文冠果的生物炼制工艺与技术经济分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文冠果作为一种优质的非粮木本油料植物,被国家确定为重点开发的生物柴油原料资源之一。在用文冠果种仁油生产生物柴油的同时,将会产生大量的果壳、种皮、油渣和副产物甘油,这些副产资源都具有较高的潜在经济价值,如果得不到合理的开发利用,会造成巨大的资源浪费。本文针对目前文冠果利用中存在的问题,在利用文冠果生产生物柴油的同时,考虑其它副产物资源的充分利用,对文冠果生物炼制多产物联产的工艺和方法做了探索性研究,以期为文冠果资源的综合开发利用提供科学指导与技术支撑。
     首先,测定了文冠果各部位主要成分的含量,并根据各主要成分潜在的应用价值,实验验证了果壳、种仁皂苷的提取、以果壳、种皮为原料的纤维素乙醇生产、以种仁油和乙醇为原料的生物柴油生产和以生物柴油副产物甘油为原料的1,3-丙二醇生产等几个关键技术过程是可行的,在此基础上提出一种生物柴油与其它生物基化学品和中药有效成分联产的生物炼制工艺。通过对生物炼制过程的物料衡算,得出纤维素乙醇生产与生物柴油生产、皂苷提取和1,3-丙二醇的乙醇/硫酸铵双水相萃取存在过程集成的可能性。
     其次,对利用正已烷/乙醇/硫酸铵/水三液相萃取体系同时分离文冠果种仁中的油脂、皂苷和蛋白质的多产物联产方法进行初步探索,考察了不同的乙醇/硫酸铵双水相配比、不同的正已烷浓度和不同的三液相体系组成成分添加顺序对分离效果的影响。最后得出当操作条件为25%(w/w)正已烷/30%(w/w)乙醇/7.5%(w/w)硫酸铵/37.5%(w/w)水时,三液相萃取达到了油脂、皂苷和蛋白质三者较好的分离效果,油脂主要集中在上相,提油率为87%,种仁总皂苷集中在中相,回收率为83.5%,蛋白质富集在中相和下相的相界面处,可通过过滤得到。实验结果表明,三液相萃取一步操作可实现种仁中三种成分的同时分离,简化了工艺,是一种有效的多产物联产方法。
     再次,以文冠果生物炼制工艺可行性实验验证为基础,结合生物炼制工艺各关键过程现阶段的发展现状,对年处理30万吨文冠果的生物炼制工艺的物耗和能耗进行计算,获得了影响文冠果生物炼制工艺成本的主要因素及其影响规律。分析表明,从成本构成要素来看,原辅材料成本、公用工程成本是多产物联产过程成本的决定因素,两者占总成本的80%以上;从过程成本要素来看,纤维素乙醇生产成本是决定多产物联产过程成本的决定因素,将近占总成本的50%。敏感性分析表明,纤维素乙醇生产成本对利润的影响最为敏感,公用工程成本次之。对工艺中各个过程之间进行能量集成有望降低成本,同时,随着纤维素乙醇产业化进程的推进,生物炼制过程的成本可进一步降低。
Xanthoceras sorbifolia, a good woody oil plant in Northern China, has been determined as one of the most promising raw materials of biodiesel and taken priority to develop by the goverment. Producing biodiesel using Xanthoceras sorbifolia leads to formation of several by-products with economical potentials, such as husk, seed coat, kernel residues, crude glycerol. If those by-products are not developed and utilized rationally, it will cause a huge waste of resources. In this paper, in order to solve the current problems of utilization of Xanthoceras sorbifolia, the biorefinery and multi-product coproduction processes which give full consideration to the use of other by-products in addition to biodiesel production was explored and investigated to provide some scientific guidances and technical supports for the comprehensive development and utilization of Xanthoceras sorbifolia.
