纳米传感与传输技术研究及其生物医学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物纳米技术是一门前沿的新兴交叉学科,它的发展为生物医学及其相关学科的研究与发展提供了新的思路和手段。但是,许多工作都还处于初步发展阶段,远未达到广泛实际应用的水平,因此纳米技术在生物医学领域中的应用还需要进一步的开发与发展。近年来,本研究小组在结合纳米技术、分析技术、生物技术以及材料制备技术的基础上,开展了以核壳生物纳米颗粒为核心的系统研究工作。本论文在相关工作的基础上,继续深入开展纳米颗粒在生物医学领域中的应用,着重围绕基于纳米颗粒的纳米传感器件与基因传输器件开展工作,取得了以下几个方面的成果:
     1.首次利用反相微乳液技术发展了一种同时包埋pH敏感染料(FITC)和参比染料(RuBPY)的硅壳荧光纳米颗粒,构建了一种适合细胞内pH测量的比例型纳米pH传感器。该传感器大小在42nm左右,大小均匀,水溶液中分散性好,抗光漂白能力强,响应重现性好,线性范围为pH4-7,检测灵敏度为0.05pH。利用它尺寸小的优势,纳米pH传感器通过细胞的胞吞作用可以无损伤地进入细胞,实现细胞内pH的高灵敏、准确、实时、原位、非侵入式的无创快速监测,而且比例型纳米pH传感器可以改善染料浓度、细胞数量及环境变化等因素的影响,实现细胞内pH的定量化研究。细胞内的应用表明,本文制备的纳米pH传感器可以实时测定药物刺激细胞后胞内pH的动态变化,并且发现了地塞米松诱导HeLa细胞的凋亡首先经历了一个细胞内酸化过程,为揭示细胞凋亡机制提供了一种新的研究手段,也为抗癌策略——诱导癌细胞酸化的用药提供了一种新的筛选模式。该传感器的制备方法简单,改变功能化的内核材料可以推广到多种敏感染料的包埋,发展成为一种集成化的纳米传感器,实现多组分的同步分析,而且二氧化硅壳纳米颗粒具有稳定的理化性能、良好的生物相容性,因此基于硅壳纳米颗粒发展的纳米传感器有望用于细胞内多种生理生化变化的实时监测。
     2.利用微乳液法合成了包埋联钌吡啶的硅壳荧光纳米颗粒,通过温和的EDC交联法将生物配体修饰到纳米颗粒上,构建了一种新型的生物功能化的荧光标记探针。EDC交联法反应条件温和,并能有效地保留修饰的生物配体的活性,同时通过基因工程的方法将阴性细胞进行荧光标记,在大量阴性细胞存在的情况下,实现了在同一个显微镜视野下根据荧光分布来判断新型荧光标记探针特异性识别的准确性,为体外细胞的特异识别提供了直观的证据。在此基础上,成功地将这种生物功能化的荧光探针用于外周血中肝癌细胞的识别。硅壳荧光纳米颗粒具有良好的生物相容性、荧光信号强、光稳定性好以及低毒性等优点,这些都为癌细胞的超灵敏检测提供了可能。这种基于荧光纳米颗粒探针的标记方法有望用于
The development of bionanotechnology has provided many new opportunities for the research of biology and medicine. However, many efforts are needed to further develop their applications. Recently, our group has developed a biocompatible core-shell nanoparticle and has carried out systemic researches with the combination of nanotechnology, analytical chemistry, biotechnology and material science. On the basis of our correlative researches, this dissertation focuses on the studies of the nanosensors and gene carriers based on nanoparticles and their applications in the biomedicine.
     1. We synthesized a nanoparticle and utilized it as a pH nanosensor for noninvasive monitoring intracellular pH change induced by drug stimulation. The pH sensor was a two dye doped silica nanoparticle (2DFNS) that contained a pH sensitive indicator (FITC) and a reference dye (RuBPY). The 2DFNS had an average diameter of 42±3nm and could be well dispersed in aqueous solution. This allowed it to be easily taken up by cells for noninvasive intracellular pH measurement. The 2DFNS had excellent pH sensing capability and reproducibility. The dynamic range of the nanosensor was between pH 4 and 7 with a sensitivity of 0.05 pH units. The 2DFNS could act as sensitive ratometric nanosensors for monitoring pH change and the calculation of pH was independent on cell number and dye concentration. This new 2DFNS was used for intracellular pH measurement in a variety of biological samples. Lysosomal pH change in murine macrophages stimulated by chloroquine and intracellular acidification in apoptotic cancer cells were monitored. The 2DFNS was stable and reproducible. There was no dye leakage and the photosatbility was excellent. The biological applications of nanosensors have demonstrated their excellent utility in intracellular measurements. It is possible to develop multiple-analyte sensors by the encapsulation of multiple sensitive dyes, given their high sensitivity and extremely simple fabrication.
