遂宁—阿坝低密度测氡及地球化学场的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氡气勘查地球化学技术的应用研究始于1904年的加拿大,美国在上世纪50年代中期至60年代已有比较成功的应用,现在在我国该技术仍然处于不断探索和逐步完善阶段,还没有得到广泛推广使用,其原因在于氡气测量技术对样品采集条件的要求比较严格,对仪器设备检测精度的要求比较高。经过了几十年的努力,直到最近2-3年,此类设备才被应用在已知油气田上进行大量的试验研究,均取得了初步的效果。前人对氡的地球化学特性、氡气勘查方法的原理、氡气在矿床成因中的机理,以及应用氡气技术在了解断裂构造活动、寻找地下水、寻找矿产资源等方面的研究已取得了一些成果。
     宋利中等人在研究岩性油气藏时,专门对砂岩层尖灭端和透镜体油气藏进行研究。在砂岩层上倾尖灭端发现Rn异常明显增强,并向外逐渐降低,而油藏正上方Rn异常则较弱。这是岩性油藏在砂岩层尖灭处存在着油田水过渡带,砂岩层尖灭只是岩层物性变差的界线,由于物性变差,导致油气在二次运移过程中排替其中所含水的阻力变大,使油气不能在其中聚集。因此,砂岩层尖灭处不仅是物性变差的界面,而且是岩性油藏的油水边界,但这种油水界面往往不易被人们所注意。
     施俊法和向运川等人受Mandlbrot的海岸线分形模型的启发,认为既然地球化学异常具有分形特征,他们通过实验验证了地球化学异常标度不变性的原理,并且在2km-180km范围内多数元素在不同尺度下具有自相似性的特征。
     王学求、迟清华、孙宏伟以东天山为例进行了荒漠戈壁区超低密度地球化学调查与评价,使用超低密度地球化学方法达到了可以迅速有效圈定大型矿床或矿集区战略靶区,通过1.5×10~5 km~2地球化学调查,制作了30余种元素地球化学图,填补了东天山部分地区地球化学空白,新发现远景Cu、Au、U和W异常10余处,并发现东天山存在3条Cu异常带,东天山北带,中带和南带,其中土屋铜矿和黄山铜镍矿都位于中带。新发现的维权铜矿位于南带,北带还有待于进一步证实,相信这些异常的发现,对今后整个东天山矿产勘查的战略部署具有重要意义。
     L Pizzino、P Burrato、F Quattrocchi and G Valensise,他们以1783年2月5日意大利南部卡拉布里亚地震为例,研究了深大活动断裂地球化学特征,利用地下水的氡气异常,根据Lepeltier(1969)提出的图解法,对脆性变形(断层和破裂)在不同环境下对溶解氡的分布的影响进行了识别和评估。斜率的变化和氡积累频率数图上的直线部分可以帮助确定背景值范围、识别污染及与特定地质结构过程相关的异常样品识别。
     但是对于一个大的块体,例如上千公里,利用高密度氡气测量显的不太现实,成本也高,所以应采用低密度测氡。用超低密度地球化学测量方法,可以快速地掌握全局,确定区域成矿带的地球化学异常特征,然后在具有远景的靶区进一步深入研究,使勘查靶区逐渐缩小,从而逐步逼近矿床,需要指出的是,我们并不是说直接用这种方法来找矿,而依据这种地球化学测量结果,在异常区加密取样,一步步地逼近矿床,这种思路比起一开始就将目标集中矿床上,其成本效益要高得多。
     本论文首先讨论了低密度测氡的理论基础,根据地球化学异常的标度不变性,结合大量地质工作者的实践证明了这一理论的正确性,本人以这一理论为前提,把它应用于低密度测氡,和课题组从遂宁-阿坝进行采取2公里测一个点的方法,采集了225个数据,通过对数据的处理,结合当地的地质背景,成功的验证了这一理论的正确性,不仅和当地的地质背景符合的很好,而且还有新的突破,说明对于一个大的块体,低密度测氡是可行的、先进的。
     什么是地球化学异常标度不变性呢?所谓标度是指测量单位,标度不变性或无标度性,就是指所研究的客体与尺度无关,也就是说对研究的客体进行放大或缩小,所得客体的形态!复杂程度!不规则性等各种特性均不会发生变化。通俗地说,如果用放大镜来观察一个客体,不管放大倍数如何变化,看到的情形是一样的,从观测到的图像无法判断所用的放大镜的倍数。具有标度不变性的客体称为分形。一般情况下,自相似性会有比较复杂的表现形式,而不一定是局域放大一定倍数以后简单地和整体完全重合,而且常常称为统计意义上的自相似性。自相似性的特点是通常存在于一定范围内的,这个范围称为无标度区间。
     结果显示,对于断层处和地层的分界处氡的浓度往往较高,同时氡的浓度的高低也反映了油气中心与油水界面氡的特征,同时通过对氡的频次累积分布图,也可以对地下流体的活动状况进行分析,拓展的氡在地质勘探中的应用范围。
The application investigate of gas radon perambulation geochemistry technology started with Canada in 1904. The US had in the mid-1950s to the 60s compares the successful application . It just started in our country and not use it abroad.Because the gas radon surbey technology is strict with gathering condition of sample and detection precision of apparatus equipment. After several dozens year endeavor until the recent 2-3 years, this kind of equipment is applied only then carries on the known oil-gas field the massive experimental study. We has made the preliminary progress. The predecessor to the radon geochemistry characteristic, the radon investigation method's principle, the radon in ore deposit origin mechanism, as well as using the radon technology in the understanding faulted structure activity, seeks for the ground water, to seek for aspect and so on mineral resource research to make some progresse.