     Firstly, the composition of different parts of Xanthoceras sorbifolia fruit was determined. The possibilities for production of biodiesel from kernel oil of Xanthoceras sorbifolia and production of medicinal saponins, cellulosic ethanol,1,3-propanediol, crude proteins from residues of Xanthoceras sorbifolia and by-product glycerol of biodiesel were explored through preliminary experiments. It showed that those key processes were feasible. On the basis, a process flowsheet of biorefinery using Xanthoceras sorbifolia was proposed, through which biodiesel, bio-based chemicals and saponins were coproduced. The feasibility of integration among the processes for production of cellulosic ethanol, production of biodiesel, extraction of saponins and aqueous two-phase extraction of 1,3-propanediol was verified through material balance analysis for the biorefinery process.
     Secondly, a three-liquid-phase extraction system (TLPS) composed of n-hexane /ethanol/ammonium sulfate/water was investigated to separate saponins, oil and proteins in kernel of Xanthoceras sorbifolia simultaneously. The effects of the radio of ethanol and ammonium sulfate, concentration of n-hexane and adding order of the different components of TLPS were investigated. A better condition of TLPS was obtained:25%(w/w) n-hexane, 25%(w/w) ethanol,25%(w/w) ammonium sulfate and 25%(w/w) water. In this system, kernel oil was enriched in the top phase (n-hexane phase) with a yield of 87%, while kernel saponins were mainly in the middle phase (ethanol phase) with a recovery of 83.5%, proteins were enriched in the interface between the top and middle phase, which could be recovered by filtration. The results revealed that TLPS of n-hexane/ethanol/ammonium sulfate/water could simultaneously separate three components of Xanthoceras sorbifolia kernel. This simple process is a effective method for multi-product coproduction.
     Finally, the technical and economic analysis of the biorefinery process which was based on 300,000 tons Xanthoceras sorbifolia per year design was investigated through calculation of the material and energy consumption on the basis of feasible experiments and developmental status of the key process in biorefinery and multi-product coproduction. And the main factors and laws which affected the biorefinery cost were obtained. The analysis showed that raw material costs and utility costs were the most important factor for the multi-product coproduction process, which accounted for over 80% of the total cost in total. Breakdown of the costs according to production process, the cost of cellulosic ethanol production was the most important process costs, nearly 50% of the total cost. The sensitivity ananlysis showed that the cost of cellulosic ethanol production was the key factor influencing the profit, followed by the cost of utility. Energy integration among the various processes of the biorefinery and multi-product coproduction is expected to reduce costs, while the costs can be further reduced when the technology for cellulosic ethanol production reaches such a perfect degree.
引文
[1]Hill J, Nelson E, Tilman D, et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels[J]. Proceedings of the national academy of sciences of the united states of America,2006,103(30):11206-11210.
    [2]李希宏.国内外生物液体燃料发展趋势[J].当代石油石化,2007,3:7-13.
    [3]Gerpen J V. Business management for biodiesel producers[R]. NREL Technical Report, NREL/SR-510-36342,2004.
    [4]陈英明,陆继东,肖波,等.生物柴油原料资源利用与开发[J].能源工程,2007,1:33-37.
    [5]赵宗保,华艳艳,刘波.中国如何突破生物柴油产业的原料瓶颈[J].中国生物工程杂志,2005,25(11):1-6.
    [6]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    [7]唐红英.我国林业生物质能源发展相关政策概述[J].林业经济,2008,7:43-45.
    [8]中国科学院植物研究所.中国经济植物志[M].北京:科学出版社,1961.
    [9]闫冬佳.我国文冠果资源及可开发利用研究[J].山西农业科学,2007,35(3):15-17.
    [10]于海燕,牟洪香.文冠果——理想的生物柴油木本原料[J].中国石化,2007,7:34-35.
    [11]高伟星,那晓婷,刘克武.生物质能源植物——文冠果[J].中国林副特产,2007,1:93-94.
    [12]Harrington K J. Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance[J]. Biomass,1986,9(1):1-17.
    [13]于海燕,周绍箕.文冠果油制备生物柴油的研究[J].中国油脂,2009,34(3):43-45.
    [14]吴伟光,李怒云.我国林业生物柴油的发展目标、现状及面临的挑战[J].林业科学,2009,45(11):141-147.
