基于膜结合醇脱氢酶特性的氧化葡萄糖酸杆菌选择性氧化甘油及苯甲醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化葡萄糖酸杆菌(Gluconobacter oxydans)是一种在生物工业中广泛应用的微生物,它含有多种膜结合的脱氢酶,表现非常独特的、其它微生物无法比拟的不完全氧化特性,可立体选择性和区域选择性地氧化醇、糖等羟基化合物生成相应的醛,酮或酸。利用氧化葡萄糖酸杆菌中的膜结合甘油脱氢酶可直接将甘油区域选择性脱氢生成二羟基丙酮,而利用膜结合的乙醇脱氢酶可化学选择性氧化苯甲醇生成苯甲醛。本论文以二羟基丙酮和苯甲醛的合成为目标,针对性地研究转化过程中的关键影响参数,探讨酶或细胞活性的影响机制,提出相应的解决策略,实现二羟基丙酮合成过程的规模放大,建立相对高效的苯甲醛生物法合成工艺。
     第一部分,基于对依赖PPQ的膜结合甘油脱氢酶的认知进行了氧化葡萄糖酸杆菌转化甘油合成二羟基丙酮的过程研究及规模放大。
     (1)建立了一种简便、快速、同时检测发酵液中甘油和二羟基丙酮的气相色谱方法。利用N-甲基咪唑作为催化剂,可在室温下快速完成对发酵液中甘油和二羟基丙酮的乙酰化,乙酰化的产物用气相色谱检测,内标法定量。方法验证表明,甘油和二羟基丙酮在1-100酬的浓度范围内线性良好,检测限分别为0.013和0.025g/l。方法准确度,重现性好,样品回收率大于95%, RSD小于1%。
     (2)筛选了具有高甘油脱氢酶活性的菌株,进而比较了发酵法与静息细胞转化法对生产二羟基丙酮的影响,结果显示,静息细胞在菌体量,二羟基丙酮产率以及保留活细胞数等三个方面分别提高了43.2,18.1和27.6%。
     (3)在摇瓶中初步确定了氧化葡萄糖酸杆菌静息细胞转化甘油的适宜条件:反应温度30℃、pH 6.0、转速200rpm、细胞浓度5g/l(干重)、甘油浓度46g/l,摇瓶中二羟基丙酮的产率不超过30g/l。在此基础之上,在3.7L发酵罐进行转化试验,通过溶氧和pH的有效控制,5.0-8.0g/l的静息细胞可在8-16h内转化100-120g/l甘油,转化率大于98%,可获得平均13.75g/lh最大时空产率。高浓度二羟基丙酮对反应有强烈抑制,其使反应趋于停止的临界浓度在140g/l左右。溶氧是影响二羟丙酮产率的重要限制因素,可在保持最大通气量的情况下,依据反应液中溶氧和pH的变化进行搅拌转速的调控,以满足反应过程溶氧需求。
     (4)对于高浓度二羟基丙酮降低细胞催化活性的原因,流式细胞仪检测和红外光谱的分析结果初步证明:二羟基丙酮对氧化葡萄糖酸杆菌静息细胞生理状态没有显著影响,而二羟基丙酮对膜结合甘油脱氢酶的不可逆抑制(失活)才是降低细胞活性的主要原因。
     (5)分别在300L和30L发酵罐上成功实现了菌体培养和静息细胞转化的规模放大。随着反应器的逐级放大,菌体生长和甘油转化活性都有不同程度地提高。在300L发酵罐上可获得8.5g/l菌体,分别比摇瓶、30L罐提高了164.5%和11.6%;在30L发酵罐上转化初速度比3.7L发酵罐上提高了17.4%。30L发酵罐上进行了9批菌体重复利用试验,转化率均大于98%,累计转化甘油850g/l,是目前报道的最高水平。
     第二部分,基于对依赖PQQ的膜结合乙醇脱氢酶的认知完成了氧化葡萄糖酸杆菌静息细胞不完全氧化苯甲醇合成苯甲醛的过程研究。
     (1)确定了氧化葡萄糖酸杆菌中负责氧化苯甲醇合成苯甲醛的酶为膜结合的乙醇脱氢酶(ADH),其作用机制是有序机制,O2是先导底物。膜上只有一个乙醛脱氢酶(ALDH),可将生成的苯甲醛进一步氧化成苯甲酸。
     (2)针对由醛脱氢酶引起的苯甲醛过氧化问题,利用缺失膜结合乙醛脱氢酶基因的氧化葡萄糖酸杆菌,在单水相体系中可使苯甲醛的选择性达到67.3%,而原始菌只有2.8%。在两相体系中利用其可进一步改善苯甲醛选择性和转化速率,1h内可完全转化5g/l的苯甲醇,苯甲醛选择性可达100%,该结果优于目前报道的微生物合成苯甲醛的最高水平。
     (3)针对有机溶剂对静息细胞的毒性影响,利用海藻酸钠包埋固定化细胞进行苯甲醇的转化反应。利用响应面法优化了固定化细胞中的三个重要因素的水平,结果表明:海藻酸钠浓度、细胞浓度和固定化颗粒粒径分别为2.55%(w/v)、49.26g/l和2mm时,固定化细胞可获得最好的活性和稳定性。在两相体系中,固定化细胞的稳定性明显高于游离细胞,在10批反应后还可保留游离细胞活性的53.2%,而游离细胞仅剩15.7%。
     (4)利用对苯醌作为电子受体在厌氧条件下进行氧化葡萄糖酸杆菌催化苯甲醇合成苯甲醛的研究,可完全阻断苯甲醛到苯甲酸的过氧化,在水溶液中实现苯甲醛的高选择性合成。使用人工电子受体的厌氧反应体系,为水溶性羟基醛的生物法合成提供了新的思路。
Gluconobacter oxydans is known for its incomplete oxidation of a wide range of carbohydrates and alcohols in a bioprocess. The corresponding oxidative products are secreted almost completely into the medium. In this paper, the processes have researched for production of dihydroxyacetone (DHA) and benzaldehyde by the resting cell of G. oxydans. The DHA was be used widely in the cosmetic as sunless tanning tangent, and the benzaldehyde is the most important aromatic aldehyde in the industry.
