用于电力系统稳定分析的同步发电机数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步发电机在扰动后的动态运行能力对于系统安全稳定运行具有重要意义。本文建立了用于研究扰动条件下发电机运行能力的时步有限元模型,研究了汽轮发电机转子复杂阻尼结构及其材料特性对系统稳定性的影响,并与电力系统仿真分析所用的发电机三种实用模型的计算结果进行了对比研究。在此基础上,以时步有限元结果作为标准响应,辨识了发电机大扰动过程中的电机参数。主要成果如下:
     1.建立了用于分析汽轮发电机转子三部分阻尼结构和阻尼材料特性对其动态运行能力影响的时步有限元模型,对该模型的时空离散策略进行了优化和改进,使其能够更加准确的计及多因素非线性条件下转子阻尼结构中的涡流集肤效应,并通过模型机试验验证了该模型的准确性。
     2.以一台300MW汽轮发电机为例,通过详细的时步有限元计算分析,揭示了汽轮发电机转子大齿导条、转子铁心和转子导电槽楔等阻尼结构与发电机第一摆稳定性之间的关系,发现转子阻尼结构对第一摆稳定极限的影响主要取决于其等效电阻;进一步对转子槽楔采用不同材料时发电机的第一摆稳定性进行研究,揭示了第一摆稳定极限随转子槽楔电导率的变化规律。
     3.揭示了实用模型两种假设条件的物理本质,假设A模型计及了励磁绕组和阻尼绕组的互漏磁链,忽略了阻尼绕组自漏磁链;假设B模型反之;在假设B模型的基础上进一步对阻尼相关项进行简化得到了假设B-1模型。在此基础上,对比分析了时步有限元模型与三种实用模型所计算的大扰动和小扰动结果,得出不同模型仿真结果之问的差异。
     4.将解析法和数值仿真相结合研究了实用模型中定子绕组电磁暂态对发电机机电暂态过程的影响,发现忽略定子绕组暂态后,发电机三相突然短路过程中的交变电磁转矩分量和定子非周期电流产生的单向电磁转矩分量均被忽略,而后者属于制动性质的转矩,被忽略后会影响功角第一摆稳定性的仿真精度。
     5.以时步有限元结果作为目标曲线,采用最小二乘法辨识了发电机大扰动过程中的电机参数,揭示了这些参数随发电机功角的变化规律,得出辨识参数计算结果的精度明显高于厂家参数。同时,对转子导电槽楔采用不同材料时的发电机参数进行辨识,得出转子槽楔电导率对发电机各参数的影响。研究结果为实用模型的进一步改进提供了理论支撑。
The dynamic operation capacity of synchronous generator after disturbance of power system is very important to guarantee the safety and stable operation of power system. This dissertation has established Time-step Finite Element Model (T-S FEM) to study the operation capacity of synchronous generator under system disturbance, and studied the influence of rotor damping structure and damping material characteristic of turbine generator on power system stability. The results calculated by T-S FEM are compared with the practical models of synchronous generator used in power system simulation. Take the results of T-S FEM as target curves, the parameters of practical model in large disturbance process is identified. The main works are as below.
     1. The Time Step Finite Element Model used to analysis the influence of three components damping structure of turbine generator and damping material characteristic on dynamic characteristic of power system is built. Considering the complex rotor damping structure of turbine generator, we make crucial improvements in space-time discrete strategy to consider the eddy current skin effect of rotor damping structure affected by multi-factor nolinear. This model is tested by the experiment of model machine.
     2. Take a300MW turbine generator as an example; we reveal the relationship between rotor damping bar, rotor conductive slot wedge, rotor iron core of turbine generator and the First Swing Stability through the computational analysis of T-S FEM. And we also find that the influence of rotor damping structure on First Swing Stability is depended on its equivalent resistance. Further, we study the First Swing Stability affected by rotor slot wedge of different materials and reveal the change law of first swing stability limt along with the conductivity of rotor slot wedge.