     Song Lizhong do some research on the specialized layer of sandstone and pinch-lens reservoir study. In the sandstone layer on the dumping pinch-Rn found abnormal markedly improved, and gradually reduce the field, and the reservoirs are at the top of Rn anomaly is weak. This is in the sandstone reservoir lithology of the Department pointed out there is a transitional zone oil field water, pinch of sandstone layer of rock is only the deterioration of the line, due to physical deterioration, resulting in secondary migration of oil and gas in the process of displacement of the aquifer Resistance to change, in which the oil and gas can not be gathered. Therefore, the sandstone layer is not only pointed out the physical deterioration of the interface, but also the oil-water reservoir lithology border, but the oil-water contact is often difficult to be people's attention.
     Shi Junfa and Xiang Yunchuan, who by Mandlbrot coastline fractal model inspired by that since the geochemical anomalies have fractal characteristics, through their experimental verification of the geochemical anomalies scale invariance principle, and in the 2 km-180km range Most of the elements in different scales of self-similarity of characteristics.
     Wang Xueqiu, Chi Qinghua, Sun Hongwei have an example of the Tianshan Mountains east of the Gobi desert areas ultra-low-density geochemical survey and evaluation, the use of ultra-low-density geochemical methods can be reached quickly and effectively delineated large-scale ore deposit, or set strategic target area, Through geochemical surveys, has produced more than 30 elements geochemistry map, fill in parts of the eastern Tianshan geochemical blank, the new found vision of Cu, Au, U and W unusual for more than 10, and found there three eastern Tianshan Cu Anomaly zone, with the North East Tianshan, in the zone and South zone, which Tsuchiya Huangshan copper and copper-nickel mine are located in the zone. IPR protection of newly discovered copper mine located in the south zone, the northern zone also need to be further confirmed, I believe that the discovery of these anomalies in the future the entire eastern Tianshan mineral exploration of the strategic plan is of great significance.
     L Pizzino, P Burrato, F Quattrocchi and G Valensise, they February 5, 1783 earthquake Calabria in southern Italy as an example to study the deep geochemical characteristics of active faults, the use of groundwater radon anomaly, according to Lepeltier (1969) put the graphic method, the brittle deformation (fault and rupture) in different environments on the distribution of radon dissolved the impact of the identification and assessment. Slope of the frequency of change and accumulation of radon on the map part of a straight line can help determine the scope of background values, pollution and identify specific geological structure and process-related samples to identify abnormalities.
     But for a large block, for example, more than 1,000 kilometers, using high-density measurement of radon gas in the not too realistic, high-cost, low-density test should be used radon. With ultra-low-density geochemical measurement method, can quickly grasp the overall situation, identify regional metallogenic belt of geochemical anomalies characteristic, and then a long-term target of further study, exploration target gradually reduced, thereby gradually approaching deposits, It must be pointed out is that we are not saying that the direct use of this approach to prospecting and geochemical survey results based on this, the abnormal area encryption sampling, step by step approach deposits, compared to the beginning of this line of thought will be focused deposit, The cost-effectiveness is much higher.