     In the first section, the oxidation of glycerol to DHA by G. oxydans DSM 2003 based on the membrane-bound glycerol dehydrogenase was performed.
     A gas chromatographic method that accurately measured glycerol and DHA from fermentation broth is described. The method incorporates a sample derivatization reaction using N-methylimidazole as catalyst in the presence of acetic anhydride. The resulting derivatives were separated on a DB-5 capillary column and flame ionization detector. The present method exhibited a good linearity at the concentration range from 1 to 100 g/1 with regression coefficients of 0.9997 and 0.9998 for DHA and glycerol, respectively. The limits of detection were 0.025 and 0.013g/l. The recoveries of DHA and glycerol for fermentation sample were in the range of 95.37-98.76% with RSD below 1%.
     A comparative experiment has done for production of DHA between fermentation and resting cell bioconversion from the obtained dry cell weight (DCW), productivity and the cell physiological state. The results showed the conversions have the advantage than fermentation in the all aspects by resting cell.
     In the shake flask reaction, the productivity of DHA was no more than 30g/l under the optimization condition. To enhance DHA production, the process of bioconversion was improved in 3.7L bioreactor based on the optimized parameters in shaking flasks, by the optimization,100-120g/l of glycerol was converted completely to DHA by 5-8g/l DCW in 8-16h. The inhibition concentration of DHA was founded beyond 100g/l, and the critical concentration of DHA of reaction ceased was about 140g/l.
     The scale up process was operated in the 300L fermentor for cell culture and 30L fermentor for bioconversion of glycerol. It could be obtained the 8.5g/l DCW in the 300L fermentor, compared to the shaking flask and 30L seeds fermentor, the 164.5and 13.1%DCW could be improvement. In the 30L bioreactor for resting cell conversion, the initial velocity reached 15.2g/l, compared to the 3.7L, the 17.4% of improvement has been obtained. The nine batch bioconversion was completed in the 30L bioreactor, the conversion rate reached about 98% and the total concentration of glycerol converted was 850g/l.
     The resting cell physiological state was studied by flow cytometry, the results showed the influence of DHA on the cell physiological was smaller than catalytic activity of glycerol dehydrogenase
     In the second section, bioconversion of benzyl alcohol to benzaldehyde by G. oxydans M5 based on the membrane-bound alcoholdehydrogenasewas studied.
     The selective oxidation of primary alcohols to the corresponding aldehydes is one of the most important transformations in fundamental and industrial research owing to the carbonylic group as a versatile building block.
     The mutant strain defective in membrane-bound alcohol dehydrogenase (ADH) gene (GOX1067-1068) and the complementary strain were constructed and the results of oxidation of benzyl alcohol showed that the ADH was the key enzyme responsible for oxidation of benzyl alcohol to benzaldehyde in G. oxydans M5. The mechanism of oxidation benzyl alcohol by ADH is sequential ordered Bi Bi, and O2 is the leading substrate.
     The mutant strain with disruption of membrane-bound aldehyde dehydrogenase (ALDH) gene (GOX0585-0587) was be used for production of benzaldehyde. The gene strain (67.3%) showed obvious improvement for the selective toward benzaldehyde than the wild strain (2.8%), the 5g/l benzyl alcohol was be converted completely to benzaldehyde in the aqueous/isoctane biphasic system within 1h, the selectively toward benzaldehyde reached 100%.
     To avoid the organic solvents toxicity to resting cell, the immobilized cell was applied in the biphasic system for production of benzaldehyde. The response surface methodology was used for optimization the factors of alginate concentration, the cell load, diameters, the best results were 2.55% (w/v),49.26mg/ml,2mm, respectively. By the immobilized, the tolerance of cells has marked improvement. By ten recycles, the activity of immobilized cell has still retained 53.2%, but the free cell has only 15.7%.