     3. The physical essence of two practical models is reavled in theory. The assumed A model takes account of the mutual leakage flux linkage between field winding and damping winding, neglects the self-leakage flux linkage of damping winding; it is opposite to the assumed B model; while assumed B-1model is obtained by neglecting the something about damping based on assumed B model. The simulation results of small disturbance and large disturbance by three practical models is compared with the T-S FEM, and the results difference of different models is obtained.
     4. The influence of stator winding transient (p(p) on electromechanical transient is studied by analytical expression and numerical simulation. It is found that the fundamental frequency oscillatory component of electrical torque and unidirectional component of electrical torque due to stator aperiodic current during three phase short circuit of generator is neglected, when the stator winding transient is neglected. The unidirectional component of torque has a braking effect. Its effect is to reduce the rotor acceleration following the disturbance and improve the first swing stability.
     5. Take the large disturbance results of T-S FEM as target curves, the parameters of synchronous generator are identified through the least square method. We obtain the change law of these parameters along with power angle of generator and find that the precision of identification parameter is higher than factory parameters. Meanwhile, the parameters are identified under different rotor slot wedge materials and find that the influence of rotor slot wedge conductivity on the paremeters of generator. The study results provide theoretical support for the further improvement of practical model.
引文
[1]江哲生.我国电力工业现状和“十二五”电源结构调整趋势分析[J].电器工业,2009,(1):13-16.
    [2]卢强,梅生伟.现代电力系统灾变防治和经济运行若干重大基础研究.中国电力,1999,32(10):25-28.
    [3]郝卫平.推进结构优化开创电力工业新局面[J].中国电力企业管理,2009,(4):16-18.
    [4]杨卫东,徐征,韩祯祥.电力系统灾变防治系统研究的现状和目标.电力系统自动化,2000,24(1):7-12.
    [5]肖友强,杨顺昌.考虑饱和的同步发电机数学模型[J].电工技术学报,1999,14(4):1-4.
    [6]汤涌,侯俊贤,刘文焯.电力系统数字仿真负荷模型中配电网络及无功补偿与感应电动机的模拟.中国电机工程学报,2005,25(3):8-12.
    [7]鞠平.电力系统建模理论与方法[M].北京:科学出版社,2010:101-120.
    [8]刘鹤忠,叶勇健.当前技术条件下火电机组最大单机容量的探讨[J].2011,32(2):62-70.
    [9]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法[M].科学出版社,2009:1-8.
    [10]D. C. Macdoald. Turbine Generator Steady-State Reactance, Proc. of IEE, 1985,132(3):101-108
    [11]史家燕,董明会,李惠升,赵肖敏.汽轮发电机的饱和功-角特性.中国电机工程学报,1986,6(3):1-7
    [12]汪耕,李希明.大型汽轮发电机设计与制造[M].上海科学技术出版社,2000:322-327.
    [13]P. Bharali, B. Adkins. Operational impedances of turbo generators with solid rotors, Proceedings of the Institution of Electrical Engineers [J].1963,110(12): 2185-2199.
    [14]D. Hiramatsu, T. Tokumasu, M. Fujita, et al. A study on Rotor Surface Losses in Small to Medium Cylindrical Synchronous Machine [J]. IEEE Trans. on Energy Conversion,2012,27(4):813-821.
    [15]L Xiaodong, A. M. El-Serafi, S. O. Faried. Application of the Finite Element Method for the Determination of the parameters representing the cross magnetizing in saturated synchronous machines [J]. IEEE Trans. on Energy Conversion,2010,25(1):71-79.
    [16]M. A. Arjona L, D.C. Macdonald. A New Lumped Steady State Synchronous Machine Model Derived from Finite Element Analysis [J]. IEEE Trans. on Energy Conversion,1999,14(1):1-7.
    [17]M. Ibrahim, P. Pillay. Core Loss Prediction in Electrical Machine Laminations Considering Skin Effect and Minor Hysteresis Loops [J]. IEEE Trans. on Industry Application,2013, PP(99):2681-2686.