     2. Bio-functioned fluorescent silica nanoparticles have been synthesized for cell labeling and cell differentiation and have shown great promise as novel fluorescent probes. The galactose-conjugated fluorescent nanoparticles (GCFNPs) were synthesized by the conjugation of amino-modified fluorescent nanoparticles with lactobionic acid (LA) through EDC linkage. This yielded GCFNPs retained excellent biological activity and could be used to label the hepatocyte as an
引文
[1] Crandall B C. Nanotechnology: Molecular Speculations on Global Abundance. Cambridge: The MIT Press, 1996, 58-70
    [2] Crandall B C, Lewis J. Nanotechnology: Research and Perspectives. Cambridge: The MIT Press, 1992, 40-42
    [3] 白春礼. 纳米科技及发展前景. 微纳电子技术, 2002, 1(1): 2-5
    [4] 李民乾. 纳米科学技术——面向 21 世纪的新科技. 物理, 1996, 21(2): 65-69
    [5] 解思深. 国际纳米科技发展动态. 纳米科技发展调研报告汇编. 科学技术部基础研究司, 2002: 15-47
    [6] 解思深. 纳米生物和医药. 纳米科技发展调研报告汇编. 科学技术部基础研究司, 2002: 104-121
    [7] 胡延义. 纳米技术及其应用. 天津通讯技术, 2000, 4: 11-13
    [8] Weaver R F. Molecular Biology. New York : McGraw-Hill Companies, 2000
    [9] Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer, 2005, 5: 161-171
    [10] Duncan R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2003, 2: 347–360
    [11] Kataoka K, Kwon G S, Yokoyama M, et al. Block copolymers micelles as vehicles. J. Control Release, 1993, 24: 119-132
    [12] Allen T M. Ligand-targeted therapeutics in anticancer therapy. Nature Rev. Drug Discov., 2002, 2: 750–763
    [13] Junghans M, Kreuter J, Zimmer A. Antisense delivery using protamine-oligonucleotide particles. Nucleic Acids Res., 2000, 28: e45 i-viii
    [14] Nam J M, Mirkin C A. Bio-barcode-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc., 2004, 126: 5932–5933
    [15] Kircher M F, Mahmood U, King R S, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res., 2003, 63: 8122–8125
    [16] Mykhaylyk O, Cherchenko A, Ilkin A, et al. Glial brain tumor targeting of magnetite nanoparticles in rats. J. Mag. Mag. Mater., 2001, 225: 241-247
    [17] Kobayashi H, Choyke P L, Brechbiel M W, et al. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J. Natl. Cancer Inst., 2004, 96:703–708
    [18] Cui Y, Wei Q, Hongkun P, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289–1292
    [19] Heath J R, Phelps M E, Hood L. NanoSystems biology. Mol. Imaging Biol., 2003, 5: 312–325
    [20] Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622–625.
    [21] Chen R J, Dai H. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA, 2003, 100: 4984–4989
    [22] Woolley A T, Guillemette C, Cheung C L, et al. Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nature Biotech., 2000, 18: 760–764
    [23] 殷月芬. 金 纳 米 通 道 阵 列 的 制 备 及 通 道 在 化 学 、生 物 分 离 中 的 应 用研 究 : [湖南大学硕士学位论文]. 长沙: 湖南大学, 2002
    [24] 许光明. 基于金纳米通道的 DNA 及 IgG 的分离检测研究: [湖南大学硕士学位论文]. 长沙: 湖南大学, 2003
    [25] Han J, Craighead H G. Separation of long DNA molecules in a microfabricated entropic trap array. Science, 2000, 288: 1026–1029
    [26] Bhatia S N, Chen C. Microfabricated biocapsules provide shortterm immunoisolation of insulinoma xenografts. Biomed. Microdevices, 1999, 1: 131–144
    [27] Meller A, Branton D. Single molecule measurement of DNA transport through a nanopore. Electrophoresis, 2002, 23: 2583–2591
    [28] Hansen K M, Ji H F, Wu G, et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 2001, 73: 1567–1571
    [29] Wu G, Datar R H, Hansen K M, et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol., 2001, 19: 856–860
    [30] Chen H, Han J, Li J, Meyyappan M. Microelectronic DNA assay for the detection of BRCA1 gene mutations. Biomed. Microdevices, 2004, 6: 55–60.