     The oxidation benzyl alcohol was performed by resting cell of G. oxydans M5 under the anaerobic conditions using the p- benzoquinone accepted hydrogen. The results indicated the selectivity for benzaldehyde was reached 100% in the aqueous.
引文
[1]林章凛,曹竹安,邢新会,刘铮.工业生物催化技术.生物加工过程.2003,1(1):12-16
    [2]Arnold FH. Directed evolution:Creating new biocatalysts for the future. Chem Eng Sci. 1996,11:5091-5102
    [3]科技部中国生物技术发展中心.工业生物技术发展战略研究报告.2007,6
    [4]Robertson DE, Bornscheuer UT. Biocatalysis and biotransformation new technologies, enzymes and challenges. Curr Opin Chem Biol.2005,9:164-165
    [5]Turner N, Schneider M. Biocatalysis and biotransformation-biocatalysis-molecular, structural molecular, structural and synthetic advances. Curr Opin Chem Biol.2000,4: 65-67
    [6]Matsuda T, Yamanaka R, Nakamura K. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron-Asymmetr.2009,20:513-557
    [7]R.N.帕特尔.立体选择性生物催化.化学工业出版社.2004
    [8]张玉彬.生物催化的手性合成.化学工业出版社.2002,1
    [9]Steinreiber A, Faber K. Microbial epoxide hydrolases for preparative biotransformations. Curr Opin Biotechnol.2001,12:552-558
    [10]Roberts SM, Wan PWH. Enzyme-catalysed Baeyer-Villiger oxidations. J Mol Catal B: Enzym.1998,4:111-136
    [11]孙志浩.手性技术与生物催化.生物加工过程.2004,2(4):6-10
    [12]陶军华,郁惠蕾,许建和.绿色化学与生物催化.科学.2009,61(1):7-9
    [13]杨立荣.生物催化与手性药物,医药化工,2006,3:1-4
    [14]De Ley J, Gillis M, Swings J. The genus Gluconobacter. Bergeys manual of systematic bacteriology. Williams and Wilkins, Baltimore.1984,1:267-278
    [15]Franke ICH, Fegan M, Hayward C, et al. Description of Gluconobacter sacchari sp. nov. a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from pink sugar-cane mealy bug. Int J Syst Bacteriol.1999,49:1681-1693
    [16]Yamada Y, Hoshino K, Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA:the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem.1997,61: 1244-1251
    [17]Yamada Y, Hosono R, Lisdyanti P, et al. Identification of acetic acid bacteria from indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol.1999,45:23-28
    [18]Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol.2002,60:233-242
    [19]Gupta A, Singh VK, Qazi GN, et al. Gluconobacter oxydans:its biotechnological applications. J Mol Microbiol Biotechnol.2001,3:445-456
    [20]Batter AS, Schaffner DW. Modelling bacterial spoilage in cold-filled ready to drink beverages by Acinetobacter calcocaeticus and Gluconobacter oxydans. J Appl Microbiol, 2001,91:237-247
    [21]Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol.2005,23 (2):195-200
    [22]Deppenmeier U, Ehrenreich A. Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 2009,16:69-80
    [23]Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol.1994,36:247-301
    [24]Holscher, T., and Gorisch, H. Knockout and overexpression of pyrroloquinoline quinine biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol.2006,188:7668-7676
    [25]Pronk JT, Levering PR, Olijve W, et al. Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Microb Technol.1989,11(3):160-164
    [26]Matsushita K, Shinagawa E, Adachi O, et al. Purification and characterization of cytochrome o-type oxidase from Gluconobacter suboxydans. Biochim. Biophys. Acta. 1987,894:304-312
    [27]Gonzalez B, et al. Respiratory system of Gluconacetobacter diazotrophicus PAL5-evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases. Biochim. Biophys. Acta.2006,1757:1614-1622
    [28]Schweiger P, Volland S, Deppenmeier U. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microb Biotech.2007,13:147-155
    [29]Matsushita K, Kobayashi Y, Mizuguchi M, et al. A Tightly bound quinone functions in the ubiquinone reaction Sites of quinoprotein alcohol dehydrogenase of an acetic Acid bacterium, Gluconobacter suboxydans. Biosci Biotech Bioch.2008,72:2723-2731
    [30]Matsushita K, Toyama H, Adachi O, et al. The quinohemoprotein alcohol dehydrogenase of Gluconobacter suboxydans has ubiquinol oxidation activity at a site different from the ubiquinone reduction site. Biochim Biophys Acta.1999,1409: 154-164
    [31]Holscher T, Schleyer U, Merfort M, et al. Glucose Oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. J Mol Microb Biotechnol.2009,16:6-13.
