注浆成形法制备熔融石英陶瓷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能作为开发前景最好的绿色能源被世界各国重视和大力推广,导致用于太阳能转换的多晶硅的用量急剧增加。石英陶瓷由于不会与硅发生化学反应,且具备低热膨胀系数、低热导率和优异的热稳定性而被应用于生产多晶硅的坩埚,为了适应多晶硅片的规格不断增大的需求,石英陶瓷坩埚的尺寸必须随之增大,从而对石英陶瓷的制造技术提出了更高的要求。
     注浆成形是石英陶瓷坩埚常用的成形方法之一,具有低成本和低污染等优点。但是生坯强度低制约了大尺寸石英陶瓷坩埚的发展。本文研究了球磨、pH值、分散剂和固相含量对石英陶瓷浆体的影响,通过优化工艺参数,制备出适合注浆成形的高固含量和低粘度的稳定石英浆体。并且通过二次加料球磨,调整浆料的颗粒级配提高石英陶瓷生坯强度。
     研究表明,采用乳酸为分散剂,其加入量为0.1-0.5 wt%,熔融石英固含量为63 vol%时,以一定颗粒级配的玛瑙球为研磨介质球磨5 h后,再搅拌24 h,制备的石英浆体粘度为114mPa.S,符合注浆成形的要求。通过调整浆体的颗粒级配,使颗粒之间能够形成有效紧密堆积,是非常有效提高坯体强度的方法。本课题通过混合两种不同粒径的石英颗粒来调整颗粒分布,粗细颗粒中位径比为8.3,当粗细颗粒混合比为80:20时,体系达到最紧密堆积,生坯强度提高1倍,解决了注浆成形生坯强度低的问题。同时研究也发现Funk-Dinger理想颗粒函数能够很好地反映颗粒间的堆积紧密程度。
     此外,本研究发现搅拌有利于降低浆体粘度,这与搅拌能够促进颗粒表面电位的生成有关。并且同时提出了乳酸稳定石英浆体的机理,红外光谱分析表明二氧化硅颗粒表面存在一定量的羟基,石英浆体对乳酸的吸附是由于氢键的作用,颗粒表面的羟基与乳酸分子中羧基中的氢离子形成氢键,从而吸附乳酸分子在二氧化硅颗粒表面周围,乳酸的另一端分子链之间产生的空间位阻作用使石英浆体稳定。
Solar energy is largely developed as a well-potential and green energy all over the world, which drives the development of polysilicon used for the conversion of solar energy. Silica ceramic is applied as crucible in the polysilicon production because it don’t react with silicon and has good properties including low thermal expansion coefficient, low thermal conductivity, and good thermal stability. In order to meet the need that the size of polysilicon film is enlarging, the size of silica ceramic crucible will be increasing respectively. Therefore, it puts forward higher requirement to the technology of silica ceramic crucible.
     Slip casting is a traditional manufacturing approach of silica ceramic crucible, and it possesses the advantage of low cost as well as low pollution. However, there is also a disadvantage that the strength of green body with slip casting is low, which makes it impossible to produce large size silica ceramic crucible.
     The effects of milling, pH value, dispersant and solid volume on the silica slurries were studied in this paper, and silica slurries which were fitted for slip casting with high solid volume and low viscosity were prepared by optimizing the process parameters. Besides, with the technology of second milling, the strength of green body was enhanced by adjusting the particle size distribution.
     It was showed by the experiment that silica slurry with the viscosity of 114mPa.S and solid content of 63vol% could be obtained in terms of these processes including a certain particle size distribution of the agate balls and nylon cans, dispersant for the lactic acid, lactic acid dosage of 0.1-0.5wt%, milling time of 5h and stirring time of 24h after milling. It was an effective approach to increase the strength of green body by adjusting the particle size distribution of slurries. It was adapted in this work by mixing two different size distribution of silica to adjust particle size distribution. The median diameter ratio of coarse and fine silica particle was 8.3, when the mixing ratio of two particles was 80:20, it formed an effective close packing between particles in the whole system, and the strength of green body could be almost doubled. Therefore, the problem of low green body strength with slip casting was solved. In addition, it was also proved from the experiment that Funk-Dinger ideal particle model can well reflect the packing degree of particles in a system.
     Furthermore, it was found that stirring could reduce the viscosity of the slurry because it could promote the generation of silica particle surface potential. Meanwhile, the mechanism of lactic acid stabilized silica slurry was proposed in this paper. It was evident that the adsorption of lactic acid on silica particle surface was due to the existence of hydrogen bond. The Infrared spectrum indicated that there was a certain amount of hydroxyl on silica particle surface, so the hydrogen atoms from the carboxyl of lactic acid molecules and the oxygen atoms from the hydroxyls on the surface of could form hydrogen bond. In this way, lactic acid molecules were combined on the surface of silica particles, and the other side of the molecule chains could emerge steric effect to stabilize silica slurries.
