单油酸甘油酯的酶法合成、性质及其在低脂冰淇淋中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用酶法生产单油酸甘油酯,以甘油和茶籽油为底物,对催化过程进行了工艺优化。通过对三种商品化的脂肪酶Lipozyme RM IM、Lipozyme TL IM和Novozym 435进行筛选,发现:在叔丁醇溶剂体系中Novozym 435是催化茶籽油甘油解反应合成单油酸甘油酯(Glycerol monooleate, GMO)的最适合的酶。在批次反应中,研究了不同的反应条件如底物摩尔比、底物浓度和温度对单油酸甘油酯生成量和甘油三酯的转化率的影响。最佳的反应条件为底物摩尔比6:1(甘油/茶籽油),底物浓度为40%,反应温度为50℃。在这个最佳反应条件下,经过10h反应,茶籽油的转化率为98.7%,甘油酯中MAG的含量为82.0%。用一根装有4.5g Novozym 435酶的填充床反应器(Packed bed reactor,PBR)连续催化茶籽油甘油解合成单油酸甘油酯,当进料速度为0.25 mL/min时,产物中单脂肪酸甘油酯(Monoacylglycerol, MAG)的含量为80.74%,经过38天长期运行填充床反应器,平均MAG的产能为0.698 Kg MAG/(Kg酶·h)。
     针对茶籽油为底物的甘油解反应,建立了酶促反应动力学方程。Novozym 435催化茶籽油甘油解合成单油酸甘油酯符合非连续性多底物酶促反应机制即乒乓机制,根据反应机理推导出动力学方程,将实验数据代入推导出来的动力学方程求得动力学常数并对动力学方程进行验证。改变反应体系中酶、水、甘油和茶籽油的添加量,发现实验值和所建立的动力学方程比较吻合。本课题还通过模拟探讨了甘油和茶籽油的添加量对GMO最大生成初速率及反应达到平衡时GMO的产率的影响的协同作用,从模拟出来的结果可以看出高浓度的茶籽油可以获得较高的GMO最大生成初速度,但是会导致GMO的产率下降。当甘油和茶籽油的添加量分别为91.62 mM和15.27mM,Novozym435和水的添加量分别为1.09g和12.59mM时,MAG的最大生成初速率为9.773 mM·h-1,对应的MAG的产率为1.8379 mM MAG·mM-1 TAG。
     采用分子蒸馏对酶法合成的产物GMO进行分离。正交实验结果表明在蒸发温度(ET)、进料流速(Q)、进料温度(FT)和冷凝温度(CT)四个因素当中ET和Q是影响分子蒸馏分离纯化GMO最重要的两个因素。通过响应面实验设计建立了轻相中MAG、DAG的含量对蒸发温度和进料流速的回归方程:MAG=-577.41+7.44ET-34.13Q+0.24ET×Q-0.02ET2-5.28Q2;DAG=801.97-8.51ET-1.64Q+0.01ET×Q+0.02ET2-0.16Q2,实验值和模型比较吻合。GMO的回收率与其预期的纯度相关,当采用分子蒸馏条件为:Q=0.71mL/min,FT=70℃,CT=60℃,ET为170-190℃之间,可以得到纯度为80%以上的GMO,对应的GMO的回收率为60-80%。通过二级分子蒸馏,Q=1mL/min,ET=180℃,FT=90℃,CT=60℃,得到纯度为98.9%的GMO,对应的回收率为33.42%。
     对GMO的理化性质分析,并进行了冰淇淋的应用试验研究。结果表明,GMO的含量为82.42% (w/w),酸价为2.1,游离甘油含量为3.21% (w/w),羟基价为314,碘值为78,铅含量为0.08 mg/Kg,灰分为0.03% (w/w),皂化值为175,完全符合美国食品化学品法典第五版(FCC-V)对GMO的质量指标要求。酶法合成的GMO的脂肪酸组成为C12:0,0.06%;C14:0,0.08%;C16:0,10.59%;C16:1,0.13%;C18:0,3.36%;C18:1,73.91%;C18:2,1.87%;其他,3.13%。GMO在室温下是一种蜡状固体,有轻微的油脂味,能溶于热酒精和氯仿,在常温的酒精、乙醚和石油醚中的溶解度很低,不溶于水。GMO的融点约为35-36℃,HLB值为3.7。抗氧化剂BHT、Vc棕榈酸酯和TBHQ能有效地抑制GMO的氧化,添加0.015%BHT、0.015%TBHQ和0.015%Vc棕榈酸酯的GMO在常温下酸价(AV)上升到FCC-V规定的6.0所需要的时间为33-36个月,是空白对照样品的1.38-1.71倍。单油酸甘油酯作为乳化剂在一定程度上能弥补单硬脂酸甘油酯低脂冰淇淋由于脂肪含量降低给冰淇淋口感带来的不利影响。单油酸甘油酯将冰淇淋内部的酪蛋白从脂肪球表面分散开,并将更多的脂肪球簇集到空气泡周围的能力更强,使得最终产品的抗融性效果更好。
Three commercial immobilized lipases, Lipozyme RM IM, Lipozyme TL IM and Novozym 435, were screened for the production of GMO (Glycerol monooleate)by glycerolysis of camellia oil in a solvent medium of tert-butyl alcohol. Novozym 435 showed the best performance and was selected to catalyze the subsequent glycerolysis reaction. For the batch reaction, different reaction conditions, substrate mole ratio, substrate concentration and temperature, for the GMO concentration and conversion rate of TAG, were investigated. The optimal reaction conditions were determined as 6:1 mole ratio of glycerol to camellia oil at 40% (w/v) of substrate concentration in tert-butyl alcohol at a reaction temperature of 50℃. Under these optimal conditions, the conversion rate of camellia oil was 98.7% (10 h), and the mixture of acylglycerols contained 82.0% of MAG. A packed-bed reactor (PBR) system with 4.5 g Novozym 435 was employed in continuous production, the resulting product mixture of acylglycerols contained 80.74% of MAG and was obtained at a flow rate of 0.25 mL/min of substrates. The long-term operation of the PBR system gave an average productivity of 0.698 Kg MAG/(Kg enzyme·h) after 38 days of operation.