    [32]Ameyama M, Shinagawa E, Matsushita K, et al. D-Glucose dehydrogenase of Gluconobacter suboxydans-Solubilization, purification and characterization. Agric Biol Chem.1981,45:851-861
    [33]Shiraishi F, Kawakami KA, Tamura A, et al. Continuous production of free gluconic acid by Gluconobacter suboxydans IFO 3290 immobilized by adsorption on ceramic honeycomb monolith:effect of reactor configuration on further oxidation of gluconic acid to keto-gluconic acid. Appl Microbiol Biotechnol.1989,31:445-447
    [34]Seiskari P, Linko YY, Linko P. Continuous production of gluconic acid by immobilized Gluconobacter oxydans cell bioreactor. Appl Microbiol Biotechnol 1985,21(6): 356-360
    [35]Silberbach M, Maier B, Zimmermann M, et al. Glucose oxidation by Gluconobacter oxydans:characterization in shaking-flasks, scale-up and optimization of the pH profile. Appl Microbiol Biotechnol.2003,62:92-98.
    [36]Herrmann U, Merfort M, Jeude M, et al. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol.2004,64:86-90.
    [37]Merfort M, Herrmann U, Bringer-Meyer S, et al. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl Microbiol Biotechnol.2006,73:443-451
    [38]Shinagawa E, Matsushita K, Toyama H, et al. Production of 5-keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinine (PQQ)-dependent membrane-bound D-gluconate dehydrogenase. J. Mol. Catal B.1999,6:341-350
    [39]Merfort M, Herrmann U, Ha SW. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Biotechnol J.2006,1:556-563
    [40]Weenk G, Olijve W, Harder W. Ketogluconate formation by Gluconobacter species. Appl Microbiol Biotechnol.1984,20:400-405
    [41]Matsushita K, et al.5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microb.2003,69:1959-1966.
    [42]Hancock RD, Viola R. Biotechnological approaches for L-ascorbic acid production. Trends Biotechnol.2001,20:299-305
    [43]Boudrant J. Microbial process for ascorbic acid biosynthesis:a review. Enzyme Microb Technol.1990,12:322-329
    [44]Macauley S, Mcneil B, Harvey LM. The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol.2001,21:1-25
    [45]Saito Y, Ishii Y, Hayashi H, et al. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-Keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microb.1997,63(2):454-460
    [46]Zhang W, Yan B, Wang J, et al. Purification and characterization of membrane-bound L-sorbose dehydrogenase from Gluconobacter oxydans GO112. Enzyme Microb Technol.2006,38:643-648
    [47]Giridhar R, Srivastava AK. Repeated fed-batch sorbose fermentation by Gluconobacter oxydans. Chem Biochem Eng Q.2001,15(3):127-129
    [48]Giridhar R, Srivastava AK. L-sorbose production in a continuous fermenter with and without cell recycle. Word J microbiol biotechnol.2001,17:185-189
    [49]Giridhar R, Srivastava AK. Productivity improvement in L-sorbose biosynthesis fedbatch cultivation of Gluconobacter oxydans. J Biosci Bioeng.2002,94(1):34-38
    [50]Yang XP, Wei LJ, Lin JP, et al. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose. Appl Environ Microb.2008,74(16): 5250-5253
    [51]Moonmangmee D, Adachi O, Toyama H, et al. D-hexosaminate production by oxidative fermentation. Appl Microbiol Biotechnol.2004,66:253-258.
    [52]Paulsen T. Cyclic monosaccharides having nitrogen substituted derivatives of 1-deoxynojirimycin. Adv Carbohydr Chem.1968,23:115-232
    [53]Schedel M. Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. Wiley-VCH, Weinheim. 2000,8b:296-308
    [54]Svitel J, Sturdk E. nPropanol conversion to propionic acid by Gluconobacter oxydans. Enzyme Microb Technol.1995,17:546-550
    [55]Zigova J, Svitel J, Sturdik E. Possibilities of butyric acid production by butanol oxidation with Gluconobacter oxydans coupled with extraction. Chem Biochem Eng Q.2000, 14(3):95-100
    [56]Druaux D, Mangeot G. Bacterial bioconversion of primary aliphatic and aromatic alcohols into acids:effects of molecular structure and physico-chemical conditions. J Chem Tech Biotechnol.1997,68:214-218
    [57]Adlercreutz P. Oxidation of trans-and cis-1,2-cyclohexanediol by Gluconobacter oxydans preparation of (R)-and (S)-2-hydroxycyclohexanone. Appl Microbiol Biotechnol.1989,30:257-263
    [58]Wei GD, Yang XP, Wei DZ. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. J Ind Microbiol Biotechnol.2009,36: 1029-1034