引文
[1]陈肇友.熔融石英陶瓷[J].耐火材料, 1973, 3: 11-28.
    [2]袁向东,吴翠珍,张联盟.精细熔融石英陶瓷技术研究及开发应用的新进展[J].硅酸盐通报, 2006, 25 (6): 154-158.
    [3]陈圣贤.陶瓷坩埚在多晶硅材料提纯和铸锭中的应用[J].太阳能, 2008, 2: 23-24.
    [4]崔文亮,熔融石英陶瓷的性能改进研究[D].武汉:武汉理工大学, 2002.
    [5]华兆瑁,石英陶瓷性能[J].河北陶瓷, 1992, 2: 20-25.
    [6]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社. 126-127.
    [7] A. M. Akh’’yan. Quartz ceramics-a new material in electrical engineering[J]. glass and ceramics, 1995, 52(1-2): 47-49.
    [8]付鹏,石英陶瓷的研究应用现状及发展前景[J].佛山陶瓷, 2007, 17(5): 30-33.
    [9]宋海峰,张翼.石英陶瓷的应用[J].现代技术陶瓷, 2003, 3: 37-39.
    [10]李家驹等.陶瓷工艺学[M].北京:中国轻工业出版社, 2001
    [11]石成利.石英陶瓷的研究进展及其应用[J].陶瓷, 2007, 1: 54-56.
    [12]刘恒波,蒋述兴.石英陶瓷材料的研究进展[J].玻璃, 2008, 4: 16-20.
    [13]裴秀娟,石振江,同继锋.卫生陶瓷工厂技术员手册[M].北京:化学工业出版社, 2006.
    [14] M. A. Janney, O. O. Omatete. Method for Molding Ceramic Powders Using a Water-Based Gel Casting. U.S.Patent, No.5145908, 1992.
    [15] A. C. Young, O. O. Omatete. Gel casting of Alumina. J. Am. Ceram. Soc. 1991, 74[3]: 612-618.
    [16] M. A. Janney. Gelcasting-a new way to form large near-net-shape ceramics parts. Mater Tech, 1994, 9(5-6): 97.
    [17]杨金龙.精细陶瓷成型工艺现状及趋势[J].材料导报, 1995, 3: 35-43.
    [18]陈大明,陶瓷的注凝成型工艺研究[J].现代技术陶瓷, 1996增刊: 793-797.
    [19]李安明,唐竹兴,王树海.陶瓷注凝成型工艺的新进展[J].现代技术陶瓷, 1999, 80(2): 26-31.
    [20]薛义丹,徐廷献,郭文利,邹强.注凝成型工艺及其新发展[J].硅酸盐通报, 2003, 5: 69-73.
    [21]江崇经,湿袋法冷等静压成型工艺[J].电瓷避雷器, 1995, 3: 14-19.
    [22]颜石麟,国内外等静压成型新技术现状[J].景德镇陶瓷, 1987, 3: 9-12.
    [23]郝洪顺,崔文亮,宋涛等.等静压成型熔融石英陶瓷的研究[J].硅酸盐通报, 2007, 26(2): 409-413.
    [24]宋涛,崔文亮,杨显锋等.等静压成型制备石英陶瓷的方法[P].中国: CN1962537A, 2007.
    [25]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社, 2004. 256-257
    [26]温广武,雷廷权,周玉.不同形态石英玻璃的析晶动力学研究[J].材料科学与工艺, 2001, 9(1): 1-5.
    [27]卜景龙,王志发,窦光涛.熔融石英陶瓷材料的晶化抑制研究[J].稀有金属材料与工程, 2007, 36(增刊1): 357-360.
    [28]杨德安,沈继耀,朱海强.加入物对石英陶瓷烧结和析晶的影响[J].耐火材料, 1994, 28(4): 201-203.
    [29] Jian-Qing Dai, Yong Huang, Zhi-Peng Xie, et al. Effect of acid cleaning and calcination on reheological properties of concentrated aqueous suspensions of silicon nitride powder[J]. J Am Ceram Soc, 2002, 85(2): 293-298.
    [30] Liang Hui, Pang Xueman, Xu Mingxia, et al. Dispersion mechanisms of aqueous silicon nitride suspensions at high solid loading[J]. Materials Science and Engineering A, 2007, 465:13–21.