    [31] Fodor S P A, Read J L, Pirrung M C, et al. Light-directed spatially addressable parallel chemical synthesis. Science, 1991, 251: 767–773
    [32] Demers L M, Ginger D S, Park S J, et al. Direct patterning of modifiedoligonucleotides on metals and insulators by dip-pen nanolithography. Science, 2002, 296: 1836–1838
    [33] Lee K B, Park S J, Mirkin C A, et al. Protein nanoarrays generated by dip-pen nanolithography. Science, 2002, 295: 1702–1705
    [34] Lee K B, Mirkin C A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc., 2003, 125: 5588–5589
    [35] Bruckbauer A, Klenerman D. An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc., 2004,126: 6508–6509
    [36] Han M Y, Gao X H, Nie S M, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology, 2001, 19(7): 631-635
    [37] Chan W C, Nie S M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998, 281(25): 2016-2018
    [38] Bruchez Jr M, Morone M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(25): 2013-2016
    [39] Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nature Biotechnology, 2003, 21:41-46
    [40] Santra S, Zhang P, Wang K M, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem., 2001, 73: 4988-4993
    [41] Tan W H, Santra S, Zhang P, et al. Development of novel silica-coated nanoparticles. US Patent, 2001: 09/572,469
    [42] Tapec R, Zhao J, Tan W H, et al. Development of organic dye-doped silica nanopaticle for biosensors and nanodevices. J. Nanotech. and Nanosci., 2002, 3: 405-409
    [43] He X X, Wang K M, Tan W H, et al. Photostable luminescent nanoparticles as biological label for cell recognition of system lumpus erythematosus patients. J. Nanosci. Nanotechnol., 2002, 2(3): 317-320
    [44] Cognet L, Tardin C, Boyer D, et al. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. USA, 2003, 100: 11350-11355
    [45] Schultz S, Smith D R, Mock J J, et al. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA, 2000, 97: 996-1001
    [46] Zhao X, Hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterialcell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. USA, 2004,101: 15027-15032
    [47] 谭蔚泓, 王柯敏, 秦迪岚等. 采用荧光纳米颗粒检测结核杆菌的方法. 中国专利: 200410046806.0, 申请日期:2004-09-28
    [48] Perez J M, Simeone F J, Saeki Y, et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc., 2003, 125: 10192-10193
    [49] H?rm? H, Soukka T, L?vgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clinic. Chem., 2001, 47(3): 561–568
    [50] Soukka T, Paukkunen J, H?rm? H, et al. Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clinic. Chem., 2001, 47(7): 1269-1278
    [51] Ye Z, Tan M, Wang G, et al. Preparation, characterization, fluorometric application of silica-terbium(III) fluorescent nanoparticles. Anal. Chem., 2004, 76: 513-518
    [52] Perez J M, O’Loughin T, Simeone F J, et al. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc., 2002, 124: 2856-2857
    [53] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colormetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277: 1078-1081
    [54] Tanton T A, Mirkin C A, Letsinger R L, et al. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289(8):1757-1759
    [55] Park S J, Taton T A, Mirkin C A, et al. Array-based electrical detection of DNA with nanoparticle probes. Science, 2002, 295(22): 1053-1055
    [56] Cao Y, Jin R, Mirkin C A, et al. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297: 1536-1540
    [57] Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles. J. Am. Chem. Soc., 2003, 125: 11474-11475
    [58] Taylor J R, Fang M M, Nie S. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles Anal. Chem., 2000, 72: 1979-7986
    [59] Pathak S, Choi S K, Arnheim N, et al. Hydroxylated Quantum Dots asLuminescent Probes for in Situ Hybridization. J. Am. Chem. Soc., 2001, 123: 4103-4104
    [60] Lauterbur P C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 1973, 242: 190-191
    [61] 蒋秉植, 杨健美. 磁性液体材料的应用. 化工新型材料, 1994,4:1-5
    [62] Nakatsuka K. Trends of magnetic fluids applications in Japan. J. Magn. Magn. Mater., 1993, 122: 387-394.
    [63] Rheinlander T, Kotitz R, Weitschies W, et al. Magnetic fluids: biomedical applications and fractionation. Magn. Electr., 2000, 10 (3): 179-198
    [64] Reimer P, Weissleder R, Lee A S, et al. Receptor imaging: Application to MR imaging of liver cancer. Radiology, 1990, 177(3) : 729-734
    [65] Hamm B, Staks T, Taupitz M. Contrast-enhanced MR imaging of liver and spleen, first experience in humans with new superparamagnetic iron oxide. J. Magn. Reson. Imag., 1994, 4(5): 659-668
    [66] Kircher M F, Mahmood U, King R S, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res., 2003, 63: 8122-8125
    [67] Kircher M F, Mahmood U, King R S, et al. A multimodal nanoparticle for preoperative magnetic tesonance imaging and intraoperative optical brain tumor felineation. Cancer Res., 2003, 63: 8122-8125
    [68] Bulte J W, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol., 2001, 19 (12): 1141-1147
    [69] Bulte J W, Duncan I D, Frank J A. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J. Cereb. Blood Flow Metab., 2002, 22(8): 899-907
    [70] Norman A B, Thomas S R, Pratt R G, et al. Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res., 1992, 594(2): 279-282
    [71] Franklin R J, Blaschuk K L, Bearchell M C, et al. Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport, 1999, 10(18): 3961-3965
    [72] Mathias H, Ekkehard K S, James B, et al. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA, 2002,99(25): 16267-16272
    [73] Choi H, Choi S R, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad. Radiol., 2004, 11: 996-1004
    [74] Rockall A G, Sohaib S A, Harisinghani M G, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J. Clinic. Oncology, 2005, 23(12): 2813-2821
    [75] Dodd C H, Hsu H C, Chu W J, et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods, 2001, 256: 89-105
    [76] Moore A, Basilion J P, Chiocca E A, et al. Measuring transferring receptor gene expression by NMR imaging. Biochim. Biophys. Acta., 1998, 1402: 239-249
    [77] Bogdanov A Jr, Weissleder R. The development of in vivo imaging systems to study gene expression. Trends Biotechnol., 1998, 16: 5-10
    [78] Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA, 2002, 99: 12617-12621
    [79] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of QDs encapsulated in phospholipid micelles. Science, 2002, 298: 1759-1762
    [80] Daniel R L, Warren R Z, Rebecca M W, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300: 1434-1436
    [81] Lim Y T. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag., 2003, 2: 50-64
    [82] Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dots in mice. Bioconjug. Chem., 2004, 15: 79-86
    [83] Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 2004, 22: 93-95
    [84] Dahan M, Lévi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single–quantum dot tracking. Science, 2003, 302: 442-445
    [85] Lidke D S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol., 2004, 22: 198-203
    [86] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots. Nat. Biotechnol., 2004, 22(8): 969-976
    [87] Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation. Optics Lett., 2001, 26: 893-895
    [88] Josephson L, Kircher M F, Mahmood Ur, et al. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconj. Chem. 2002, 13: 554-560
    [89] Kelly K A, Allport J R, Tsourkas A, et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res., 2005, 96: 327-336
    [90] 熊家林. 无机精细化学品的制备和应用. 北京: 化学工业出版社, 1999
    [91] Clark H A, Barker S L R, Brasuel M, et al. Subcellular optochemical nanobiosensors: probes encapsulated by biologically localized embedding (PEBBLEs). Sensors and Actuators B, 1998, 51: 12-16
    [92] Clark H A, Hoyer M, Philbert M A, et al. Optical nanosensor for chemical analysis inside single living cells.1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal. Chem., 1999, 71: 4831-4836.