    [59]Fuchtenbusch B, Waltermann M, Steinbuchel A. Biotransformation of 2,2-dimethyl-1, 3-propanediol to 3-hydroxypivalic acid by Acetobacter acetii DSM 3508 and related bacterial. Biotechnol Lett.1998,20(5):507-510
    [60]Adachi O, Fuji Y, Ghaly Mf, et al. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257:A verstile enzyme for the oxidative fermentation of various ketises. Biosci. Biotechnol. Biochem.2001,65(12): 2755-2762
    [61]Rollini M, Manzoni M. Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Proc Biochem.2005,40:437-444
    [62]Manzoni M, Rollini M, Bergomi S. Biotransformation of D-galactitol to tagatose by acetic acid bacteria. Proc Biochem.2001,36:971-977
    [63]Mantha D, Basha AZ, Panda T. Optimization of medium composition by response surface methodology for the production of tartaric acid by Gluconobacter suboxydans. Bioproc Eng.1998,19:285-288
    [64]Chandrashekar K, Arthur FP, Panda T. Optimization of temperature and initial pH and kinetic analysis of tartaric acid production by Gluconobacter suboxydans. Bioproc Eng. 1999,20:203-207
    [65]Suzuki SI, Sugiyama M, Mihara Y, et al. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci Biotech Biochem.2002, 66(12):2614-2620
    [66]Muynck CD, Pereira C, Soetaert W, et al. Dehydrogenation of ribitol with Gluconobacter oxydans:production and stability of L-ribulose. J Biotechnol.2006,125: 408-415
    [67]Muynck CD, Pereira C, Soetaert W. Production of L-ribulose by dehydrogenation of ribitol with gluconobacter oxydans. Comm Appl Biol Sci Ghent Univer.2005,70(2):1-4
    [68]Adachi O, Ano Y, Toyama H, et al. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria. Biosci Biotechnol Biochem.2006,70: 2579-2582.
    [69]Ricelli A, Baruzzi F, Solfrizzo M, et al. Biotransformation of patulin by Gluconobacter oxydans. Appl Environ Microb.2007,73:785-792.
    [70]Naessens M, Vercauteren R, Vandamme EJ. Three-factor response surface optimization of the production of intracellular dextran dextrinase by Gluconobacter oxydans. Proc Biochem.2004,39:1299-1304
    [71]Svitel J, Tkac J, Vostiar I, et al. Gluconobacter in biosensors:applications of whole cells and enzymes isolated from gluconobacter and acetobacter to biosensor construction. Biotechnol Lett.2006,28:2003-2010.
    [72]Mitsukura K, Uno T, Yoshida T, et al. Microbial asymmetric oxidation of 2-butyl-1, 3-propanediol. Appl Microbiol Biotechnol.2007,76:61-65
    [73]Wandel U, Machado SS, Jongejan JA. Enzymes involved in the glycidaldehyde (2, 3-epoxy-propanal) oxidation step in the kinetic resolution of racemic glycidol (2, 3-epoxy-l-propanol) by Acetobacter pasteurianus. Enzyme Microb Technol.2001, 233-239
    [74]Su W, Chang ZY, Gao KL, et al. Enantioselective oxidation of racemic 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans. Tetrahedron-Asymmetr.2004,15: 1275-1277.
    [75]Molinari F, Gandolfi R, Villa R, et al. Enantioselective oxidation of prochiral 2-methyl-1, 3-propandiol by Acetobacter pasteurianus. Tetrahedron-Asymmetr.2003,14: 2041-2043
    [76]Molinari F, Villa R, Aragozzini F, et al. Enantioselective oxidation of (RS)-2-phenyl-l-propanol to (S)-2-phenylpropanoic acid with Gluconobacter oxydans: simplex optimization of the biotransformation.Tetrahedron-Asymmetr.1999,10: 3003-3009
    [77]Romano A, Gandolfi R, Nitti P. Acetic acid bacteria as enantioselective biocatalysts. J Mol Catal B:Enzym.2002,17:235-240
    [78]Schumacher K, Asche S, Heil M, et al. Microbiological oxidation of 2-methylbutanol of differing enantiomeric ratios by Gluconobacter species. Z Lebensm Unters Forsch A. 1998,207:74-76
    [79]Schweiger P, Gross H, Wesener S, et al. Vinyl ketone reduction by three distinct Gluconobacter oxydans 621H enzymes. Appl Microbio Biotechnol.2008,80:995-1006.
    [80]Adlercreutz P. Asymmetric reduction of ketone with enzymes from acetic acid bacteria. Biotechnol Lett.1991,13:229-234.
    [81]Nandui VB, Banerjee A, Howell JM. Puification of a stereospecific 2-ketoreductase from Gluconobacter oxydans. J Industr Microb Biotechnol.2000,25:171-175
    [82]Silva GP, Mack M, Contiero J. Glycerol:A promising and abundant carbon source for industrial microbiology. Biotechnol Adv.2009,27:30-39
    [83]Mishra R, Jain SR, Kumar A. Microbial production of dihydroxyacetone. Biotechnol Adv.2008,26:293-303.
    [84]Zhu Y, Youssef D, Porte C, et al. Study of the solubility and the metastable zone of 1,3-dihydroxyacetone for the drowning-out process. J Cryst Growth.2003,257:370-377.
