymer Science.2005,97:2047-2053.
    [47]纪高宁.聚丙烯腈原丝的预氧化[M].北京化工大学,2010.
    [48]MeiJie Y, ChengGuo W, et al. Review on the Thermal Stabilization of PAN-Based Carbon Fiber Precursors [J]. Journal Materials Engineering,2006, (11):62-66.
    [49]Gupta A. New aspect in the oxidative stabilization of PAN-based carbon fibers[J] Carbon,199 6,34(11):1427-1431.
    [50]候永平,孙同庆,王浩京,吴东.预氧化时间和温度对聚丙烯腈纤维预氧化的影响[J].化工新型材料,2009,37(12):61-63.
    [51]赵根祥.DSC法研究PAN纤维的低温热解特性[J].高分子材料科学与工,1990,5:53-59.
    [52]孙瑾等.用DSC法研究聚丙烯腈纤维的热性能及其预氧化过程[J].中国纺织大学学报,1990,1:50-56.
    [53]张旺玺,孙春峰,王成国.用DSC研究选择聚丙烯腈原丝的共聚单体[J].高科技纤维与应用,2003(2):44-47.
    [54]Gupta AK, Paliwal DK, Bajaj P. Effect of an acidic comonomer on thermo-oxidative stabilization of polyacrylonitrile[J]. Journal of Applied Polymer Science,1995, 58:1161-1174.
    [55]韩京萍,赵根祥,陈邦杰.硝酸法聚丙烯腈纤维中含氧官能团的定量分析[J].合成纤维工业,1992(3):25-29.
    [56]蒋先明,曾宪家,何伟平.SPAN中PAN含量的红外光谱定量分析研究[J].广西师范大学学报(自然科学版),1993(1):47-50.
    [57]谢德民.聚丙烯腈热裂解产物的红外光谱研究[J].高分子材料科学与工程,1995(5):123-125.
    [58]邱英华.热解氛围对聚丙烯腈分离炭膜微结构的影响[J].新型炭材料,2006(2):161-166.
    [59]王雨松,庞文民.聚丙烯腈七单元组空间立构性的高分辨(13)C-NMR表征[J].波谱学杂志,2008(2):176-183.
    [60]谢德民,石中亮.聚丙烯腈热裂解产物的ESR和固体13C-NMR研究[J].波谱学杂志,1995(3):293-298.
    [61]王凯,孔令强.PAN基纤维热处理过程中的时间效应[J].高分子材料科学与工程,2010(12):77-79.
    [62]Jin Riguang, Hua Youqing. Polymer physics [M]. Beijing:Chemical Industry Press,1991, 87-88.
    [63]Xu Guoliang, Zhu Zhenghe, Ma Meizhong. First principles calculation for the polyacrylonitrile chain [J]. Chinese Journal of Chemical Physics,2005,18(6):962-966
    [64]Liu Hui, LiChangqing, KongLingqiang. Relationship between preoxidized PAN fiber structure and heat treatment temperature [J]. China Synthetic Fiber Industry,2009,32 (5) 5-8
    [65]Young Jeon Kim, Chong Rae Park. The effect of the interaction between transition metal and precursor on the stabilization reaction of polyacrylonitrile. Carbon,2005,4(11):2420-2423
    [66]Wenwei Zhao, Yukio Yamamoto, SeiichiTagawa. Regulation of the thermal reactions of Polyacrylonitrile by y-Irradiation[J]. Chem. Mater,1999,11(4):1030-1034

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700