    [93] Clark H A, Kopelman R, Tjalkens R, et al. Optical nanosensor for chemical analysis inside single living cells. 2. Sensors for pH and Calcium and the intracellular application of PEBBLE sensors. Anal. Chem., 1999, 71: 4837-4843
    [94] Clark H A, Hoyer M, Parus S, et al. Optochemical nanosensors and subcellular applications in living cells. Mikrochim. Acta., 1999, 131: 121-128
    [95] Xu H, Aylott J W, Kopelman R, et al. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal. Chem., 2001, 73: 4124-4133
    [96] Park E J, Brasuel M, Behrend C, et al. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal. Chem., 2003, 75: 3784-3791
    [97] Brasuel M, Kopelman R, Miller T J, et al. Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal. Chem., 2001, 73: 2221-2228
    [98] McNamara K P, Rosenzweig N, Rosenzweig Z. Liposome-based optochemical nanosensors. Mikrochim. Acta., 1999, 131: 57-64
    [99] Ji J, Rosenzweig N, Griffin C, et al. Synthesis and application of submicrometer fluorescence sensing particles for lysosomal pH measurements in murine macrophages. Anal. Chem., 2000, 72: 3497-3503
    [100] McNamara K P, Nguyen T, Dumitrascu G, et al. Synthesis, characterization, and application of fluorescence sensing lipobeads for intracellular pH measurements. Anal. Chem., 2001, 73: 3240-3246
    [101] Ji J, Rosenzweig N, Jones I, et al. Molecular oxygen-sensitive fluorescent lipobeads for intracellular oxygen measurements in murine macrophages. Anal. Chem., 2001, 73: 3521-3527
    [102] Ma A, Rosenzweig Z. Submicrometric lipobead-based fluorescence sensors for chloride ion measurements in aqueous solution. Anal. Chem., 2004, 76: 569-575
    [103] Lehrman S. Virus treatment questioned after gene therapy death. Nature, 1999, 401(6753): 517-518
    [104] Mashall E. Gene therapy death promotes review of adenovirus vectors. Science, 1999, 286: 2244-2245
    [105] 孙恩杰, 杨冬. 非病毒型基因载体研究进展. 中国生物工程杂志, 2004, 24(4): 21-25
    [106] Felgner P L, Gadek T R, Holm M, et al. Lipofection-a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 1987, 84: 7413-7417
    [107] Nakanishi M, Noguchi A. Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Adv. Drug Delivery Rev., 2001, 52: 197–207
    [108] Noh C H, Uhm T, Oh S M, et al. Treatment of prostate cancer by systemic delivery of p53 and importin genes by using liposome. Eur. Urol. Suppl., 2003, 2(1): 35
    [109] Wu G Y, Wu C H. Receptor-mediated in vitro gene transfection by a soluble DNA carrier system. J. Biol. Chem., 1987, 262(10): 4429-4432
    [110] Boussif O, Lezoualch F, Zanta M A, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in Vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA, 1995, 92(16): 7297-7301
    [111] Chollet P, Favrot M C, Hurbin A, et al. Side effects of a systemic injection oflinear polyethylenimine-DNA complexes. J. Gene Med., 2002, 4: 84-91
    [112] Ogris M, Steinlein P, Kursa M, et al. The Size of DNA/Transferrin-PEI Complexes is an Important Factor for Gene Expression in Cultured Cells. Gene Ther., 1998, 5(10): 1425-1433
    [113] Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferring target gene expression to tumors after systemic application. Gene Ther., 2001, 8: 28-40
    [114] 晶美. PolyPlus. www.jingmei.com, 2005-5-15
    [115] 陆华中. 一种新型纳米材料-树枝状聚合物介导的基因治疗研究. 科技导报, 2002-5-1
    [116] 刘习强, 黄洪章, 张彬等. PAMAM-D 介导 EGFP 基因转染人舌鳞癌细胞的实验研究. 中国口腔颌面外科杂志, 2005, 3(1): 51-55
    [117] Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)- conjugated PAMAM dendrimer for biocompatible high-efficiency DNA delivery. Macromol., 2002, 35: 3456-3462
    [118] Panyam J, Zhou W Z, Prabha S, et al. Rapid endo-lysomal escape of poly (D, L-lactide-co-glycolide) nanoparticles: Implication for drug and gene delivery. FASEB J., 2002, 16: 1217-1226
    [119] Prabha S, Zhou W Z, Panyam J, et al. Size-dependency of nanoparticle-mediated gene transfection: Studies with fractionated nanoparticles. Int. J. Pharm., 2002, 244 (1-2): 105-115
    [120] Prabha S, Labhasetwar V. Nanoparticle-mediated wt-p53 gene delivery results in sustained antiproliferative activity in breast cancer cells, Mol. Pharm., 2004, 1(3): 211-219