    [85]Stanko RT, Ferguson TL, Newman CW, et al. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate. J Anim Sci.1989,67:1272-1278
    [86]Kawashima K, Itoh H, Chgate J. Nonenzymatic browning reactions of dihydroxyacetone with amino acids or their esters. Agri Biol Chem.1980,44(7):1595-1599
    [87]张育川.二羟基丙酮.精细与专用化学品.2003,22:21
    [88]Oh CH, Hong JH. Short synthesis and antiviral evaluation of C-fluoro-branched cyclopropyl nucleosides. Nucleosides Nucleotides Nucleic Acids.2007,26:403-411
    [89]Djuranovic SP, Kun JFJ, Schultz JE and Beitz E. Dihydroxyacetone and methylglyoxal as permeants of the Plasmodium aquaglyceroporin inhibit parasite proliferation. Biochim Biophys Acta.2006,1758:1012-1017
    [90]Rajatanavin N, Suwanachote S, Kulkollakarn S. Dihydroxyacetone:a safe camouflaging option in vitiligo. Int J Dermatol.2008,47:402-406
    [91]Stanko RT, King D, Adibi SA. Inhibition of lipid synthesis and stimulation of energy expenditure by addition of pyruvate, dihydroxyacetone and riboflavin to the diet. Chin Res.1983,31:526A
    [92]Stanko RT, Adibi SA. Inhibition of lipid accumulation and enhancement of energy expenditure by addition of pyruvate and dihydroxyacetone to a rat diet. Metab.1986,35: 182-186
    [93]Farnetti E, Kaspar J, Crotti C. A novel glycerol valorization route:chemoselective dehydrogenation catalyzed by iridium derivatives. Green Chem.2009,11:704-709
    [94]Garcia R, Besson M, Gallezot P. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl Catal A:General.1995,127:165-176
    [95]Carrettin S, Mcmorn P, Johnston P, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Comm.2002,696-697
    [96]Green SR, Whalen EA, Molokie E. Dihydroxyacetone:production and uses. J Biochem Microb.1961,3(4):351-355
    [97]Flickineger MC, Perlman D. Apllication of oxygen-enriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus. Appl Environ Microbiol.1977,33(3):706-712
    [98]郑裕国,胡忠策,柳志强等.微生物法生产二羟基丙酮.CN200510061969.0
    [99]Yang XP, Wei LJ, Lin JP. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-Hydroxyethyl) amino-6-deoxy-L-sorbose. Appl Environ Microbio.2008,74(16): 5250-5253
    [100]Ameyama M, Shinagawa E, Matsushita K, et al. Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem.1985,49 (4):1001-1010
    [101]Claret C, Salmon, JM, Romieu C, et al. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol.1994,41: 359-365
    [102]Yamada S, Nabe K, Izuo N. Fermentation production of dihydroxyacetone by Acetobacter suboxydans ATCC621. J Ferment Technol.1979,57(3):215-220.
    [103]Claret C, Bories A, Soucaille P. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr Microbiol.1992,25:149-155.
    [104]Ohrem HL, E Merck. Inhibitory effects of glycerol on Gluconobacter oxydans. Biotechnol Lett.1996,18(3):245-250
    [105]Batzing BL, Claus GW. Fine structural changes of Acetobacter suboxydans during growth in a defined medium. J Bacterial,1973,113(3):1455-1461
    [106]Bories A, Claret C, Soucaille P. Kinetic study and optimisation of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans 1991,26(4):243-248
    [107]Ohrem HL, Voβ H. Inhibitory effects of dihydroxyacetone on Gluconobacter cultures. Biotechnol Lett.1995,17(9):981-984
    [108]Bauer R, Katsikis N, Varga S, et al. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioproc Biosyst Eng.2005,28:37-43.
    [109]Izuo N, Nabe K, Yamada S, et al. Production of dihydroxyacetone by continuous cultivation of Acetobacter suboxydans. J Ferment Technol.1980,58:221-226
    [110]Hekmat D, Bauer R, Fricke J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioproc Biosyst Eng. 2003,26:109-116
    [111]Hekmat D, Bauer R, Neff V. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Proc Biochem.2007,42:71-76.
