特种玻璃制备高温一体炉的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会正处于一个科技信息高速发展时期,特别是原子能、无线电通讯、计算机、激光和红外线等近代科学技术的快速发展,以特种玻璃为主要材料的高性能元器件也得到了迅速的发展,这些元器件以其独特的特性,被广泛应用于航空、航天、制导、医学、电子信息、高温高压容器等高、精、尖的科学技术领域。近些年来,制备高性能的特种玻璃及其器件已经是世界各国科学家研究的热点方向之一。
     高水平的研究离不开先进的配套设备,要制备高性能、高品质的特种玻璃制品,普通的高温炉已远远不能满足实验和生产要求。所以设计一台适合特种玻璃专用的高温炉是科学研究的需要。本课题正是基于这样的情况下产生和发展起来的。
     通过对特种玻璃制备工艺的研究,设计了一台集熔化与退火为一体的高温炉设备。高温一体炉采用立式结构,上部熔化炉设有搅拌装置,下部退火炉设有伺服浇注装置,浇注过程在一个相对封闭的环境中进行,防止了周围空气的污染、减少了热量的损失,大大提高了实验和生产的科学性。搅拌装置的升降机构采用低速可调电机驱动,通过蜗杆传动和滚珠丝杆传动,将升降速度调节在合理范围内;搅拌器采用单独的低速电机通过V型皮带轮驱动,V型皮带轮下面设有隔热板,在整个过程中实现低速平稳,安全便捷的搅拌。伺服浇注系统是退火炉的关键部分,也是主要创新点之一,通过对浇注速度的具体分析确定合理的模具升降速度以及漏管结构尺寸参数,为伺服浇注机构的提供了重要设计依据。
     设计的高温一体炉的整个控制系统采用PLC控制,与电脑相连,可实现远程监控。其主要的控制对象包括温控仪、搅拌装置电机、伺服装置电机、硅钼棒、热电偶以及铂金电极等。温度调节仪与PLC进行数据传递,PLC与电脑相连,整个过程可实现远程监控和数据记录。
     针对玻璃液在浇注漏管内易堵塞和流通不畅等情况,利用有限元软件ANSYS12.0对浇注漏管系统进行稳态热分析和瞬态热分析。通过有限元分析,为漏管结构优化和漏管热补偿提供了理论依据和设计参数。为实现特种玻璃液伺服浇注提供了保障。
     最后,本文设计了一台用于制备特种玻璃的高温一体炉,从根本上改善了特种玻璃的制备工艺,避免了气泡、结石、条纹和节瘤等缺陷产生,尽可能的提高了特种玻璃的质量。同时本文也是为制备大体积、零缺陷的特种玻璃做了一些尝试性研究。
Nowadays, it is a society with rapid development of science and technologyinformation. Particularly, with the increasing development of atomic energy,radio communications, computer, laser and infrared ray, the optical componentsmade by special glass have also obtained a rapid development. And it is widelyused in the domain of the top and precise science and technology,including thefield of aviation, aerospace, guidance, medicine, electronic information, hightemperature or high pressure vessel etc. In recent years, to manufacture highquality special glass and the device of special glass has been regarded as one ofthe hot research topics by the scientists around the world.
     High level research is based on advanced equipments, goes the logic, thehigh quality specialty glass products were closely related with the hightemperature furnace equipments. The ordinary high-temperature furnace canhardly meet the requirements, in doing so, it is necessary to design a hightemperature furnace to manufacture high quality special glass for meeting theneeds of scientific research. And this dissertation was engendered and developedbased on above background.
     A high temperature furnace device with integrating melting and annealingas one was designed through to special glass preparation technology researched.The furnace device is with a vertical structure, there is the melting furnace withmixing unit in the upper and the annealing furnace with a servo pouring devicein the lower part. In order to avoid the glass liquid from being polluted and toreduce the loss of the heat, the glass liquid was poured in a relatively closedenvironment, which greatly improved the scientific of experiment andproduction. The lifting and drop of stirring device was driven by adjustable lowspeed motor, with reasonable range of speed by the transmission mechanism ofworm gear and ball screw and suitable transmission ratio. The stirrer withindependent low speed motor could stably and safely run by the V pulley driving.Servo pouring system which was also one of the best innovations was a key part of the annealing furnace. The reasonable speed of lifting and drop and thestructure parameters of leak tubes were obtained through the analysis of pouringspeed of pouring model, which provided theoretical basis for reasonable designof servo pouring mechanism.