    [15]王林,孙云东,王耀,等.内蒙古自治区林业生物质能源林基地建设现状与发展对策[J].林业资源管理,2009,5:21-23.
    [16]马艳丽,王鹏,朱虹,等.我国文冠果生产发展与栽培现状[J].河北果树,2009,5:1-3.
    [17]王红斗,韦业成,郭煜,等.文冠果种仁及其油的化学成分[J].植物学报,1981,23(4):331-333.
    [18]严梅和,李佩文,熊丽曾,等.文冠果仁油非皂化物中甾醇部分的分离、含量测定和结构鉴定[J].林业科学,1984,20(4):389-396.
    [19]李佩文,严梅和.文冠果仁油非皂化物中三萜醇部分和4-甲基甾醇部分的分离和结构鉴定[J].林业科学,1984,20(4):397-402.
    [20]Chen Y J, Takeda T, Ogihara Y. Studies on the constituents of Xanthoceras sorbifolia Bunge(Ⅰ) [J]. Shoyakugaku Zasshi,1984,38(2):203-206.
    [21]Chen Y J, Takeda T, Ogihara Y, et al. Studies on the constituents of Xanthoceras sorbifolia Bunge Ⅱ. Major sapogenol and a prosapogenin from the fruits of Xanthoceras sorbifolia Bunge[J]. Chemical Pharmaceutical Bulletin,1985,32(9):3378-3383.
    [22]Chen Y J, Takeda T, Ogihara Y, et al. Studies on the constituents of Xanthoceras sorbifolia Bunge Ⅲ. Minor prosapogenins from the fruits of Xanthoceras sorbifolia Bunge[J]. Chemical Pharmaceutical Bulletin,1985,33(1):127-134.
    [23]Chen Y J, Takeda T, Ogihara Y, et al. Studies on the constituents of Xanthoceras sorbifolia Bunge. Structures of the minor prosapongenins[J]. Chemical Pharmaceutical Bulletin,1985,33(3):1043-1048.
    [24]Chen Y J, Takeda T, Ogihara Y, et al. Studies on the constituents of Xanthoceras sorbifolia Bunge V. Major saponins from the fruits of Xanthoceras sorbifolia Bunge[J]. Chemical Pharmaceutical Bulletin,1985,33(4):1387-1394.
    [25]李占林,李铣,张鹏.文冠果化学成分及药理作用研究进展[J].沈阳药科大学学报,2004,21(6):472-475.
    [26]李占林,李铣,李巍,等.文冠果果壳的化学成分[J].沈阳药科大学学报,2005,22(4):271-272.
    [27]李占林,李丹毅,李铣,等.文冠果果壳中一个新生物碱[J].药学学报,2006,41(12):1197-1200.
    [28]LI Z L, LI X, YANG B Z, et al. Two new triterpenes from the husks of Xanthoceras sorbifolia[J]. Planta Medica,2005,71 (11):1068-1070.
    [29]LI Z L, YANG B Z,LI X, et al. Triterpenoids from the husks of Xanthoceras sorbifolia Bunge[J]. Journal of Asian Natural Products Research,2006,8(4):361-366.
    [30]LI W, LI X, YANG J, et al. Two new triterpenoids from the carpophore of Xanthoceras sorbifolia Bunge[J]. Pharmarzie,2006,61(9):810-811.
    [31]李在留,罗兵,程凡,等.文冠果种皮的化学成分研究[J].时珍国医国药,2007,18(6):1329-1330.
    [32]鲍纯义,于守洋.脱脂文冠果种仁蛋白的营养学研究[J].中国公共卫生学报,1989,3:129-1
    [33]范立敏,吴迪,杜佳,等.文冠果仁蛋白功能特性研究[J].食品与发酵工业,2009,11:115-118.
    [34]范雪层,邓红,李招娣,等.文冠果蛋白的功能特性及其氨基酸组成分析[J].中国油脂,2009.6:26-30.
    [35]纪雪飞,刘新霞,吴喆,等.文冠果壳提取物对β-淀粉样蛋白致动物学习记忆障碍的改善作用[J].沈阳药科大学学报,2007,24(4):232-237.