    [18]S. I. Nabeta, A. Foggia. Finite Element Analysis of the Skin-Effect in Damper Bars of a synchronous machine [J]. IEEE Trans. on Magnetics,1997,33(2): 2065-2069.
    [19]Park R H. Two-reaction Theory of Synchronous Machines [J]. pt 1. AIEE Transactions.1929,48:716-7227. pt2.1933,52:352-354.
    [20]汤涌.基于电机参数的同步电机模型[J].电网技术,2007,31(12):47-51.
    [21]夏道止.电力系统分析(下册)[M].北京:水利电力出版社,1995.
    [22]BPA暂态稳定程序用户手册(中国版2.1)[Z].中国电力科学研究院,2000.
    [23]PSASP电力系统综合分析程序暂态稳定手册(6.1版)[Z].中国电力科学研究院,2003.
    [24]中华人民共和国国家标准,三相同步电机试验方法[S]. GB/T 1029-2005.
    [25]陈世坤.电机设计[M].北京:机械工业出版社,2008:28-75.
    [26]I M Canay. Determination of the model parameters of machines from the reactance operators xd(p), xq(p) (evaluation of standstill frequency response test) [J]. IEEE Trans. on Energy Conversion,1993,8(2):272-279.
    [27]鞠萍.电力系统非线性辨识[M].北京:电力出版社,1999:23-67.
    [28]汤蕴璆,梁艳萍.汽轮发电机的三阶模型和超-超瞬态电抗[J].电工技术学报.2000,15(1):7-11.
    [29]高景德,张麟征.电机过渡过程的基本理论及分析方法[M].北京:科学出版社,1985:492-510.
    [30]沈善德.电力系统辨识.清华大学出版社,1993:179-186
    [31]黄其新,孙黎霞,甄威,刘柏私,鞠平.同步发电机参数辨识的蚁群算法及扰动分析[J].电力自动化设备,2009,29(11):50-53.
    [32]陈新琪,竺士章,袁斌,孙浩权.同步发电机参数与工况关系初探[J],中国电力,2001,34(10):31-34.
    [33]M. Sasic, B. Lloyd, A. Elez. Finite Element Analysis of Turbine Generator Rotor Winding Shorted Turns [J]. IEEE Trans. on Energy Conversion,2012, 27(4):930-937.
    [34]R. Escarela-Perez, T. Niewierowicz, E. Campero-Littlewood. Synch-ronous Machine Parameters from Frequency Response Finite Element Simulations and Genetic Algorithms [J]. IEEE Trans. on Energy Conversion,2001,16(2): 198-203.
    [35]R. E. Perez, D. C. Macdonald. A Novel Finite-Element Transient Computation of Two-Axis Parameters of Solid Rotor Generators for Use in Power Systems [J]. IEEE Trans. on Energy Conversion,1998,13(1):49-54.
    [36]康锦萍,刘晓芳,罗应立,李志强,张国兰.不同容量汽轮发电机负载非线性特性的对比研究[J].中国电机工程学报,2009,29(24):73-77.
    [37]P. J. Turner. Finite-element simulation of turbine-generator terminal faults and application to machine parameter prediction [J]. IEEE Trans. on Energy Conversion,1987, EC-2(1):122-131.
    [38]S. R. Chaudhry, S. Ahmed-Zaid, N. A. Demerdash. Coupled finite-element/ state-space modeling of turbogenerators in the ABC frame of reference- the short- circuit and load cases including saturated parameters [J]. IEEE Trans. on Energy Conversion,1995,10(1):63-70.
    [39]J. P. Sturgess, M. Zhu, D. C. Macdonald. Finite-element simulation of a generator on load during and after a three-phase fault [J]. IEEE Trans. on Energy Conversion,1992,7(4):787-793.
