Lactobacillus collinoides二醇脱水酶及其激活因子的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘油脱水酶(EC 4.2.1.30)是生物转化法生产1,3-丙二醇(工业上有重要用途的化工材料)的限速酶,而二醇脱水酶(EC4.2.1.28)是甘油脱水酶的同工酶,所以近年来也成为研究的热点。
     以Lactobacillus collinoides基因组DNA为模板,PCR扩增得到了二醇脱水酶基因(pduCDE)及其激活因子基因(pduGH),分别连接到pSE380和pET30a(+)中,构建了重组质粒pSE-pduCDE与pET-pduGH,两外源基因分别在E.coli JM109和E.coli rosseta(DE3)中得到表达。经SDS-PAGE分析表明,pduCDE基因的表达蛋白包括63kDa、28kDa、22kDa三个亚基,结果与预期的相符;pduGH基因的表达蛋白包括64.5 kDa、12.4 kDa两个亚基,结果与预期的相符。重组菌中的二醇脱水酶基因pduCDE表达产物不具备脱水酶活力,与Lactobacillus diolvorans二醇脱水酶基因在E.coli(BL21)中的重组表达情况一致。重组质粒pET-pduGH的表达蛋白,在E.coli(DE3)中形成不溶性的包涵体,经变性和复性后再经进一步酶功能鉴定,在国内外首次证明,复性后的pET-pduGH表达蛋白能激活Glostridipasteurianum甘油脱水酶um,具有甘油脱水酶激活因子活性。
Glycerol dehydratase (EC4.2.1.30) has turned out to be a research hotspot for being the rate-limited enzyme in biosynthesis of 1,3-propanediol, which is a useful material in chemical industry, Diol dehydratase(EC4.2.1.28) and glycerol dehydrates are isofunctional enzymes ,so diol dehydratase was widely attended.
     The genes encoding diol dehydratase (pduCDE) and its reactivating factor (pduGH) were amplified from genomic DNA of Lactobacillus collinoides by PCR, then cloned in vector pSE380 and pET30a(+) respectively forming recombinant plasmids pSE-pduCDE and pET-pduGH. These genes are expressed by induction of IPTG in E. coli JM109 and E. coli rosseta(DE3) carrying these recombinant plasmids respectively. After SDS-PAGE, three bands were present as pduCDE expression product with molecular masses of 63, 28 and 22kDa, corresponding to the prediction and then pduGH expression product with molecular masses of 64.5 and 14.4kDa, corresponding to the prediction. In the function identification, pduCDE expression product in didn't performed the activity of dehydratase, which was in the case of the recombinant expression of diol dehydratase genes of Lactobacillus diovorans in E. coli BL21; the high expression of pduGH in E.coli rosseta(DE3) was insoluble inclusion body. By the protein soluble and Refolding, some soluble protein was obtained. In the presence of free adenosylcobalamn, ATP, and Mg~(2+) (or Mn~(2+)) , the glycerol dehyadrtase from Clostridium pasteurianum , Which had been inactivated to be enzyme-cyanocobalamin complex, was reactivated the reactivating factor PduGH
引文
[1] Corinna S, Susanne B, Gerhard G, et. al. Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B_(12)-dependent glycerol dehydratase of Citrobacter freundii[J]. Eur. J. Biochem, 2001, 268: 2369~2377
    [2] Nicolas S, Cecile M, Axel H, et. al. Characterisation of the diol dehydratase pdu operon of Lactobacillus collinoides[J]. FEMS Microbiology Letters, 2002,209(1): 66~71.
    [3] Nicolas S, Vianney P, Lol"c L, et. al. Purification, characterization and subunits identification of the diol dehydratase of Lactobacillus collinoides[J]. Eur. J. Biochem. 2002, 269:5731~5737.
    [4] Sambrook J, Russe D W. Melecular cloning: a Laboratory Manual.3rd [M]. New York:Cold Spring Harbor Laboratory Press, 2001.
    [5] Hideki K, Koichi M, Takamasa T, et. al. Characterization and Mechanism of Action of a Reactivation Factor for Adenosylcob Alamin-dependent Glycerol Dehydratase[J]. The Jounmal of Biological Chemistry, 2001, 276(39): 36514~36519.