    [31]李成燕,张亿增.胶体稳定理论与陶瓷浆料的稳定机理[J].河北陶瓷, 1992, 6: 38-41.
    [32]王瑞刚,吴厚政,陈玉如.陶瓷料浆稳定分散进展[J].陶瓷学报, 1999, 20(1): 35-40.
    [33]李剑英,李博,许同文.先进陶瓷料浆稳定化原理与技术[J].绝缘材料, 2007, 40(6): 39-42.
    [34] J. S. Reed. Introduction to the Principles of Ceramic Processing[M]. New York: Wiley, 1988: 3–15.
    [35] G. A. Parks. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems [J]. Chem. Rev, 1965, 65(2): 177–198.
    [36] Valeria Tahver, James E. Smay, Jennifer A. Lewis, e tal. Nanoparticle halos: A new colloid stabilization mechanism[J]. Proc, Natl, Acad, Sci, 2001, 98(16): 8950-8954.
    [37] Jiwen Liu, Erik Luijten. Colloidal stabilization via nanoparticle halo formation[J]. Physical Review E, 2005, 72, 061401.
    [38] Quanzu Yang, Tom Troczynski. Dispersion of alumina and silicon carbide powders in alumina sol[J]. J Am Ceram Soc, 1999, 82(7): 1928-1930.
    [39] Deyu Kong, Hui Yang, Yang Yang, e tal. Dispersion behavior and stabilization mechanism of alumina powders in silica sol[J]. Material Letter, 2004, 58: 3503-3508.
    [40] S. Karanikas, A. A. Louis. Dynamic Colloidal Stabilization by Nanoparticle Halos[J]. Physical Review Letters, 2004, 93, 248303.
    [41] Carlos J. Martinez, Jiwen Liu, Summer K. Rhodes, e tal. Interparticle interactions and direct imaging of colloidal phases assembled from microsphere─nanoparticle mixture[J]. Langmuir, 2005, 21, 9978-9989.
    [42] Jian-Qing Dai, Yong Huang, Zhi-Peng Xie, et al. Effect of acid cleaning and calcination on reheological properties of concentrated aqueous suspensions of silicon nitride powder [J]. J Am Ceram Soc, 2002, 85(2): 293-298.
    [43]司文捷,苗赫濯.高固相含量Si3N4浆料的研究(Ⅱ)—浆料的流变特性[J].硅酸盐学报, 1996, 24(5): 531-536.
    [44] Liang Hui, Pang Xueman, Xu Mingxia, et al. Dispersion mechanisms of aqueous silicon nitride suspensions at high solid loading [J]. Materials Science and Engineering A, 2007, 465:13–21.
    [45]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社, 2001. 224-225.
    [46] Cesarano J, Aksay I A. Processing of highly concentrated aqueous -alumina suspensions stabilized with polyelectrolytes [J]. J Am Ceram Soc, 1988, 71(12):1062-1067.
    [47]杨金龙,吴建光,黄勇,谢志鹏.陶瓷粉末颗粒尺寸测试、表征及分散(三)陶瓷粉末在液体介质中的分散及分散评价[J].硅酸盐学报, 1995, 5: 67-77.
    [48] R. L.Hoffman. J. Rheol. 1998, 42, 111.
    [49]伍秋美,阮建明,黄伯云等.低固相含量SiO2分散体系流变性研究[J].化学学报, 2006, 64(15): 1543-1547.
    [50] W. H. Boersma, J. Laven, H. N. Stein. J. Rheol. 1995, 39, 841.
    [51] Wolfgang M. Sigmund, Nelson S. Bell, Lennart Bergstr?m. Novel powder-processing methods for advanced ceramics[J]. J Am Ceram Soc, 2000, 83(7): 1557-15574.
    [52]袁金锁,李兴长,江龙.非透明粘稠浆体沉降稳定性的测量装置[P].中国: CN86206427U, 1987.
    [53]郝洪顺,巩丽,王树海,董峰,董文亮.熔融石英陶瓷烧结工艺中的影响因素分析[J].陶瓷, 2007, 1: 28-34.
    [54]李世强,杨乐民,周岩,杨立见.高能球磨法制备石英纳米粉的可行性探讨[J].哈尔滨师范大学自然科学学报, 2005, 21(3): 42-45.
    [55]霍素珍编译.对石英陶瓷烧结过程的研究[J].国外耐火材料, 2003, 28(6): 44-49.
    [56] I M Krieger, M Dougherty. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres[J], Trans Soc Rheol, 1959(3): 137–52.
    [57] Lennart Bergstr?m. Shear thinning and shear thickening of concentrated ceramic suspensions[J]. Colloids and Surfaces A, 1998, 133: 151-155.