     The present paper first discussed the low density to measure that the radon therationale, according to the geochemical anomaly the scale invariability, the union massive geologist's practice had proven this theory's accuracy, myself take this theory as the premise, applied it in the low density measures the radon, carried on with the topic-based group from the Suining - pa adopts 2 kilometers to measure that a spot the method, has gathered 225 data, through to the data processing, unified local the geological background, the success confirmation this theory accuracy, not only tallied with the local geological background is very good, moreover also had the new breakthrough, explained regarding one bigThe body, the low density measured that the radon is feasible, advanced.
     What is the Geochemical Abnormal Scale invariance? The so-called scaling is unit of measurement, scale invariance or scale-free, that is, the object of the study has nothing to do with the scale, that is the object of the study conducted zoom in or out, from the shape of the object! Complexity! Irregular Sexual and other characteristics will not change. Tongsudeshuo, if we use a magnifying glass to observe the object, regardless of how changes in magnification to see the situation is the same, from the observation that the images could not be judged by the magnifying glass used in multiples. Scale invariance with the object known as fractal. Under normal circumstances, the self-similarity will be more complicated form of expression, and not necessarily a certain multiple of local Larger after a brief and the overall total coincidence, often called the statistical sense of the self-similarity. Since the similarity of the characteristics is usually exist in a certain range, known as the scope of this scale-free interval.
     The result showed that and the stratum dividing line place radon's density isoften high regarding the fault place, simultaneously the radon density's height has also reflected the oil gas center and the water-oil interface radon characteristic, simultaneously through to radon frequency accumulation distribution map, may also carry on the analysis to the underground fluid active condition, the development radon in geological prospecting application scope.
引文
[1]施俊法,向运川.地球化学异常标度不变性与超低密度地球化学填图[J].地质与勘探,2000:68-74
    [2]孙凯男,郭秋菊,程建平.土壤物理性质对土壤氡浓度及地表氡析出率的影响[J].2004.
    [3]贾文懿,方方,周荣生,等.氡及其子体运移规律与机理研究[J].核技术,2000:170-175
    [4]石玉春,吴燕玉.放射性物探[M].北京:原子能出版社,1986.
    [5]蔡立国,刘伟新,宋立珩,等.松潘-阿坝地区盆地演化及油气远景[J].石油与天然气地质,2005,26(1):92-98.
    [6]刘飞,陈岳龙,苏本勋,等.松潘-甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究[J].地球学报,2006,27(4):289-296.
    [7]候立伟.川西、藏东三叠纪沉积-构造演化[M].北京:地质出版社,1991.
    [8]郝芳,邹华耀,龚再升,等.新(晚期)构造运动的物质、能量效应与油气成藏[J].地质学报,2006,80(3):424-431.
    [9]杜德勋,罗建宁,惠兰.巴颜喀拉三叠纪沉积盆地岩相与古地理-以阿坝-若尔盖盆地为例[J].岩相古地理,1998,18(1):1-18.
    [10]辜学达,刘啸虎.1997年全国地层多重划分对比研究(51)四川省岩石地层[M].武汉:中国地质大学出版社.
    [11]郝子文,俞如龙,等.论昆仑-巴颜喀拉海及其与特提斯洋演化关系[C].青藏高原地质文集(12),北京:地质出版社,1983.
    [12]陈衍景.陆内碰撞造山体制下的流体演化模式:理论推导和动秦岭金矿氧同位素证据[J].地学前缘,1996,3(4):282-289.
    [13]邓康龄,蔡建中,陈在雄.甘孜地区地质的初步认识[J].1960,2:172-176.
    [14]杜德勋,罗建宁,陈明,等.巴颜喀拉三叠纪沉积盆地岩石地球化学特征与物源区构造背景的探讨-以阿坝-若尔盖、小金-马尔康及雅江盆地为例[J].岩相古地理,1999,19(2):1-20.
    [15]陈明,何文劲,梁斌,等.川西高原西康群极低级变质岩特征[J].四川地质学报,200121(2):65-69.
    [16]李巨初,刘维国.近地表油气藏地球化学异常一种可能的形成机理[J].中国科技论文在线.2005:1-5.