    [36]刘新霞,杨新爱,屈蝉,等.文冠果果壳提取物对学习记忆障碍的改善作用[J].中药新药与临床药理,2007,18(1):23-25.
    [37]刘新霞,纪雪飞,陆玲玲,等.文冠果果壳乙醇提取物对大鼠学习记忆障碍的改善作用[J].中草药,2007,12:1859-1863.
    [38]李霞冰,王红斗,郭煜,等.一种提高脑功能的药物及其制备方法:中国,CN 1092991A[P].1994,10,5.
    [39]杨柏珍,王松江,赵从福,等.可提取包括文冠果总皂甙、粗脂肪、粗蛋白、糖的果壳:中国,CN 1350001A[P].2002,5,22.
    [40]陈洪章,王岚.生物基产品制备关键过程及其生态产业链集成的研究进展[J].过程工程学报,2008,8(4):676-681.
    [41]Kamm B, Gruber P R, Kamm K.生物炼制——工业过程与产品(上卷)[M].马延和,段作营,李雪,等,译.北京:化学工业出版社,2007.40-41.
    [42]王庆昭,郑宗宝,刘子鹤,等.生物炼制工业过程及产品[J].化学进展,2007,19(7):1198-1205.
    [43]Kamm B, Kamm M. Biorefineries-multi product processes[J].Advances in biochemical engineering/biotechnology,2007,105:175-204.
    [44]Fangrui M, Milford A H. Biodiesel production:A review[J]. Bioresource technology, 1999,70:1-15.
    [45]Hideki F, Akihiko K, Hideo N. Biodiesel fuel production by transesterification of oils[J]. Journal of bioscience and bioengineering,2001,92(5):405-416.
    [46]马鸿宾,李淑芬,王瑞红,等.酯交换法制备生物柴油的催化剂研究进展[J].现代化工,2006,26(S2):51-54.
    [47]仲鸣,周金能,肖国民.制备生物柴油的固体催化剂研究进展[J].化工时刊,2007,21(1):66-69.
    [48]Shimada Y, Watanabe Y, Sugihara A, et al. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing [J]. Journal of Molecular Catalysis B:Enzymatic,2002,17:133-142.
    [49]聂开立,王芳,谭天伟.固定酶法生产生物柴油[J].现代化工,2003,23(9):35-38.
    [50]Saka S,Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol[J]. Fuel,2001,80:225-231.
    [51]孙俊,邓红,仇农学.文冠果超声波辅助合成脂肪酸甲酯工艺的优化[J].中国油脂,2008,33(4):50-53.
    [52]马养民,张航涛,郭俊荣.文冠果种子油制备生物柴油工艺的研究[J].粮油加工,2010,1:30-32.
    [53]Encinar J M, Gonza'lez J F, Rodrl'guez J J, et al. Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara cardunculus L. Oils with Ethanol [J]. Energy& Fuels,2002, 16:443-450.
    [54]Zhou W Y, K. Konar S, G. B. Boocock D. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils[J]. Journal of the American Oil Chemists Society,2003, 80(4):367-371.
    [55]Encinar J M, Gonzalez J F, Rodriguez-Reinares A. Ethanolysis of used frying oil. Biodiesel preparation and characterization[J]. Fuel Processing Technology,2007,88: 513-522.
    [56]Alamu 0 J, Waheed M A, Jekayinfa S 0. Effect of ethanol-palm kernel oil ratio on alkali-catalyzed biodiesel yield[J]. Fuel,2008,87:1529-1533.
    [57]Eugena L, Xu Z P, Rudolph V. MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel[J]. Applied Catalysis B:Environmental, 2009,88:42-49.
    [58]Claudinei F O, Dezaneti L M, Fillipe-A-C G. Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia[J]. Applied Catalysis A:General, 2010,372:153-161.
    [59]Kiany S. B. Cavalcante, MariaN. C. Penha, Karlene K. M. Mendonpa. Optimization of transesterification of castor oil with ethanol using a central composite rotatable design (CCRD)[J]. Fuel,2010,89:1172-1176.