    [112]Adlercreutz P, Hoist O, Mattiasson B. Characterization of Gluconobacter oxydans immobilized in calcium alginate Appl Microbiol Biotechnol.1985,22:1-7
    [113]Nabe K, Izuo N, Yamada S, et al. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl Environ Microb.1979, 1056-1060
    [114]Wei SH, Song QX, Wei DZ. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone, Prep Biochem Biotechnol.2007,37(1): 67-76
    [115]Chi SY, Yin KK, Li S. Studies on the production of dihydroxyacetone by Gluconobacter oxydans CCRC 10684. Agri Biol Chem.1984,43(2):1005-1015
    [116]Yamada s, Nabe K. Izuo N. Enzymatic production of dihydroxyacetone by acetobacter suboxydans ATCC621. J Ferment Technol.1979,57(3):221-226
    [117]Flickinger MC, Perlman D. Application of oxygen-enriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl Environ Microb.1977,33(3):706-712
    [118]Leung R, Poncelet D, Neufeld RJ. Enhancement of oxygen transfer rate using microencapsulated silicone oils as oxygen carriers. J Chem Tech Biotechnol.1997,68: 37-46
    [119]Adlercreutz P, Mattiasson B. Oxygen supply to immobilized cells. Eur J Appl Microbiol Biotechnol.1982,16:165-170
    [120]Hoist O, Lundback H, Mattiasson B. Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl Microbiol Biotechnol.1985,22:383-388
    [121]Muzart J. Chromium-Vi Complex catalyzed benzylic oxidations in the presence of tert-butyl hydroperoxide. Tetrahedron Lett.1986,27:3139-3142
    [122]Muzart J, Ajjou AN. Chromium-assisted oxidations with sodium perborate by phase-transfer catalysis. Synthetic Commun.1991,21:575-580
    [123]Lou JD, Lou WX. Oxidation of alcohols to carbonyl compounds with a new potassium permanganate adsorbed on kieselguhr reagent. Synthetic Commun.1997,27: 3697-3699
    [124]Lickiss PD, Lucas R. Oxidation of sterically hindered organosilicon hydrides using potassium permanganate. J Organomet Chem.1996,521:229-234
    [125]Tsuboi S, Ishii N, Sakai T, et al. Oxidation of alcohols with electrolytic manganese-dioxide-its application for the synthesis of insect pheromones. B Chem Soc Jpn.1990,63:1888-1893
    [126]Liotta LF, et al. Liquid phase selective oxidation of benzyl alcohol over Pd-Ag catalysts supported on pumice. Catal Today.2001,66:271-276
    [127]Rajendran S, Trivedi DC. Ruthenium tetroxide as a phase-transfer catalyst in biphasic system and its in-situ electrochemical regeneration-oxidation of aromatic primary alcohol and aldehydes. Synthesis-Stuttgart.1995:153-154
    [128]Markusse AP, Kuster BFM, Schouten JC. Platinum catalysed aqueous alcohol oxidation:experimental studies and reaction model discrimination. J Mol Catal a-Chem.2000,158:215-222
    [129]Li XQ, Zhang C. An environmentally benign TEMPO-catalyzed efficient alcohol oxidation system with a recyclable hypervalent iodine(Ⅲ) reagent and its facile preparation. Synthesis-Stuttgart.2009:1163-1168
    [130]Denooy AEJ, Besemer AC, Vanbekkum H. Highly Selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pay B.1994, 113:165-166
    [131]Herath AC, Becker JY.2,2,6,6-Tetramethyl piperidine-1-oxyl (TEMPO)-mediated catalytic oxidation of benzyl alcohol in acetonitrile and ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate [BMIm] [PF6]:kinetic analysis. Electrochim Acta.2008,53:4324-4330
    [132]De Souza MVN. TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) an important reagent in alcohol oxidation and its application in synthesis of natural products. Mini-Rev Org Chem.2006,3:155-165
    [133]Murray WD, Duff SJB. Bio-oxidation of aliphatic and aromatic high molecular weight alcohols by Pichia pastoris alcohol oxidase. Appl Microbiol Biotechnol.1990,33: 202-205
    [134]Chaabouni MK, Pulvin S, Meziani A, et al. Biooxidation of n-hexanol by alcohol oxidase and catalase in biphasic and mMicellar systems without solvent. Biotechnol Bioeng.2002,81(1):27-32
    [135]Murray WD, Duff SJB, Lanthier PH. Induction and stability of alcohol oxidase in the methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol.1989,32:95-100
    [136]Kawkami K, Nakahara T. Importance of the solute partitioning in biphasic oxidation of benzyl alcohol by free and immobilized whole cells of Pichia pastoris. Biotechnol Bioeng.1994,43:918-924
    [137]Wecker MSA, Zall RR. Production of acetaldehyde by Zymomonas mobilis. Appl Environ Microb.1987,53(12):2815-2820
    [138]Duff SJB, Murray WD. Oxidation of benzyl alcohol by whole cells of pichia pastoris and by alcohol oxidase in aqueous and noaqueous reaction media. Biotechnol Bioeng. 1999,34:153-159
    [139]Gandolfi R, Ferrara N, Molinari F. An easy and efficient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols. Tetrahedron Lett.2001,42:513-514
    [140]Celik D, Bayraktar E, Mehmetoglu D. Biotransformation of 2-phenylethanol to phenylacetaldehyde in a two-phase fed-batch system. Biochem Eng J.2004,17:5-13
    [141]Molinari F, Gandolfi R, Aragozzini F, et al. Biotransformations in two-liquid-phase systems-production of phenylacetaldehyde by oxidation of 2-phenylethanol with acetic acid bacteria. Enzyme Microb Tech.1999,25:729-735
    [142]Gandolfi R, Cavenago K, Gualandris R, et al. Production of phenylacetic acid and phenylacetaldehyde by oxidation of 2-phenylethanol with free immobilized cells of Acetobacter aceti. Process Biochem (2004) 39:747-751
    [143]Villa R, Romano A, Gandolfi R, et al. Chemoselective oxidation of primary alcohols to aldehydes with Gluconobacter oxydans. Tetrahedron Lett.2002,43:6059-6061.