    [121] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliver Rev., 2003, 55: 329-347
    [122] Mumper R J, Wang J J, Claspell J M, et al. Novel polymeric condensing carriers for gene delivery. Proc. Int. Symp. Control. Rel. Bioact. Mater., 1995, 22: 178-179
    [123] 张欣, 刘文广, 李永胜等. 非病毒转基因载体的研究进展. 山东生物医学工程, 2002, 4: 43-46
    [124] Park Y K, Park Y H, Shin B A, et al. Galactosylated chitosan-dextran as hepatocyte-targeting DNA carrier. J. Control. Release, 2000, 9: 97-104
    [125] Kean T, Roth S, Thanout M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Control. Release,2005, 103: 643-653
    [126] Thanou M, Florea B I, Geldof M, et al. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 2002, 23: 153-159
    [127] Kim T H, Ihm J E, Choi Y H, et al. Efficient gene delivery by urocanic acid-modified chitosan. J. Control. Release, 2003, 93: 389-402
    [128] 肖苏尧, 刘选明, 童春义等. 多聚赖氨酸淀粉纳米颗粒基因载体的研制及应用. 中国科学 B 辑, 2004, 34(6): 473-477
    [129] 刘俊, 刘选明, 肖苏尧等. 基于超声波下淀粉纳米颗粒作载体的基因转导. 高等学校化学学报, 2005, 26(4): 634-637
    [130] Leong K W, Mao H Q, Truong-Le V L, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Rel., 1998 , 53: 183-18
    [131] Fang J, Zhu Y Y, Smiley E, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl. Acad. Sci. USA, 1996, 93: 5753-5758
    [132] Poneet P, Panezak, Goupy C, et al. An antibody-mediated method to introduce genes into lymphoid cells in vitro and in vivo. Gene Ther., 1996, 3: 731-738
    [133] Durrbach A, Angevin E, Poneet P, et al. Antibody-mediated enocytosis of G250 tumor-associated antigen allows targeted gene transfer to human renal cell careinoma in vitro. Gene Ther., 1999, 6: 564-571
    [134] Esser D, Amanuma H, Yoshiki A, et al. A hyperthermostable bacterial histone-like protein as an efficient mediator for transfection of eukaryotic cells. Nat. Biotechnol., 2000, 18: 1221-1224
    [135] 薛志刚, 郑多, 阮建明等. 硅壳纳米颗粒作为基因转染载体的研究. 遗传学报, 2003, 30(7): 606-610
    [136] Kneuer C, Sameti M, Haltner E, et al. Silica nanoparticles modified with amino-silanes as carriers for plasmid DNA. Int. J. pharm., 2000, 196(2): 257-261
    [137] Kneuer C, Sameti M, Bakowsky U, et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chem., 2000, 11: 926-932
    [138] Roy I, Ohulchanskyy T, Bharali D, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA, 2005, 102(2): 279-284
    [139] Zhu S G, Lu H B, Xiang J J, et al. A novel nonviral nanoparticle gene vector:Poly-L-lysine-silica nanoparticles. Chinese Sci. Bull., 2002, 47( 8): 654-658
    [140] 朱诗国, 甘凯, 李征等. 多聚赖氨酸-硅壳纳米颗粒生物相容性研究. 癌症, 2003, 2(10): 1114-1117
    [141] 何晓晓, 王柯敏, 谭蔚泓等. 基于氨基化 SiO2 纳米颗粒的新型基因载体. 科学通报, 2002, 47(18): 1365-1369
    [142] He X X, Wang K M, Tan W H, et al. Bioconjugated nanoparticles for DNA Protection from Cleavage. J. Am. Chem. Soc., 2003, 125: 7168-7169
    [143] Roy I, Mitra S, Maitra A, et al. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm., 2003, 250(1): 25-33
    [144] Bisht S, Bhakta G, Mitra S, et al. pDNA loaded calcium phosphate nanoparticles: Highly efficient non-viral vector for gene delivery. J. Nanoparticle Res., 2005, 288(1): 157-168
    [145] Zhu S H, Huang B Y, Zhou K C, et al. Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanoparticle Res., 2004, 6: 307-311
    [146] Kumta P N, Sfeir C, Lee D H, et al. Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization. Acta Biomaterial, 2005, 1: 65-83
    [147] Sandhu K K, McIntosh C M, Simard J M, et al. Gold nanoparticles mediated transfection of mammalian cells. Bioconjugate Chem., 2002, 13(1): 3-6
    [148] Pauneskui T, Rajh T, Widerrecht G, et al. Biology of TiO2-oligo nucleotide Nanocomposites. Nat. Materials, 2003, 2: 343-346
    [149] Mao S J, Hou S X, He R, et al. Uptake of albumin nanoparticle surface modified with glycyrrhizin by primary cultured rat hepatocytes. World J. Gastroenterol, 2005, 11 (20): 3075-3079
    [150] Roy I, Ohulchanskyy T Y, Pudavar H E. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc., 2003, 125 (26): 7860-7865
    [151] 张阳德, 翟登高, 龚连生等.半乳糖化白蛋白磁性阿霉素纳米粒制备工艺的优化. 中国医学工程, 2004, 12 (4): 324-327