    [6] TakamassT, Hideki K,Tetsuo T. Specificityes of reactivating factors for adenosylcobalamin-dependent diol dehydratase and glycerol dehydratase[J]. Arch Microbiol, 2000, 174:81~88.
    [7] Tetsuo T and Koichi M. A Reactivating Factor for Coenzyme B12-dependent Diol Dehydratase[J]. The Journal of Biological Chemistry. 1999, 274(6):3372~3377.
    [8] Roll D,Thomas A, Bobik, Gerhar G. Biochemistry of Coenzyme B12-dependent glycerol diol dehydratase and organization of the encoding genes[J]. FEMS Microbiology Reviews, 1999, 22: 553~566.
    [9] 杨菊群,王幸宜.1,3-丙二醇的合成工艺进展[J].化学工业与工程技术,2002,23(2):11~14.
    [10] 李吉春,赵旭涛.1,3-丙二醇的合成方法及技术进展[J].石化技术与应用,2004,22(1):4~12.
    [11] 1.姜兴茂,1,3-丙二醇的合成[M].上海化工,1999,23(6):35~39.
    [12] MENG XL (孟晓蕾),TANG Y (唐悦),QI X H (齐向辉),WEI YT (韦宇拓),HUANG RB (黄日波). Cloning sequencing and characterization of Genes Encoding Diol Dehydratase Reactivating factor of Lactobacillu diolivorans[J]. Prog. Biochem. Biophys(生物化学与生物物理进展).2007,34(1):1~6.
    [13] Seyfried M, Daniel R, Gottschalk G. Cloning, sequencing, and overexpression of the genes encoding coenzyme B_(12)-dependent glycerol dehydratase of Citrobacter freundii[J]. J Bacteriol. 1996, 178(19): 5793~5796.
    [14] Macis, L. Daniel, R. Gottschalk, G. Properties and sequence of the coenzyme B_(12)-dependent glycerol dehydratase of Clostridium pasteurianum[J]. FEMS Microbiol Lett, 1998, 164(1): 21~29.
    [15] Bobik T A, Xu Y, Jeter R M, et al. Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase[J]. J Bacteriol, 1997, 179: 6633~6639.
    [16] Raynaud C, Sarcabal P, Meynial-salles I, et al. Molecular characterization of the 1, 3-propanediol (1, 3-PD) operon of Clostridium butyricum[J]. PNAS . 2003 , 100: 5010~5015.
    [17] Toraya T, Shirakashi T, Kosuga T, et al. Substrate specificity of coenzyme B_(12)-dependent diol dehydratase, glycerol as both a good substrate and a potent inactivator[J]. Biochem Biophys Res Commun, 1976, 69: 475~480.
    [18] Korsova, T. L., Malakhov, A. A., Poznanskaia, A. A. et al. Effect of environmental factors on inactivation of B12-dependent glycerol dehydratase from Aerobacter aerogenes[J]. Biokhimiia, 1976, 41 (7): 1297~1305.
    [19] 朱希强,袁勤生.EC2SOD包涵体的柱上复性、纯化及稳定性研究[J].微生物学通.2005,32(4):101~106.
    [20] 陆长梅,李继影,陈阳,袁生.Xyn Ⅲ包涵体的纯化与变复性研究[J].南京师大学报(自然科学版).2004,27(4):67~71.
    [21] 纪剑飞,张成刚.包涵体重组蛋白的纯化及复性[J].沈阳药科大学报.1998,5(4):303~307.
    [22] 徐燕,李永海,刘风华,席慧,周霞,高音.大肠杆菌酒石酸脱氢酶β亚基的克隆、表达、纯化及包涵体的复性[J].首都师范大学学报(自然科学 版. 2005, 26(3):68-71.
    [23] Poznanskaya, A. A., Yakusheva, M. I., Yakovlev, V. A. Study of the mechanism of action of adenosylcobalamindependent glycerol dehydratase from Aerobacter aerogenes. II. The inactivation kinetics of glycerol dehydratase complexes with adenosylobalamin and its analogs[J]. Biochim. Biophys. Acta., 1977, 484(1): 236-243.
    [24] Honda, S., Toraya, T., Fukui, S. In situ reactivation of glycerol-inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase[J]. J. Bacteriol, 1980,143(3): 1458-1465.
    [25] Ushio, K., Honda, S., Toraya, T. The mechanism of in sutu reactivation of glycerol -inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase[J]. JNutr Sci Vitaminol (Tokyo), 1982, 28(3): 225-236.