    [60]何延青,吴永强,闻建平.生物柴油生产及其副产物甘油的有效利用[J].中国油脂,2007,32(5):47-51.
    [61]Yazdani S S and Gonzalez R. Anaerobic fermentation of glycerol:a path to economic viability for the biofuels industry[J]. Current Opinion in Biotechnology 2007,18: 213-219.
    [62]修志龙,牟英,张代佳,等.一种偶联生产生物柴油和1,3-丙二醇的方法:中国,CN 1648207A[P].2005,8,3.
    [63]刘洪娟,杜伟,刘德华.生物柴油及1,3-丙二醇联产工艺产业化进展[J].化学进展,2007,19(7):1185-1189.
    [64]Xu Y Z, Liu H J, Du W, et al. Integrated production for biodiesel and 1,3-propanediol with lipase-catalyzed transesterification and fermentation[J]. Biotechnol Lett,2009,31: 1335-1341.
    [65]Thompson J C, He B B. Characterization of crude glycerol from biodiesel production from multiple feedstocks[J]. Applied engineering in agriculture,2006,22(2):261-265.
    [66]Petitdemange E, Durr C, Abbad-Andaloussi S, et al. Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum [J]. Journal of industrial microbiology,1995,15:498-502.
    [67]Papanikolaou S, Ruiz-Sanchez P, Pariset B, et al. High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain [J]. Journal of biotechnology,2000,77:191-208.
    [68]Papanikolaou S, Michel F, George A. The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum [J]. Journal of chemical technology and biotechnology,2004,79:1189-1196.
    [69]Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol [J]. Journal of industrial microbiology and biotechnology,2004,31(9):442-446.
    [70]Mu Y, Teng H, Zhang D J, et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations[J]. Biotechnol Letters, 2006,28:1755-1759.
    [71]Papanikolaou S, Fakas S, Fick M, et al. Biotechnological valorization of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil[J]. Biomass &Bioenergy 2008,32:60-71.
    [72]Sun-Ae J, Chuloo M, Cheol-Hee K. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae[J]. Applied biochemistry and biotechnology,2010,161:491-501.
    [73]Chuloo M, Jae-Hyeong A, Seung-W K, et al. Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms[J]. Applied biochemistry and biotechnology,2010,161:502-510.
    [74]Asad-ur-Rehman, Saman-Wi jesekara R G, Nomura N, et al. Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production by Clostridium butyricum[J]. Journal of Chemical Technology and Biotechnology, 2008,83(7):1072-1080.
    [75]修志龙,曾安平.生物法生产1,3-丙二醇[J].生物产业技术,2008,01:40-45.
    [76]Xiu Z L, Zeng A P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol[J]. Applied microbiology and biotechnology,2008,78:917-926.
    [77]修志龙,李志刚,江波,等.一种从发酵液中分离1,3-丙二醇的双水相萃取方法:中国,CN101012151A[P].2007,8,8.
    [78]Li Z G, Jiang B, Zhang D J, et al. Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths[J]. Separation and Purification Technology, 2009,66:472-478.
    [79]Nathan M, Charles W, Bruce D, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource technology,2005,96:673-686.
    [80]Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production [J]. Advances in Biochemical Engineering/Biotechnology,2007,108:41-65.
    [81]Sendich EN, Laser M, Kim S, et al. Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price [J]. Bioresour Technol,2008,99:8429-8435.
    [82]Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates.Ⅱ: inhibitors and mechanisms of inhibition[J]. Bioresource Technology,2000,74:25-33.
    [83]JOHN D W, CHARLES E W, KAREL G. Simultaneous saccharification and fermentation of lignocellulose:process evaluation[J].Applied Biochemistry and Biotechnology,1988, 18:75-90.
    [84]Antoine M, Barbel H H, Maria E, et al. New improvements for lignocellulosic ethanol [J]. Current Opinion in Biotechnology,2009,20:372-380.
    [85]Olsson L, Hahn-Hagerdal B. Fermentative performance of bacteria and yeasts in lignocelluloses hydrolysates [J]. Process Biochemistry,1993,28(4):249-257.