     In order to achieve remote monitoring, the PLC was connected withcomputer in the whole control system of liquation furnace. What includedtemperature controller, stirring motor, servo motor, molybdenum silicon rods,thermocouple and platinum electrode were controlled by PLC(S7-200-CPU-224).Coupling with temperature controller and computer, remotemonitoring and data records could be realized in the whole process.
     Considering that the special glass liquid was easy to jam or poor circulation,the pouring leakage was established by the finite element analysis softwareANSYS12.0. In order to successfully pour molten glass into the model, thetemperature field of steady state thermal process and transient thermal processwere analyzed, which provided theory basis and design parameters foroptimizing leak tube structure and thermal compensation.
     Finally, the special glass production process was fundamentally improved.In order to improve the quality of the special glass furthest, avoiding growing theglass defect such as the bubble, stones, striped and quarter etc, should be done inthe process of production. Some tentative researches were made formanufacturing special glass with big volume and zero defects.
引文
[1]殷海荣,章春香,刘立营等.高Verdet常数Faraday玻璃磁光理论及其应用[J].硅酸盐通报,2008,(4):748-753.
    [2]倪起峰,郭波.稀土特种玻璃及其应用[J].稀有金属与硬质合金,1989,(98):51-54.
    [3]徐美君.几种主要特种玻璃简介(连载)[J].玻璃,2010,37(10):38-50.
    [4]齐亚范.特种玻璃在微电子技术中的应用[C].98年全国玻璃学术会议论文集.1998:855-861.
    [5]西北轻工业学院.玻璃工艺学[M].轻工业出版社,1982:601-621.
    [6]章春香,殷海荣,刘立营等.磁光材料的典型效应及其应用[J].磁性材料及器件,2008,39(3):8-11.
    [7]张怀武,薛刚.新一代磁光材料及器件研究进展[J].中国材料进展,2009,28(5):45-51.
    [8]杨中民,徐时清,戴世勋等.光纤传感器用磁光玻璃的研究进展[J].功能材料与器件学报,2003,9(2):227-232.
    [9]刘强,曾宪金,张军海等.基于艳原子线性法拉第磁光效应的应用[J].光学技术,2011,37(1):11-13.
    [10]程玉华,周肇飞,蔡鹏等.法拉第磁光效应在可视化涡流检测中的应用[J].激光技术,2007,31(1):22-24.
    [11] Effect of heat treatment on ultra-violet transmission of special glasses [J].Journal of theFranklin Institute, Volume212, Issue3, September1931, Pages393-394
    [12] J. Aschenbach,G. Fiedler, H. Schreck-K llner, G. Siegert. Special glasses as energydetectors for fission fragments Original Research Article [J].Nuclear Instruments and Methods,Volume116, Issue2,1April1974, Pages389-395.
    [13] M. ac zka, L. Stoch. Rare earth elements as components of specialglasses [J]. Journal ofthe Less Common Metals. Volume166, Issue1,20October1990, Pages163–171.
    [14] J. Disam et al. PM tools for production of special glass components [J]. Metal PowderReport, Volume58, Issue5, May2003, Page38
    [15] Maochang Liu, Dengwei Jing, Liang Zhao,et al. Preparation of novel CdS-incorporatedspecial glass composite as photocatalyst material used for catalyst-fixed system[J].International Journal of Hydrogen Energy, Volume35, Issue13, July2010, Pages7058-7064.
    [16]梁坤.快速热处理高温炉程控系统的研制[D].湖北大学,2005.
    [17]贾英全.硅钼棒电炉的设计与制造[J].中国陶瓷,2000,36(5):27-28.
    [18]熊俊.硅钼棒电炉温度-电流双闭环智能系统的研究与设计[D].中南大学,2007.
    [19]王俊锋,董继先.实验室高温炉的研究综述[J].华东纸业,2010,41(1):51-54.
    [20]王俊锋.磁光玻璃高温炉的设计与研究[D].陕西科技大学,2010.
    [21]赵彦钊,殷海荣著.玻璃工艺学[M].北京:化学工业出版社,2006:183-264.
    [22]西北轻工业学院.玻璃工艺学[M].轻工业出版社,1982:601-621.
    [23]上海新沪玻璃有限公司.石英陶瓷坩埚漏料成型法装炉结构:中国,CN200720071916.1[P].2008-5-21.