    [40]S. Williamson, A. F. Volschenk. Time-stepping finite element analysis for a synchronous generator feeding a rectifier load [J]. IEE Proc. Electr. Power Application,1995,142(1):50-56.
    [41]R. Escarela-Perez, D.C. Macdonald. A novel finite-element transient computation of two-axis parameters of solid-rotor generator for use in power systems [J]. IEEE Trans. on Energy Conversion,1998,13(1):49-54.
    [42]S.R. Chaudhry, S.Ahmed-Zaid, N.A. Demerdash. Couple finite-element /state-space modeling of turbo generators in the ABC frame of reference-the no-load case [J]. IEEE Trans. on Energy Conversion,1995,10(1):56-62.
    [43]Silvio I. N, Albert Foggia et al. A non-linear time-stepped finite-element simulation of a symmetrical short-circuits in a synchronous machine [J]. IEEE Trans.on Magnetics,1995,31(3):2040-2043.
    [44]Meng Liang, Zhang Xinli, Luo Yingli. Two Main Factors to the Effect of Nonlinear Characteristics of Turbo-generator [C]. IEEE PES 2004 General Meeting,2004,2:1978-1981.
    [45]Meng Liang, Luo Yingli, Liu Xiaofang. Study on the Complex Nonlinear Features of Hydrogenerator Caused by Multiply Factors [C]. ICEMS 2003, 2003,1:17-20.
    [46]罗应立,蒙亮,刘晓芳,赵凌志.汽轮发电机双因素非线性特性的研究[J].电工技术学报,2005,20(6):1-5.
    [47]刘晓芳,蒙亮,罗应立,赵凌志,周济.同步发电机d-q轴饱和特性曲线族[J].中国电机工程学报,2002,22(2):69-72.
    [48]Fang Deng, N. A. Demerdash. Comprehensive salient-pole synchronous machine parametric design analysis using time-step finite element-state space modeling techniques [J]. IEEE Trans.on Energy Conversion,1998,13(3): 221-229.
    [49]胡笳,罗应立,刘晓芳,王红宇.汽轮发电机小扰动特性及静态稳定性的时步有限元分析[J].中国电机工程学报,2010,30(6):76-82.
    [50]胡笳.系统扰动下同步发电机运行行为的时步有限元研究[D].北京:华北电力大学,2010.
    [51]梁艳萍,陆永平,朱宽宁等.汽轮发电机失磁异步运行时转子端部漏磁参数与涡流损耗的分析计算.中国电机工程学报,2004,24(11):112-115.
    [52]丁树业,李伟力,马贤好.大型同步发电机定子主绝缘结构优化热性能分析.电工技术学报2008,23(4):13-19,31.
    [53]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算.中国电机工程学报,2005,25(13):129-134.
    [54]靳慧勇,李伟力,马贤好等.大型空冷汽轮发电机定子内流体速度与流体温度数值计算与分析.中国电机工程学报,2006,26(16):168-173.
    [55]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1998.
    [56]El-Serafi A M,Abdallah A S. Effect of saturation on the steady-state stability of a synchronous machine connected to an infinite bus system [J]. IEEE Trans.on Energy Conversion,1991,6(3):514-521.
    [57]El-Serafi A M, Abdallah A S. Effect of saturation on the steady-state stability of a synchronous machine connected to an infinite bus system[J]. IEEE Trans. on Energy Conversion,1991,6(3):514-521.
    [58]严登俊,刘瑞芳,李伟.有限公式法二维涡流场计算技术及其在电机集肤效应计算中的应用[J].中国电机工程学报,2008,28(9):133-138.
    [59]Seok-Hee Han, Wen L. Soong, Thomas M. Jahns. Harmonic Eddy-Current Losses in the Stator Teeth of Interior Permanent Magnet Synchronous Machines during Flux Weakening [J]. IEEE Trans. on Energy Conversion, 2010,25(2):441-449.
    [60]Minnich S H, Chari M V K, Berkery J F. Operational inductances of turbine generator by the finite element method[J]. IEEE Trans. on PAS,1983:20-27.