    [17]贾国相,赵友方,姚锦其等.氡气勘查地球化学技术的研究与应用[J].矿产与地质,2005.:60-65
    [18]L Pizzino,P Burrato,F Quattrocchi,等.深大活动断裂地球化学特征:以1783年2月5日意大利南部卡拉布里亚地震为例[J].国际地震动态,2006.07.
    [19] Arae D, Worley B, Wilson C, et al. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau. Tectonophysics, 1997, 280(3-4): 239-256.
    [20] Bahatia M.R, Crook K A W. Trace element characterics of graywacks and tectonic setting discrimination of sedimentary basins. contributions mineralo gypetrology, 1986,92:181-193.
    [21] Bons P.D. ,J. Arnold. Accumulation and Self-orgalization in hydrofracture transport of fluids. Journal of Geo-chemical Exploration,78-79(2003)667-670.
    [22] Brown & Hoek,Trends in relationships between measured in situ stress and depth. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1978,15,4,211-215.
    [23] Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (central China): provenance and tectonic correlations. Earth Planetary Sci Lett., 1997,152(1-4): 217-231.
    [24] Burchfiel B C , Chen Z, Liu Y, et al. Tectonics of the Longmen Shan and adjacent regions , central China. Int Geoi Rev, 1995 ,37. 661-735.
    [25] Burchfiel B C, Chen Z, Liu Y, et al. Tectonics of the Longmen Shan and adjacent regions, central China. Int. Geol. Rev., 1995,37: 661-735.
    [26] Calassou, S., 1994. Etude tectonique d'une chaine de decollement—tectonique Triassique et Tertiaire de la chaine de Songpan Garze (Est Tibet). These, Diplome de Doctorat, Universite de Montpellier II, Unpublished.
    [27] Chang, E Z. 2000. Geology and tectonics of the Songpan-Ganzi fold belt, southwestern China. International Geology Review, 42: 813-831.
    [28] Chen, S.F., Wilson, C.J.L., Worley, B.A., 1995. Tectonic transition from the Songpan-Garze Fold Belt to the Sichuan Basin, southwestern China. Basin Research 7,235-253.
    [29] Clark, M.K., Royden, L.H., 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 28, 703-706.
    [30] Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W, Wang, E., Chen, L, 2004. Surface uplift, tectonics and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23, TC1006. doi:10.1029/2002TC001402.
    [31] Corbella M., CAyora, E.Cardellach. Dissolution of deep carbonate rocks by fluid mixing: a discussion based on reactive transport modeling; Journal of Geochemical Exploration 78-79(2003):211-214;
    [32] Cosgrove J W. Hydraulic fracturing during the formation and deformation of a basin:A factoring the dewatering of low-permeability sediments J.AAPG Bulletin, 2001,85(4):737-748.
    [33] Cosgrove J W. The role of geology in reservoir characterization,1995, Fractography: fracture topography as a tool in fracture mechanics and stress analysis:Geoliogical Society Special Publication 92, p. 187-196.
    [34] Dewey J F, Shackleton R M, Chang C, et al. The tectonics of theTibetan plateau. Phil Trans R Soc London, 1988, 327: 379-413.
    [35] Dirks, P.G., Wilson, C.J.L., Chen, S.F., Luo, Z.L., Liu, S., 1994. Tectonic evolution of the NE margin of the Tibetan Plateau; evidence from the central Longmen Mountains, Sichuan Province, China. Journal of Southeast Asian Earth Sciences 9,181-192.
    [36] Gu X X. Geochemical characteristics of the Triassic Tethys-turbidites in northwestern Sichuan, China: implications for provenance and interpretation of the tectonic setting. Geochim. Cosmochim. Acta, 1994,58: 4615-4631.
    [37] Hafner, Stress distributions and faulting. Gol. Soc. Am. Bull., 1951,62,373-398.
    [38] Hao Fang, Li Sitian, Gong Zaisheng 等, Thermal regime, inter-reservoir compositional heterogeneities, and reservoir-filling history of the Dongfang Gas Field, Yinggehai Basin, South Chian Sea:Evidence for episodic fluid injections in overpressured basins. AAPG Bulletin, 2000,84(5):607-626.
    [39] Harrowfield M J, Wilson C J L. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. Journal of Structural Geology, 2005,27(1): 101-117.
    [40] Hsu K, Pan G, Sengor A M C, et al. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis. Int. Geol. Rev., 1995,37:473-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700