    [144]郭占京.桂醛碱性水解反应过程及产物的研究.广西大学.硕士学位论文.2006
    [145]戴琳,王志祥,史益强.苯甲醛绿色生产工艺研究进展,化工时刊.2006,20(11): 71-73
    [146]刘伟华,张同来,张建国等.甲苯氧化制苯甲醛技术进展.化工生产与技术.2004,11(3):24-28
    [147]Caravati M, Grunwaldt JD, Baiker A. Selective oxidation of benzyl alcohol to benzaldehyde in "supercritical" carbon dioxide. Catal Today.2004,91-92:1-5
    [148]Choudhary VR, Dumbre DK, Uphade BS, et al. Solvent-free oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide using transition metal containing layered double hydroxides and/or mixed hydroxides. J Mol Catal a-Chem.2004,215: 129-135
    [149]Choudhary VR, Dhar A, Jana P, et al. A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem.2005,7:768-770
    [150]Lingaiah N, Reddy KM, Babu NS, et al. Aerobic selective oxidation of benzyl alcohol over vanadium substituted ammonium salt of 12-molybdophosphoric acid. Catal Commun.2006,7:245-250
    [151]Oonaka T, Hashimoto K, Kominami H, et al. Liquid phase oxidation of benzyl alcohol with oxygen using ruthenium containing polyoxomolybdate. J Jpn Petrol Inst.2006,49: 43-44
    [152]Dimitratos N, Lopez-Sanchez JA, Morgan D, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catal Today.2007,122:317-324
    [153]Buonomenna MG, Drioli E. Benzyl alcohol oxidation to benzaldehyde in multiphase membrane reactor. Org Process Res Dev.2008,12:982-988
    [154]Ilyas M, Saeed M. Oxidation of benzyl alcohol in liquid phase catalyzed by Oxides of nickel. J Chem Soc Pakistan.2009,31:526-533
    [155]Schrader J, Etschmann MMW, Sell D, et al. Applied biocatalysis for the synthesis of natural flavour compounds current industrial processes and future prospects. Biotechnol Lett.2004,26:463-472
    [156]Ueda S, Takahashi M, Misaki H. High precision determination of glycerol, dihydroxyacetone, D-glyceraldehyde and composition therefore. WO. Patent 1992, No: 9220818
    [157]Chen HW, Bai SF, Hu ZD. Simultaneous HPLC determination of four key metabolites in the metabolic pathway for production of 1,3-propanediol from glycerol. chromatographia.2007,65:629-632
    [158]Chen J, Chen JH, Zhou CL. HPLC methods for determination of dihydroxyacetone and glycerol in fementation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. Journal of Chromatographic Science.2008,46: 912-916
    [159]张智宏,孙晓娟.二羟丙酮的气相色谱分析.分析测试学报.1999,18:68-70
    [160]Wang LL, Qian J, Hu ZC, et al. Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Analytica Chimica Acta.2006,557:262-266.
    [161]Wachowiak R, Connors KA. N-Methylimidazole-catalyzed acetylation of hydroxy compounds prior to gas chromatographic separation and determination. Anal Chem. 1979,51:27-30.
    [162]Isailovic B, Nienow AW, Taylor IW, et al. The use of multi-parameter flow cytometry for characterisation and monitoring of insect cell-baculovirus fermentations in a mechanically-agitated bioreactor. J Biotechnol.2005,118:S38-S38
    [163]魏胜华.氧化葡萄糖酸杆菌转化甘油制备二羟基丙酮的过程工程研究.博士学位论文.2007,76-77
    [164]Bradford MM. A rapid and simple method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976,72: 248-254
    [165]Cleland WW. Statistical analysis of enzyme kinetic data. Methods 1979, Enzymol.63: 103-138
    [166]Yang XP, Wei LJ, Ye JB, et al. A pyrroloquinoline quinine-dependent membrane-bound D-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered BiBi reaction mechanism. Arch Biochem Biophys.2008,477:206-210
    [167]Heipieper HJ, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biot.2007,74: 961-973
    [168]Mundra P, Desai K, Lele SS. Application of response surface methodology to cell immobilization for the production of palatinose. Bioresource Technol.2007,98: 2892-2896
    [169]Ramsay RR, Dunford C, Gillman PK. Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladderpolymer. Anal Chem.1999,71:1928-1934
    [170]Ramsay RR, Dunford C, Gillman PK. Methylene blue and serotonin toxicity: inhibition of monoamine oxidase A (MAOA) confirms a theoretical prediction. Brit J Pharmacol.2007,152:946-951

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700