    [61]Tang Yunqiu, Guo Liwei. Numerical calculation of operational impedances and frequency characteristics of turbogenerator [C]. Proc. ICEM. Pisa,1988.
    [62]汤蕴璆,梁艳萍.汽轮发电机的三阶模型和超-超瞬态电抗[J].电工技术学报.2000,15(1):7-11.
    [63]Yanping Liang, Baojun Ge, Hao Huang, Gang Hu. Research on Model of High Order Transient Reactances of Powerformer and Correlated Factors Analysis [C]. Automation Congress,2008:1-4.
    [64]严登俊,刘瑞芳,朱长江.电机电磁场的有限公式计算技术[J].中国电机工程学报,2008,28(6):110-115.
    [65]Bellina F, Bettini P, Tonti E, et al. Finite formulation for the solution of a 2-D eddy-current problem[J]. IEEE Trans. on Magnetics,2002,38 (2):561-564.
    [66]K. E. Bolliger etc. A method for on-line identification of power system model parameters in the presence of noise [J]. IEEE Trans. on PAS,1982,101(9): 45-51.
    [67]J. E. Temperley. Incipient fault identification through neutral RF monitoring of large rotating machines [J]. IEEE Trans. on PAS,1983,102(3):25-32.
    [68]Yu Yao-nan, Moussa H A M. Experimental determination of exact equivalent circuit parameters of synchronous [J]. IEEE Trans. on Power Apparatus and Systems. IEEE Trans. on PAS,1971,90(6):2555-2560.
    [69]Canay I M. Causes of discrepancies on calculation of rotor quantities and exact equivalent diagrams of the synchronous machine [J]. IEEE Trans. on Power Apparatus and Systems,1969,88(7):1114-1120.
    [70]Canay I M. Equivalent circuit of synchronous machines for calculating quantities of the rotor during transient processes and asynchronous starting [J]. Part I. Turbo generators. B B Review,1969,2(69):60-71.
    [71]郭可忠,赵军.汽轮发电机失磁异步运行数学模型的比较[J].电网技术,1999,23(8):13-16.
    [72]汤涌.简化同步电机模型中的运动方程[J].电网技术,2007,(31)10:28-31.
    [73]张琦雪,何其伟,徐峰等.汽轮发电机3次谐波电压随负荷变动的理论分析[J].电力系统自动化,2008,32(21):61-64.
    [74]曾云,沈祖诒,曹林宁.低频振荡下发电机响应特性的量化分析[J].电力系统及其自动化学报,2008,20(6):83-87.
    [75]郝媚美.汽轮发电机励磁与汽门综合控制的研究[D].福建:福州大学,2004.
    [76]班立全.基于智能控制的同步发电机励磁系统研究[D].湖南:中南大学,2005.
    [77]李银辉,张建华,李胜等.T-S模糊控制器设计新方法及应用仿真[J].电网与清洁能源,2009,25(6):62-64.
    [78]徐英新,王西田,杨帆.同步发电机阻尼绕组和磁路饱和对低频振荡阻尼的影响[J].电力自动化设备,2007,27(5):28-31.
    [79]Prabha Kundur. Power system stability and control [M]. New York, McGraw-Hill Inc,1994,711-712.
    [80]郑东平.对1000MW级汽轮发电机一些设计问题的分析[J].上海大中型电机,2005,(3):12-14.
    [81]Kosterev, D.N, Taylor, C.W, Mittelstadt, W.A. Model Validation for the August 10,1996 WSCC System Outage [J]. IEEE Trans. on Power Systems, 1999,14(3):967-979.
    [82]吴红斌,丁明,李生虎,汤海雁.发电机和负荷模型对暂态稳定性影响的概率分析[J].电网技术,2004,28(1):19-21.
    [83]周济.同步发电机不同运行条件下多因素饱和效应的研究[D].北京:华北电力大学,2000.