    [58] Wolfgang M S, Nelson S B, Lennart Bergstr?m. Novel powder-processing methods for advanced ceramics[J]. J Am Ceram Soc, 2000, 83(7): 1557–1574.
    [59] Kalyani Mohanta, Parag Bhargava. Effect of milling time on the rheology of highly loaded aqueous-fused silica slurry[J]. J Am Ceram Soc, 2008, 91(2): 640–643.
    [60] Peter A S, Richard A H. Effect of particle packing on the filtration and rheology behavior of extended size distribution alumina suspensions[J]. J Am Ceram Soc, 1995, 78(7): 1737–1744.
    [61] S M Olhero, J M F Ferreira. Influence of particle size distribution on rheology and particle packing of silica-based suspensions[J]. Powder Technology, 2004, 139: 69–75.
    [62] Jennifer A L. Colloidal processing of ceramics[J]. J Am Ceram Soc, 2000, 83(10): 2341–2359.
    [63] Brian J. Optimising the dispersion on an alumina suspension using commercial polyvalent electrolyte dispersants [J]. J Emu Ceram Soc. 1998(12): 2141-2147.
    [64]章莉娟,郑忠.胶体与界面化学[M].广州:华南理工大学出版社, 2006. 186-188.
    [65] John T, Yates J. Water interactions with silica surfaces: A big role for surface structure[J]. Surface Science, 2004, 565: 103–106.
    [66]胡一晨,石静,韩锦辉.固相、低粘度熔石英陶瓷料浆特性的研究[J].硅酸盐通报, 2004, 4: 113-116.
    [67] James S R. Principles of Ceramics Processing-2nd edition[M]. New York: JohnWiley & SonsInc, 1995.
    [68] Kalyani Mohanta, Parag Bhargava. Effect of milling time on the rheology of highly loaded aqueous-fused silica slurry[J]. J Am Ceram Soc, 2008, 91(2): 640–643.
    [69] Masashi Kamibayashi, Hironao Ogura, Yasufumi Otsubo. Viscosity behavior of silica suspensions flocculated by associating polymers[J]. Journal of Colloid and Interface Science, 2005, 290: 592–597.
    [70]司文捷,苗赫濯.高固相含量Si3N4浆料的研究(Ⅱ)—浆料的流变特性[J].硅酸盐学报, 1996, 24(5): 531-536.
    [71]朱裕贞,顾达,黑恩成.现代基础化学[M].北京:化学工业出版社, 1998. 76-78
    [72]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社, 2001. 224-225
    [73]胡一晨,石静,韩锦辉.固相、低粘度熔石英陶瓷料浆特性的研究[J].硅酸盐通报, 2004, 4: 113-116.
    [74]冯士安.氢键在泥浆中的作用[J].探矿工程, 1982, 3: 51-54.
    [75]朱裕贞,顾达,黑恩成.现代基础化学[M].北京:化学工业出版社, 1998. 76-78
    [76]丁钰,陈瑞峰,黄勇,孙加林.颗粒级配法制备高固相含量低薪度氧化铝料浆[J].硅酸盐学报, 2008, 36(S1): 58-62.
    [77] A. A. Zaman, B. M. Moudgil. Role of electrostatic repulsion on the viscosity of bidisperse silica suspensions [J]. Journal of Colloid and Interface Science, 1999, 212: 167–175.
    [78] Peter A. Smith, Richard A. Haber. Effect of particle packing on the filtration and rheology behavior of extended size distribution alumina suspensions [J]. J Am Ceram Soc, 1995, 78(7): 1737-1744.
    [79] Jingmin Zheng, William B. Carlson, Jame S. Reed. Dependence of compaction efficiency in dry pressing on the particle size distribution [J]. J Am Ceram Soc, 1995, 78(9): 2527-2533.
    [80] G. W. Phelps, and J. S. Dennis. Particle size of feldspar and flint as a factor in slip behavior[J]. J Am Ceram Soc, 1961, 44(4)149-156.
    [81] R. Greenwood, P. F. Luckham, T. Gregory. The effect of diameter ratio and volume ratio on the viscosity of bimodal suspensions of polymer latices[J]. Journal of Colloid and Interface Science, 1997, 191: 11-21.
    [82]吕锋,吴翠珍,王瑞琍.熔融石英陶瓷的性能及其应用[J].现代技术陶瓷, 2005, 105(3): 37-40.
    [83] FUNK J E, DINGER D R. Coal grinding and particle size distribution studies for coal-water slurries at high solid loading [Z]. Alfred University Research Foundation, Alfred, New York, 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700