     Kinetic study of GMO production by glycerolysis of camellia oil using Novozym 435 has also been investigated, and a mathematical model that took into account for mechanism of glycerolysis reaction using camellia oil as substrate was developed. The kinetic parameters were estimated by fitting experimental data of glycerolysis reaction of camellia oil by Novozym 435 into proposed model equations. There was a good agreement between experimental results and those proposed model predicted equations under conditions of various enzyme, water, glycerol and camellia oil concentrations. From proposed model equations, the synergic effect of glycerol and palm olein concentrations was simulated. The simulation results show that the behavior of high substrate concentrations obtained high initial production rates but low yields of MAG. Thus, with a concentration of 15.27mM of camellia oil and 91.62 mM of glycerol, the concentrations of Novozym 435 and water were 1.09g and 12.15 mM, respectively, the high initial production rate of MAG of 9.733mM·h-1 and corresponding yield of 1.8379 mM MAG·mM-1 TAG were obtained.
     In this study, molecular distillation (MD) was used to purify GMO synthesized lipase-catalyzed reaction. Orthogonal design was carried out in order to study the effect of operating conditions on the mass ratio (D/F) using MD process to purifying GMO. Among the four studied variables, evaporator temperature (ET), feed flow rate (Q), feed temperature (FT) and condenser temperature (CT), only ET and Q are important at the studied experimental conditions. The model equations of MAG and DAG concentration in the outlet stream to the operating conditions ET and Q was proposed: MAG=-577.41+7.44ET-34.13Q+0.24ET×Q-0.02ET2-5.28Q2; DAG=801.97-8.51ET-1.64Q+0.01ET×Q+0.02ET2-0.16Q2, there was a good agreement between experimental results and those predicted equations. The MAG recovey rate depends strongly on the purity of MAG was desired, GMO with a purity of 80% can be obtained by the operating conditions of Q=0.71ml/min,FT=70℃,CT=60℃,ET 170-190℃, the corresponding recovery rate of GMO is 60-80%. A strategy that consisting of two distillation steps was developed to obtain distilled MAG, Q=1mL min, ET=180℃, FT=90℃, CT=60℃, MAG with a purity of 98.9% can be obtained, the corresponding recovery rate of MAG was 33.42%.
     Physical and chemical analysis of products indicated that, the GMO synthesized by lipase-catalyzed reaction contain 82.42% of MAG, acid value 4.10, free glycerin 3.21%, hydroxyl value 314, iodine value 78, lead 0.08 mg/kg, residue on ignition 0.03%, saponification value 175 , which met the requirements of FCC-V very well. The fatty acid composition is C12:0, 0.06%; C14:0, 0.08%; C16:0, 10.59%; C16:1, 0.13%; C18:0, 3.36%; C18:1, 73.91%; C18:2, 1.87% and others 3.13%. GMO occurs as a waxy solid at room temperature. It has a mild, fatty taste. It is soluble in hot alcohol and in chloroform; very slightly soluble in cold alcohol, in ether, and petroleum ether; and insoluble in water. It melts at 35-36℃, The hydrophilic-lipophilic balance (HLB) of GMO is 3.7. The storage stability of GMO with added antioxidants BHT, L-ascorbyl palmitate and TBHQ could be significantly improved, the sample with added antioxidants mixed by 0.015% BHT, 0.015% L-ascorbyl palmitate and 0.015% TBHQ had the highest stable degree of 33-36 month guarantee in room temperature, which was 1.38-1.71 times higher than that of control group. In certain sense, GMO used as emulsifier in low fat ice cream was able to compensate for the decrease of sensory quality of low fat GMS ice cream. Unsaturated GMO was more powerful than saturated GMS at displacing caseins from the fat interface and brought more partially coalesced fat to air interface, giving the final product better melting resistance.