    [84]L.A.March, S.B.Crary. Amature Leakage Reactance of Synchronous Machines [J]. AIEE Transactions,1935,54,378-381.
    [85]关根泰次.电力系统暂态解析论[M].北京:机械工业出版社,1989:46-59.
    [86]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学 出版社,2005:65-90.
    [87]马志云.电机瞬态分析.北京,中国电力出版社,1998,30-39.
    [88]A. W. Rankin. Per-unit impedances of synchronous machines, Electrical Engineering,1945,64(12):839-841.
    [89]陈珩.同步电机运行基本理论与计算机算法[M].北京:水利电力出版社,1992.
    [90]IEEE Standards Board. Test Procedures for Synchronous Machine [S]. ANSI/IEEE Standard 115-1983.
    [91]王锡凡,方万全,杜正春.现代电力系统分析[M].北京:科学出版社,2003:240-263.
    [92]Olive D W. Digital Simulation of synchronous machines transients[J]. IEEE Trans. on Power Apparatus and Systems,1968,87(8):1669-1675.
    [93]汤涌.基于电机参数的同步电机模型[J],电网技术,2007,31(12):47-51.
    [94]陈亚民.再论同步发电机电磁暂态过程实用方程[J].电力系统及其自动化学报,1997,9(4):7-12.
    [95]I. M. Canay. Determination of model parameters of synchronous machines [J]. IEE Proc.,1983,130(2):86-94.
    [96]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京,清华大学出版社,2002:364-367.
    [97]季小尹,张万红,钟顺虎.电机电磁场计算中对周期性边界条件的处理[J].电机技术,1998,2:3-6.
    [98]梁艳萍,陆永平,朱宽宁等.三维正弦电磁场问题中一类和周期性边界条件的处理方法[J].电机与控制学报,2005,9(1):25-28.
    [99]K. Hirayama. Practical detailed model for generators [J]. IEEE Trans. on Energy Conversion,1995,10(1):105-110.
    [100]梁艳萍,周封.用时步有限元法计算汽轮发电机直轴瞬态参数[J].电机与控制学报,1998,2(2):69-74.
    [101]罗应立,胡笳,刘晓芳,王红宇,康锦萍.面向系统动态分析的场路网耦合时步有限元模型[J].中国电机工程学报,2009,29(33):102-110.
    [102]Olive D W. New Techniques for the Calculation of Dynamic Stability[J]. IEEE Trans. on Power Apparatus and Systems,1966,85(7):767-777.
    [103]Hammons T J, Winning D J, Comparisons of Synchronous Machine Models in the Study of the Transient Behaviour of Electrical Power System [J]. Proc. of IEE. 1971,118(10):1442-1458.
    [104]孙黎霞,高运华,甄威.考虑饱和效应的同步发电机参数辨识[J].河海大学学报(自然科学版),2008,36(3):401-404.
    [105]哈尔滨大电机研究所.GB/T 7409.3-2007同步电机励磁系统-大、中型同步发电机励磁系统技术要求[S],中国标准出版社,2007.
    [106]M.H.Haque,Evaluation of First Swing Stability of a Large Power System withVarious FACTS Devices [J]. IEEE Trans.on Power System,2008,23(3): 1144-1151.
    [107]J. J. Ford, G. Ledwich, Z. Y. Dong. Efficient and Robust Model Predictive Control for First Swing Transient Stability of Power Systems Using Flexible AC Transmission Systems Devices [J]. IET Generation, Transmission & Distribution, 2008,2(5):731-742.
    [108]B. Delfino, G. B. Denegri, M. Invernizzi, P. Pinceti. Estimating First Swing Stability of Synchronous Machines as Affected by Saturation and Controls [J]. IEEE Trans. on Energy Conversion.1988,3(3):636-646.
    [109]M. H. Haque. Application of Energy Function to Assess the First-swing stability of a power system with a SVC [J]. IEEE Proceedings-Transmission and Distribution, 2005,152 (6):806-812.