    [152] Thompson W W, Anderson D B, Heiman M I. Biodegradable microspheres as a delivery system for rismorelin porcine, a porcine growth hormone releasing hormone. J. Control. Rel., 1997, 43 (l): 9-22
    [153] Foster T P, Moseley W M, Caputo J F, et al. Sustained elevated serumsomatotropin concentrations in Holstein steers following subcutaneous delivery of a growth hormone releasing factor analog dispersed in water, oil or microspheres. J. Control. Rel., 1997, 47 (l): 91-99
    [154] Damge C, Hillairebuys D, Puech R, et al. Effects of orally administered insulin nanocapsules in normal and diabeticd dogs. Diabetes, 1995, 8 (l): 3-9
    [155] Gaspar R, Opperdose F R, Preat V, et al. Drug targeting with Polyalkylcyanoacrylate nanoparticles: In vitro activity of primaquine- loaded nanoparticles against intracellular leishmania donmovani. Ann. Tropic. Med. and Parasitol., 1992, 86 (l): 41-49
    [156] Costanzo P J, Liang E, Patten T E, et al. Bio-molecule detection via target mediated nanoparticle aggregation and dielectrophoretic impedance measurement. Lab Chip, 2005, 5 (6): 606-610
    [157] Fresta M, Puglisi G, Giammona G, et al. Pefloxacine mesilate-loaded and ofloxacin-loaded polyethylcyanoacrylate nanoparticles- characterization of the colloidal drug carrier formulation. J. Pharm. Sci., 1995, 84(7): 895-902
    [158] Leroux J C, Cozens R, Roesel J L, et al. Pharmacokinetics of a novel HIV-iprotease inhibitor incorporated into biodegradable or enteric Nan particles following intravenous and oral administration to mice. J. Pharm. Sci., 1995, 84(12): 1387-1391
    [159] Lobenberg R, Kreuter J. Macrophage targeting of azidothymidine: a promising strategy for AIDS therapy. AIDS Res. Hum. Retrovir., 1996, 12(18): 1709-1715
    [160] 孙彦. 生物分离工程. 北京: 化学工业出版社, 1998
    [161] 周加祥, 刘铮. 生物分离技术与过程研究进展. 化工进展, 2000, 6: 38-41
    [162] Safarikova M. Use of magnetic techniques for the isolation of cells. J. Chromatography B, 1999, 722: 33-53
    [163] Vaccaro D E. Application of magnetic separation: Cell sorting. Am. Biotech. Lab, 1990, 40: 178-200
    [164] Sonti S V, Bose A. Cell separation using protein-A-coated magnetic nanoclusters. J. Colloid. Interface Sci., 1995, 170: 575-585
    [165] 张立德, 牟季美. 纳米材料学. 辽宁: 辽宁科学技术出版社, 1994
    [166] Gu H W, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-postive bacterial at ultralow concentration. J. Am. Chem. Soc., 2003, 125: 15702-15703
    [167] 郭立安, 陈万录, 朱宝泉. 磁性免疫微球德合成及其在基因重组 IL-2 纯化中的应用. 细胞与分子免疫学杂志, 1999,1
    [168] Xu C J, Xu K M, Gu H W, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am. Chem. Soc., 2004, 126: 3392-3393
    [169] Bucak S, Jones D A, Laibinis P E, et al. Protein separations using colloidal magnetic nanoparticles. Biotechnol. Prog., 2003, 19: 477-484
    [170] Maier M, Fritz H, Gerster M, et al. Quantitation of phosphorothioate oligonucleotides in human blood plasma using a nanoparticle-based method for solid-phase extraction. Anal. Chem.,1998, 70: 2197-2204
    [171] Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem., 2003, 75: 3476-3483
    [172] 王柯敏, 何晓晓, 李杜等. 氨基化硅壳类纳米颗粒材料在核酸富集及纳米传感中的应用. 中国专利: 02114158.4
    [173] 何晓晓, 王柯敏, 李杜等. 基于氨基化功能纳米颗粒的新型 DNA 富集分离技术. 首届全国微全分析会议论文摘要集, 北京, 2002
    [174] 何晓晓, 王柯敏, 谭蔚泓等, 超顺磁性 DNA 纳米富集器应用于痕量寡聚核苷酸的富集. 高等学校化学学报, 2003, 24(1): 40-42
    [175] 何晓晓. 生物亲和性核壳纳米颗粒研究及其在生物/医学中的应用: [湖南大学博士学位论文]. 长沙: 湖南大学, 2003
    [176] 原茵, 何晓晓, 王柯敏等. 嵌合异硫氰酸罗丹明 B 核壳荧光纳米颗粒制备新方法的研究. 高等学校化学学报, 2005, 26(3): 446-448
    [177] 何晓晓, 王柯敏, 谭蔚泓等. 基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用. 科学通报, 2001, 46(16): 1353-1356
    [178] Busa W B, Nuticelli R. Metabolic regulation via intracellular pH. Am. J. Physiol. Regulatory Integrative Comparative Physiol., 1984, 246: 409-438
    [179] Grainger J L, Winkler M M, Shen S S, et al. Intracellular pH controls protein synthesis rate in the sea urchin egg and early embryo. Dev. Biol., 1979, 68: 396-406
    [180] Caceres-Cortes J, Rajotte D, Dumouchel J, et al. Product of the steel locus suppresses apoptosis in hemopoietic cells. Comparison with pathways activated by granulocyte macrophage colony-stimulating factor. J. Biol. Chem., 1994, 269: 12084–12091