    [26] Kajiura, H., Mori, K., Tobimatsu, T. et al. Characterization and mechanism of action of a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase [J]. J. Biol. Chem., 2001, 276(39): 36514-36519.
    [27] Yamanishi, M., Yunoki, M., Tobimatsu, T. et al. The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane- l,2-diol[J]. Eur. J. Biochem., 2002, 269(18): 4484—4494.
    [28] Andres, S., Wiezer, A., Bendfeldt, H. et al. Insights into the Genome of the Enteric Bacterium Escherichia blattae: Cobalamin (B(12)) Biosynthesis, B(12)-Dependent Reactions, and Inactivation of the Gene Region Encoding B(12)-Dependent Glycerol Dehydratase by a New Mu-Like Prophage[J]. J. Mol. Microbiol. Biotechnol., 2004, 8(3): 150-168.
    [29] Mori, K., Tobimatsu, T., Hara, T. et al. Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin -dependent diol dehydratase [J]. J. Biol. Chem., 1997, 272(51): 32034—32041.
    [30] Tobimatsu, T., Kajiura, H., Yunoki, M. et al. Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase [J]. J.Bacteriol, 1999, 181(13): 4110-4113.
    
    
    [31] Tobimatsu, T., Kajiura, H., Toraya, T. Specificities of reactivating factors for adenosylcobalamin-dependent diol dehydratase and glycerol dehydratase [J]. Arch. Microbiol., 2000, 174(1-2): 81~88.
    [32] Seifert, C., Bowien, S., Gottschalk, G. et al. Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii[J]. Eur. J. Biochem., 2001, 268(8): 2369~2378.
    [33] Der-Ing Liao, Lisa Reiss, Ivan Turner, et al, Structure of Glycerol Dehydratase Reactivase: A New Type of Molecular Chaperone[J]. Structure, 2003, 11: 109~119.
    [34] Schutz H, Radler F. Anareobic reduction of glycerol to 1,3-propanediol by Lactobacillus brevis and Lactobacillus buchneri[J]. System Appl Microbiol, 1984, 5:167~178.
    [35] Jun Masuda, Naoki Shibata, Yukio Morimoto, Tetsuo Toraya.and Noritake Yasuoka. How a protein generates a catalytic radical from coenzyme B_(12):X-ray structure of a diol-dehhydratase-adeninylpentylcobalamin complex[J]. Structure.2000, 8(7):775~788.
    [36] Takamasa TBIMATSU, Masahiro KAWATA, and Tetsuo ToRAYA.The N-Terminal Regions of β and γ Subunits Lower the Solubility of Adenosylcobalamin-Dependent Diol Dehydratase[J]. Biosci. Biotechnol. Biochem. 2005, 69(3):455~462.
    [37] Talarico T L, Dobrogosz W J. Purification and Characterization of glycerol dehydratase from Lactobacillus reuteri[J]. Appl Environ Microbiol, 1990, 56(4): 1195~1197.
    [38] Krooneman J, Faber F, Alderkamp A C, et al. Lactobacillus collinoides sp. nov., a 1, 2-propanediol-degrading bacterium isolated from aerobically stable maize silage[J]. Int J Syst Evol Micr, 2002, 52: 639~646.
    [39] Gorga A, Claisse O, Lonvaud-Funel A. Organisation of the encoding glycerol dehydratase of Lactobacillus collinoides, Lactobacillus hilgardii and Lactobacillus collinoides[J]. Sci Aliments, 2002, 22:151~160.
    [40] Toraya T, Ushio K, Kukui S, et al. Studies on the mechanism of the adenosylcobalamin dependent diol dehydrase reaction by the use of analogs of the coenzyme[J]. J. Bio. Chem. 1977,252(3) : 963~970.
    [41] 汪家政,范明.蛋白质技术手册[M].北京,中国科学出版社,2001.
    [42] 冒寿平.生化技术与生化产品开发[M].北京,中国农业科学技术出版社,2002.
    [43] F.奥斯伯,R.布伦特,R.E.金斯顿等.精编分子生物学实验指南[M].北京,中国科学出版社,1998.
    [44] J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版)[M].北京,中国科学出版社,2002.