    [110]M. H. Haque. Improvement of First Swing Stability Limit by Utilizing Full Benefit of Shunt FACTS Devices [J]. IEEE Trans. on Energy Conversion,2004,19(4): 1894-1902.
    [111]J. Lidenholm, U. Lundin. Estimation of Hydropower Generator Parameters through Field Simulations of Standard Tests [J]. IEEE Trans. on Energy Conversion,2010, 25(4):931-939.
    [112]P. Kundur, J. Paserba, V. Ajjarapu. Definition and Classification of Power System Stability IEEE/CIGRE Joint Task on Stability Terms and Definitions [J]. IEEE Trans.on Power System,2004,19(3):1387-1401.
    [113]A. Bidram, M. Hamedani-golshan, A. Davoudi. Capacitor Design Considering First Swing Stability of Distributed Generations [J]. IEEE Trans. on Power System, 2012,27(4):1941-1948.
    [114]许国瑞,王红宇,刘晓芳,罗应立,康锦萍.同步发电机不同实用模型的大扰动特性的对比研究[J].中国电机工程学报.2012:32(24):67-73.
    [115]杨慧敏,易海琼,文劲宇,程时杰.一种实用的大电网低频振荡概率稳定性分 析方法[J].电工技术学报,2010,25(3):124-129.
    [116]徐英新,王西田,杨帆,陈陈.同步发电机阻尼绕组和磁路饱和对低频振荡阻尼的影响[J].电力自动化设备,2007,27(5):28-31.
    [117]Kao W S. The Effect of Load Models on Unstable Low-Frequency Oscillation Damping in Taipower System Experience w/wo Power System Stabilizers [J]. IEEE Trans. on Power System,2001,16(3):463-472.
    [118]Canay I M. Modelling of alternating current machines having multiple rotor circuits [J]. IEEE Trans. on Energy Conversion.1993,8(2):280-296.
    [119]Jingde Gao, Linzheng Zhang, Xiangheng Wang. AC machine system: mathematical model and parameters, analysis, and system performance [M]. Springer-Verlag and Tsinghua University Press,2009:58-266.
    [120]I M Canay. Advance Calculation of the Characteristic Quantities of Synchronous Machines and Comparison with measured values [J]. IEE Proc. Electric Power Appl.,1994,141(1):13-18.
    [121]Wen-Shiow Kao, The Effect of Load Models on Unstable Low-Frequency Oscillation Damping in Taipower System Experience w/wo Power System Stabilizers [J]. IEEE Trans. on Power System,2001,16(3):463-471.
    [122]曹维,翁斌伟,陈陈.电力系统暂态变量的Prony分析[J].电工技术学报,2000,15(6):56-60.
    [123]熊俊杰,邢卫荣,万秋兰.Prony算法的低频振荡主导模式识别[J].东南大学学报:自然科学版,2008,38(1):64-68.
    [124]刘剑.Prony在电力系统低频振荡控制中的应用[D].四川:四川大学,2006.
    [125]刘国平.基于Prony法的电力系统低频振荡分析与控制[D].浙江:浙江大学,2004.
    [126]倪腊琴,鞠平,李训铭等.电力系统动态等值的在线测辨研究Ⅱ——辨识方法及仿真检验[J].电力系统自动化,1999,23(10):20-22.
    [127]鞠平,何南强,杨乃贵等.电力系统动态等值的在线测辨研究Ⅲ——几个重要问题探讨[J].电力系统自动化.1999,23(14):33-56.
    [128]中华人民共和国国家标准,三相同步电机试验方法[S],GB/T1029-2005
    [129]IEEE Standards Board. IEEE Guide for Test Procedures for Synchronous Machines[S]. IEEE Standard.115-2009.
    [130]李志强,胡笳,祝丽芳,罗应立.同步发电机有限元磁场计算中端点量迭代的改进算法[J].电工技术学报,2008,23(12):35-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700