    [181] Gottlieb R A, Giesing H, Zhu J, et al. Cell Acidification in Apoptosis:Granulocyte Colony-Stimulating Factor Delays Programmed Cell Death in Neutrophils by Up-Regrading The Vacuolar H+-ATPase. Proc. Natl. Acad. Sci. USA, 1995, 92: 5965–5968
    [182] Gottlieb R A, Nordberg J, Skowronski E, et al. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc. Natl. Acad. Sci. USA, 1996, 93: 654–658
    [183] Zen J M, Patonay G. Near-infrared fluorescence probe for pH determination. Anal. Chem., 1991, 63: 2934-2938
    [184] Price J M, Xu W, Demas J N, et al. Polymer-supported pH sensors based on hydrophobically bound luminescent ruthenium(II) complexes. Anal. Chem., 1998, 70: 265-270
    [185] Clarke Y, Xu W, Demas J N, et al. Lifetime-based pH sensor system based on a polymer-supported ruthenium(II) complex. Anal. Chem., 2000, 72: 3468-3475
    [186] Xin Q, Wightman R M. Simultaneous detection of catecholamine exocytosis and Ca2+ release from single bovine chromaffin cells using a dual microsensor. Anal. Chem., 1998, 70: 1677-1681
    [187] Rosenzweig Z, Kopelman R. Development of a submicrometer optical fiber oxygen sensor. Anal. Chem., 1995, 67: 2650-2654
    [188] 鄂征. 组织培养和分子细胞学技术. 北京: 北京出版社, 1995
    [189] 何晓晓, 王柯敏, 谭蔚泓等. 静电相互作用对微乳液法制备核壳纳米颗粒的影响研究. 科学通报, 2005, 印刷中
    [190] Thomas J A, Buchsbaum R N, Zimniak A, et al. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry, 1979, 18: 2210–2218
    [191] Lukas G L, Rotstein O D, Grinstein S. Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H(+)-ATPase activity, counterion conductance, and H+ "leak". J. Biol. Chem., 1991, 266: 24540-24548
    [192] Schmid I, Uittenbogaart C H, Keld B, et al. A rapid method for measuring apoptosis and dual-color immunofluorescence by single laser flow cytometry. J. Immunol. Methods, 1994, 170(1): 145-157.
    [193] Brown D G, Sun X M, Cohen G M. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J. Biol. Chem., 1993, 268: 3037-3039
    [194] Engeland M V, Nieland L J W, Ramaekers F C S, et al. Annexin V-affinityassay:a review on an apoptosis detection system based on phosphatidyl-serine exposure. Cytometry, 1998, 31: 1-9
    [195] Karuri A R, Dobrowsky E, Tannock I F. Selective cellular acidifi-cation and toxicity of weak organic acids in an acidific micro- environment. Br. J. Cancer, 1993, 68(6): 1080-1085
    [196] Parkin D M, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J. Clin., 1999, 49: 2, 33-64
    [197] von Knebel D M, Lacroix J. Nucleic acid based techniques for the detection of rare cancer cells in clinical samples. Cancer Metast. Rev., 1999, 18: 43-64
    [198] Pantel K, Cote R J, Fodstad O. Detection and clinical importance of micrometastatic disease. J. Natl. Cancer Inst., 1999, 91: 1113-1124
    [199] Robinson P J. Imaging liver metastases: Current limitations and future prospects. Br. J. Radiol., 2000, 73: 234-241
    [200] Hirsch F R, Franklin W A, Gazdar A F, et al. Early detection of lung cancer: Clinical perspectives of recent advances in biology and radiology. Clin. Cancer Res., 2001, 7: 5-22
    [201] Stacker S A, Caesar C, Baldwin M E, et al. VEGF-D promotes the metastatic spread of tumour cells via the lymphatics. Nat. Med., 2001, 7:186-191
    [202] Wang D, He J, Resenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano. Lett., 2004, 4: 409
    [203] Fung J C, Marshall W F, Dernburg A D, et al. Homologus chromosome paring in drosophila melanogaster proceeds through multiple independent initiations. J. Cell Biol., 1998, 141: 5-20
    [204] Bornhop D J, Hubbard D S, Houlne M P, et al. Fluorescent tissue site-selective lanthanide cHeLate, Tb-PCTMB for eEnhanced imaging of cancer. Anal. Chem., 1999, 71: 2607
    [205] He X, D J, Wang K, et al. A Novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J. Nanosci. Nanotechnol., 2004, 4(6): 585-589
    [206] Chung L A. A fluorescamine assay for membrane protein and peptide samples with non-amino containing lipids. Anal. Biochemistry, 1997, 248: 195-201
    [207] Dubis M, Gilles K A; Hamilton J K, et al. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28, 350.