    [45] Bobik T A, Havemann G D, Busch R J, et al. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation[J]. J Bacteriol., 1999,181 (19):5967~5975.
    [46] Daniel R, Bobik T A, Gottschalk G. Biochemistry of coenzyme B_(12)-dependent glycerol and diol dehydratases and organization of the encoding genes[J]. FEMS Microbiology Reviews, 1999, 22: 553~566.
    [47] Schutz H, Radler F. Propanediol-1,2-dehydratase and metabolism of glycerol of Lactobacillus brevis[J]. Arch Microbiol, 1984, 139: 366~370.
    [48] Tobimatsu T, Azuma M, Matsubara H, et al. Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae[J]. J Biol Chem, 1996, 271 (37): 22352~2235.
    [49] Takamasa T, Tadahiro S, Yasuharu H, et al. Heterologous expression, purification, andproperties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca[J]. Arch Biochem Biophys, 1997, 347(1): 132~140.
    [50] M.I. Yakusheva, A.A. Poznanskaya, T.A. Pospelova, et al. Study on the mechanism of action of adenosylcobalamin-dependent, glycerol dehydratase from Aerobacter aerogenes. Ⅰ. Role of structural components of adenosylcobalamin the formation of the active site of glycerol dehydratase[J], Biochim Biophys Acta, 1977: 216~235.
    [51] 孟晓蕾,齐向辉,韦宇拓.黄日波.Lactobacillus diolivorans二醇脱水酶的分离纯化与酶学性质[J].化工学报,2006,57(12):2938~2942
    [52] 朱丙田,刘德华,任海玉等.1,3-丙二醇发酵条件的探索[J].化工冶金,2000,21(4):420~422.
    [53] E I du Pont de Nemours and Company. Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism[P]. US 5686276, 1997,11.
    [54] Macis L, Daniel R, Gottschalk G: Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of Clostridium pasteurianum[J]. FEMS Microbiol Lett 1998,164: 21~28.
    [55] Liao D.I,Reiss L, Turner I, et al. Structure of glycerol dehydratase reactivase: a new type of molecular chaperone[J], Structure (Camb), 2003:109~119.
    [56] Kajiura H, Mori K, Yobimatsu T, et al. Characterization and mechanism of action of a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase[J], J Biol Chem, 2001: 36514~36519.
    [57] Tobimatsu T, Kajiura H, Yunoki M, et al. Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase, J Bacteriol[J], 1999: 4110~4113.
    [58] Mori K, Hieda N, Yamanishi M, et al. Crystallization and preliminary X-ray analysis of molecular chaperone-like diol dehydratase-reactivating factor in ADP-bound and nucleotide-free forms[J], Acta Crystallograph Sect F Struct Biol Cryst Commun, 2005:603~605.
    [59] Balthuis BA et al. 1998. W09821340 (EI DuPont de Nemours and Genecorinternational).
    [60] Gatenby A.A. et al. 1998. W09821339 (EI DuPont de Nemours and Genecor International).
    [61] Saint-Amans S, Girbal L, Andrade J.et al. Regulation of carbon and electron flow in Clostridium butyricumVPI 3266 grown on glucose-glycerol mixtures[J]. J Bacteriol. 2001, 183(5): 1748~54.
    [62] 修志龙,曾安平,安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究[J].大连理工大学学报,2000,40(4):428~433.
    [63] 朱丙田,刘德华,任海玉等.1,3-丙二醇发酵条件的探索[J].化工冶金,2000,21(4):420~422.
    [64] 张健,赵红英,刘德华等.以葡萄糖为辅助底物发酵生产1,3-丙二醇的研究[J].现代化工 2002,22(6):32~35.
    [65] Biebl H, Menzel K, Zeng AP, et al. Microbial production of 1,3-propanediol[J].Appl Microbiol Biotechnol 1999, 52: 289~297.
    [66] 周文广,韦宇拓,黄日波等.克雷伯氏菌甘油脱水酶基因在大肠杆菌中的克隆与表达[J].工业微生物,2004,34(2):1~4.
    [67] 齐向辉,韦宇拓,黄日波等.弗氏柠檬酸菌甘油脱水酶基因在大肠杆菌中的克隆和表达[J].工业微生物,2005,35(3):10~13.
    [68] Toraya T. Radical catalysis of B_(12) enzymes :structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases[J]. Cell Mol Life Sci, 2000, 57 (1): 106~127.