    [86]Nigam J N. Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate[J]. Journal of applied microbiology,2001,90:208-215.
    [87]Olsson L, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production[J]. Enzyme and microbial technology,1996,18:312-331.
    [88]Young J J, Charles J S, Peter L R. Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis[J]. FEMS Microbiology Letters,2006,244(1):85-92.
    [89]Wang Z C, Chen M, Xu Y Q, et al. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose [J]. Biotechnology Letters,2008,30(4):657-663.
    [90]Yong S J, Alper H, Yang Y T, et al. Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach[J]. Applied and environmental microbiology,2005,71(12):8249-8256.
    [91]Palmqvist E,Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates.I: inhibition and detoxification[J]. Bioresource Technology,2000,74:17-24.
    [92]Carlo N H, Geertje V H, Andre'P C F. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term[J]. Biomass and Bioenergy,2005,28:384-410.
    [93]唐艳红,熊兴耀,谭兴和,等.无水乙醇制备方法的研究进展[J].中国酿造,2009,5:4-7.
    [94]陈继,王斌,刘庆芬,等.三相萃取一步法萃取纯化青霉素:中国,00107655.8[P].2001,12,5.
    [95]陈继.青霉素萃取过程中的第三相形成机理和三相萃取一步法在青霉素萃取过程中的应用[D].中国科学院化工冶金研究所博士后研究工作报告,2001.
    [96]修志龙,张华,刘琳,等.一种三液相萃取天然产物有效成分的方法:中国,CN101637667A[P].2010,2,3.
    [97]修志龙.甘油连续生物歧化过程培养基和pH调控策略研究[J].高校化学工程学报,2001,15(4):397-402.
    [98]Van Soest P J. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin [J]. J. Ass. Off ic. Agr. Chem,1963,46:829-835.
    [99]Goering, H. K.; Van Soest, P. J. Forage fiber analyses:apparatus, reagents, procedures and some applications. In Agricultural Handbook 379;United States Department of Agriculture (USDA):Washington, D. C.,1970:p20.
    [100]李坤平,潘天玲,贲永光,等.七叶莲总皂苷定量分析方法及其提取工艺研究[J].林产化学与工业,2008,28(4):99-102.
    [101]Miller G L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar [J]. Analytical Chemistry,1959,31:426-428.
    [102]王剑锋,修志龙,范圣第.甘油转化生产1,3-丙二醇发酵液中甘油含量的测定[J].工业微生物,2001.4:33-35.
    [103]Han Y J, Chen H Z. Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation[J]. Bioresource Technology,2008,99:6081-6087.
    [104]Aden A, Ruth M, Ibsen K, et al. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover[R]. USA:National Renewable Energy Laboratory(NREL), NREL/TP-510-32438,2002.
    [105]曲音波.纤维素乙醇产业化[J].化学进展,2007,19(7/8):1098-1108.
    [106]修志龙,梁志霞,滕虎,等.一种以文冠果为原料多产物联产的方法:中国,CN 101575619A[P].2009,11,11.
    [107]Zhang Y, Dube M A,McLean D D, et al. Biodiesel production from waste cooking oil:1. Process design and technological assessment[J]. Bioresource Technology,2003,89: 1-16.
    [108]Zhang Y, Dub6 M A, McLean D D, et al. Biodiesel production from waste cooking oil:2. Economic assessment and sensitivity analysis[J]. Bioresource Technology,2003,90: 229-240.
    [109]Michael J H, Andrew J M, Winnie C Y, et al. A process model to estimate biodiesel production costs[J]. Bioresource Technology,2006,97:671-678.
    [110]Alex H W, Dusko P, Naoko E. Assessment of four biodiesel production processes using HYSYS.Plant[J]. Bioresource Technology,2008,99:6587-6601.
    [111]Cardona Alzatea C A, Sanchez Toro 0 J. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass[J]. Energy,2006,31:2447-2459.
    [112]牟晓佳.甘油发酵生产1,3-丙二醇的技术经济性分析[D].大连:大连理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700