    [208] 姜泊 , 张亚历 , 周殿元 . 分子生物学常用实验方法 . 人民军医出版社 ,159-161
    [209] 李崇辉, 温守明, 池木根等. 肝靶向配体半乳糖基白蛋白和多聚谷氨酸.生物化学与生物物理进展, 1998, 25(6): 532-535
    [210] Loke S L, Stein C A, Zhang X H, et al. Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. USA, 1989, 86: 3474-3478
    [211] Yakubov L A, Deeva E A, Zarytova V F, et al. Mechanism of oligo- nucleotide uptake by cells: Involvement of specific receptors. Proc. Natl. Acad. Sci. USA, 1989, 86: 6454-6458
    [212] Galbraith W M, Hobson W C, Giclas P C, et al. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res. Dev., 1994, 4: 201-206
    [213] Dagle J M, Andracki M E, DeVine R J, et al. Physical properties of oligonucleotides containing phosphoramidate-modified internucleoside linkages. Nucleic Acids Res., 1991, 19( 8): 1805-1810
    [214] Hanvey J C, Peffer N J, Bisi J E, et al. Antisense and antigene properties of peptide nucleic acids. Science, 1992, 258: 1481-1485
    [215] Krieg A M, Yi A K, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 1995, 374: 546-549
    [216] Zobel H P, Kreuter J, Werner D, et al. Cationic polyhexyl- cyanoacrylate nanoparticles as carriers for antisense oligonucleotides. Antisense Nucleic Acid Drug. Dev., 1997, 7: 483-493
    [217] Anderson W F. Human gene therapy. Nature, 1998, 392(6679): 25-30
    [218] Li F, Ackermann E J, Bennett C F, et al. Pleiotropic cell-division defects and apoptosis induced by interference with surviving function. Nat. Cell Biol., 1999, 1(12): 461-466
    [219] 梅柱中. 凋亡抑制蛋白与细胞凋亡调控.国外医学遗传学分册, 1999, 22(6): 281-285
    [220] Twentyman P R, Luscombe M. A study of some variables in tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer. 1987, 56, 279-285
    [221] Temin H M. Safety considerations in somatic gene therapy of human disease with retroviral vectors. Hum. Gene Ther., 1990, 1: 111-123
    [222] Erbacher P, Zou S, Bettingger A M, et al. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfectionability. Pharm. Res., 1998, 15: 1332-1339
    [223] Richardson S C W, Kolbe H J V, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm., 1999, 178: 231-243
    [224] Lee K Y, Kwon I C, Kim Y H, et al. Preparation of chitosan self-aggregates as a gene delivery system. J. Control. Rel., 1998, 51: 213-220
    [225] Mao H Q, Roy K, Truong-Le V L, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Rel., 2001, 70: 399-421
    [226] 蒋挺大. 壳聚糖, 北京: 化学工业出版社, 2001
    [227] Schatalein A G. Non-viral vectors in cancer gene therapy: principles and progress. Anti-Cancer Drugs, 2001, 12: 275-304
    [228] Pollard H, Remy J S, Loussouarn G, et al. Polyethylenimine but not cationic lipids promotes trasngene delivery to the nucleus in mammalian cells. J. Biol. Chem., 1998, 273: 7507-7511
    [229] Kircheis R, Wagner E. Polycation/DNA complexes for in vivo gene delivery. Gene Ther. Regul., 2000, 1: 95-114
    [230] Alonso M J, Calvo P, Remunan C, et al. Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms. EP 0 860 166 A1
    [231] Wilhelm C, Gazeau F, Roger J, et al. Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir, 2002, 18(21): 8148-8155
    [232] Gupta A K, Curtis S G. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials, 2004, 25(15): 3029–3040
    [233] Dawson G F, Halbert G W. The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles. Pharm. Res., 2000, 17(11): 1420-1425
    [234] Suh K, Jeong B, Liu F, et al. Cellular uptake study of biodegradable nanoparticles in muscular smooth cells. Pharm. Res., 1998, 12: 1495–1498
    [235] Zhang L, Hou S X, Mao S J, et al. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Inter. J. Pharm., 2004, 287(1-2): 155-162
    [236] Silverstein S C, Steinmann R M, Cohn Z A. Endocytosis. Ann. Rev. Biochem., 1977, 46: 669-722
    [237] 谢红浪, 刘志红. 囊泡介导的细胞物质转运. J Nephrol Dialy Transplant, 1997, 6 (1): 50-57
    [238] Lutz W, Kumar R. Hypertonic sucrose treatment enhances second messenger accumulation in vasopressin-sensitive cells. Am. J. Physi., 1993, 264(2 Pt 2): F228–F233
    [239] Madshus I H, Sandvig K, Olsnes S, et al. Effect of reduced endocytosis induced by hypotonic shock and potassium depletion on the infection of Hep 2 cells by picornaviruses. J. Cellular Physi., 1987, 131(1): 14-22
    [240] Panyam J, Zhou W Z, Prabha S, et al. Rapid endo-lysosomal escape of poly(DL-lactide-coglycolide) nanoparticles: Implications for drug and gene delivery. The FASEB Journal, 2002, 16(10): 1217-1226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700