    [69] Orage R, Foster M. Resolution of the coenzyme B_(12)-dependent dehydratases of Klebsiella sp. and Citrobacter freundi[J]i. Biochim. Biophys. Acta, 1997,569:249~258.
    [70] Poppe L, Retey J. Kinetic investigations with inhibitors that mimic the posthomolysis intermediate in the reactions of coenzyme-B_(12)-dependent glycerol dehydratase and diol dehydratase[J]. Eur J Biochem, 1997, 245(2): 398~401.
    [71] 齐向辉,黄日波.微生物酶DNA shuffling的改进及应用[J].生物技术,2004,14(6):72~74.
    [72] 齐向辉,黄日波等.弗氏柠檬菌GDHt基因在大肠杆菌中克隆与表达[J].工业微生物,35(3):10~13.
    [73] 齐向辉,罗兆飞,黄日波,等.弗氏柠檬酸菌dhaT基因的克隆表达、序列分析、酶的纯化及特性研究[J].中国生物工程杂志,2006,26(7):42~47.
    [74] 齐向辉,黄日波,等.甘油脱水酶的理性设计:基因杂合改善酶的性质[J].科学通报(SCI),2006,51(20):2373~2380.
    [75] Xianghui QI, Ribo HUANG, et al. Directed evolution of glycerol dehydratase—swapping the genes encoding the subunits of glycerol dehydratase with improved enzymatic properties[J].Science Bulletin(SCI), 2006, 51 (24): 2977~2985.
    [76] 吴杰群,周文广,杨凳峰,齐向辉,韦宇拓,黄日波.从甘油富集菌宏基因组中克隆甘油脱水酶基因[J].微生物学通报,2006.
    [77] 唐悦,齐向辉,韦宇拓,黄日波.巴氏梭菌甘油脱水酶基因的克隆表达及特性研究[J].精细化工,2006.23(11):1056~1059.
    [78] Hui XQ, Bo R H, et al. Cloning and co-expression the genes dhaBCE and dhaT of Citrobacter freundii. Doctoral Form of China Fudan University, 2005.
    [79] Hui XQ, Bo R H, et al. Gene cloning and expression of glycerol dehydratase from Citrogbacter Freundii in Escherichichia coli, The eight China-Japan-Korea joint symposium on enzyme engineering, Hangzhou, China, 2004: 188
    [80] Dong XS , Wei WL, Hui XQ, Bo R H ,et al. Support vector machines for protein secondary structure prediction, The eight China-Japan-Korea joint symposium on enzyme engineering, Hangzhou, China, 2004: 63
    
    
    [81] Wei WL, Dong XS, HuiXQ, Bo R H, et al.Advanced in protein design, The eight China-Japan-Korea joint symposium on enzyme engineering, Hangzhou, China, 2004: 65.
    
    [82]Xiang H Q, Xu Q W, Ri B H, et al. Molecular modifications and construction of GM strains, which produces 1,3-propanediol by one-step glucose fermentation. Proceedings of the 2005 National Workshop on Genetic Diversity & Gene Discovery of Tropical and Subtropical Microbe Resources, Sanya, China, 2005:5~8.
    
    [83]SliningerP.J, Bothast R.J. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde, Appl Environ Microbiol, 1985, pp. 1444-1450.
    [84] Johnson E.A, Lin E.C, Klebsiella pneumoniae l,3-propanediol:NAD+ oxidoreductase[J]. J Bacteriol, 1987: 2050-2054.
    [85] Cameron D.C, Altaras N.E,HoffmanM.L, et al. Metabolic engineering of propanediol pathways [J]. Biotechnol Prog. 1998, 14: 116-125.
    [86] Toraya T, Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases[J]. Cell Mol Life Sci, 2000: 106—127.
    
    
    [87]Iakusheva M.I,Gurevich V.M, Poznanskaia A.A, et al.,Effect of the structure of the nucleoside ligand of cobalamines on their enzymatic properties in a glycerol dehydratase system[J]. Biokhimiia, 1978,43: 1873-1882.
    
    [88]Korsova T.L,Karagodina,Poznanskaia Z.V A.A, et al. Interaction of substrates and their analogs with adenosylcobalamine-dependent glycerol dehydratase [J]. Biokhimiia, 1979, 44: 467—476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700