    [24]上海新沪玻璃有限公司.石英陶瓷漏管与铂金漏管的连接结构:中国,CN200720071917.6[P].2008-5-21.
    [25]徐家强.近来玻璃熔窑用耐火材料的应用趋势[J].国外耐火材料,2003,28(1):17-18.
    [26]张越.耐火材料研究与应用[J].科技致富向导,2011,(21):75-75.
    [27]刘麟瑞,林彬荫.工业窑炉用耐火材料手册[M].北京:冶金工业出版社,2001,l-133,547-550.
    [28]袁政禾.鞍钢耐火材料应用的现状与发展[C].//国际耐火材料学术会议论文集.1998:169~174.
    [29]中钢集团耐火材料公司[EB/OL]. http://www.lyrg.com.cn/product/index.asp
    [30]洛阳科冠耐火材料公司[EB/OL]. http://www.lykgnh.com/ProductsView
    [31]浙江邦尼耐火纤维有限公司[EB/OL]. http://www.zjbangni.com/html/01.html
    [32]化工部工业炉设计技术中心.化学工业炉设计手册[M].北京:化学工业出版社,1988,359-424.
    [33]祝思忠.磷酸盐光学玻璃窑炉的结构设计[D].长春理工大学,2005.
    [34]王俊锋,董继先.实验室高温炉的研究综述[J].华东纸业,2010,41(1):51-54.
    [35]刘芳,范文捷,陈玉超等.高品质硅钼电热元件的研制[J].耐火材料,2003,37(5):304-305.
    [36]李锦桥.硅钼棒特种功能导电陶瓷电热元件设计应用[J].江苏陶瓷,1996,4(29):16-24.
    [37]吴宗泽.机械设计手册[M].北京:机械工业出版社,2002,1330-1356.
    [38]邱宣怀.机械设计[M].北京:高等教育出版社,1997,176-203.
    [39]陈乙崇.搅拌设备设计[M].上海:海科学技术出版社,1985,15-40.
    [40]郭有军,纪煦.实验用电阻丝炉设计与制作[J].冶金丛刊,2006,(2):16-17.
    [41]化工部工业炉设计技术中心.化学工业炉设计手册[M].北京:化学工业出版社,1988,474-516.
    [42]强硕.磁光玻璃自动浇铸系统及退火炉的研究与设计[D].陕西科技大学,2010.
    [43]梁坤.快速热处理高温炉程控系统的研制[D].湖北大学,2005.
    [44]熊俊.硅钼棒电炉温度-电流双闭环智能系统的研究与设计[D].中南大学,2007.
    [45]邢伟,潘海鹏.电阻炉智能温度控制系统的设计与仿真研究[J].浙江理工大学学报,2008,25(5):606-610.
    [46]王进满,毛杰.电阻炉温度控制系统的设计[J].铸造技术,2009,30(12):1595-1597.
    [47]蔡春桥,王永军,王俊彪等.电阻炉温度控制系统的设计与实现[J].科学技术与工程,2007,7(10):2379-2382,2386.
    [48]王俊锋,董继先.磁光玻璃专用高温炉设计[J].机械设计与制造,2011,(2):28-30.
    [49]西北轻工业学院著.玻璃工艺学[M].北京:轻工业出版社,1982:616-618.
    [50]徐卫鹏,周常飞.基于ANSYS的采煤机摇臂温度场分析[J].煤矿机电,2010,(5).
    [51]侯富昌,王秀梅,翁健等.基于ANSYS的高炉炉墙温度场分析[J].上海金属,2010,32(4).
    [52]员冬玲,邓建新,丁泽良等.陶瓷水煤浆喷嘴温度场及热应力的有限元分析[J].山东大学学报(工学版),2005,35(1)_5.
    [53]武丽华.玻璃熔窑耐火材料[M].北京:化学工业出版社,2008:17-22.
    [54]浦广益.ANSYS Workbench12基础教程与实例详解[M].北京:中国水利水电出版社,2010.10
    [55]赵彦钊,殷海荣著.玻璃工艺学[M].北京:化学工业出版社,2006:76-81.
    [56]张国智,胡仁喜,陈继刚等.ANSYS10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [57]孙承绪,陈润生,孙晋涛等.玻璃窑炉热工计算及设计[M].北京:轻工业出版社,1983:268-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700