引文
[1] Damstrup M.L., Jensen T., Spars? F.V., et al. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction [J]. J Am Oil Chem Soc, 2005, 82: 559–564
    [2] Ghamgui H., Miled N., Reba? A., et al. Production of mono-olein by immobilized staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology [J]. Enzyme Microb Tech.2006, 39: 717–723
    [3] Hui Y.H.主编.贝雷:油脂化学与工艺学(第三卷)(第五版)[M]..徐生庚,裘爱泳主译.北京:中国轻工业出版社, 2001: pp560
    [4]刘少友,甑卫军,李振江.红花油不饱和单甘酯的合成动力学研究[J].新疆大学学报(自然科学版), 2004, 21(3): 278-281
    [5]刘少友,甑卫军,闽梨园,等.红花油脂肪酸单甘酯的合成及其宏观动力学研究[J].2004, 34(4): 217-219
    [6]杨红芸,刘少友,甑卫军.影响红花油脂肪酸单甘酯合成的因素[J].黔东南民族师范高等专科学校学报, 2005, 23(3): 16-18
    [7] Sonntag N.O.V. Glycerolysis of fats and methyl esters—status, review, and critique [J]. J Am Oil Chem Soc, 1982, 59: 795A–802A
    [8] Noureddini H., Harkey D.W., Gutsmanc M.R. A continuous process for the glycerolysis of soybean oil [J]. J Am Oil Chem Soc, 2004, 81: 203-207
    [9] Peng L., Xu X., Tan T. Enzymatic production of high quality monoacylglycerols, in: R.M. Mohan (Ed.), Research Advances in Oil Chemistry [M]. 1, GRN, Calcutta, India, 2000: 53–78
    [10]胡隼,万鹏,王芳,等.脂肪酶催化大豆色拉油甘油解合成单甘酯[J].中国粮油学报.2007, 22 (3): 80-84
    [11]孙素玲,张干伟,汤坚,等.酶促酯化合成多不饱和脂肪酸甘油酯[J].食品工业科技, 2006, 27(8): 139-143
    [12]夏咏梅,王征远,章克昌.脂肪酶催化合成单脂肪酸甘油酯[J].日用化学工业, 1999, 6: 30-32
    [13]彭立凤.脂肪酸单甘油酯的性能和酶法合成[J].粮油食品科技, 2000, 8(1): 19-21
    [14]孔明,杨博,姚汝华.脂肪酶催化合成单甘酯的研究进展[J].中国油脂, 2003, 28(7): 11-14
    [15] Pelan B.M.C., Watts K.M., Campbell I.J., et al. The stability of aerated milk protein emulsions in the presence of small molecule surfactants [J]. J Dairy Sci, 1997, 80(10): 2631-2638
    [16] Davies E., Dickinson E., Bee R.D. Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals [J]. Food Hydrocolloid, 2000, 14(2): 145–153
    [17] Davies E., Dickinson E., Bee R.D. Orthokinetic destabilization of emulsions by saturated and unsaturated monoglycerides[J]. Int Dairy J, 2001, 11(10): 827–836
    [18] Zhang Z., Goff H.D. On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride[J]. Int Dairy J, 2005, 15(5): 495-500
    [19] Zaks A., Klibanov A.M. Enzyme-catalyzed processes in organic solvents [J]. P Natl Acad SCI USA, 1985, 82: 3192-3196
    [20] Zaks A., Klibanov A.M. Enzymatic catalysis in nonaqueous solvents [J]. J Biol Chem, 1988, 263(7): 3194-3201
    [21] Zaks A., Klibanov A.M. The effect of water on enzyme action in organic media [J]. J Biol Chem, 1988, 263(17): 8017-8021
    [22] Bornscheuer U.T. Lipase catalyzed syntheses of monoacylglycerols[J]. Enzyme Microb Tech, 1995, 17(7): 578-586
    [23] Pawongrat R., Xu X., H-Kittikun A. Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK [J]. Food Chem. 2007, 104: 251–258
    [24] Esteban L., Mu?ío M.M., Robles A., et al.Synthesis of 2-monoacylglycerols (2-MAG) by enzymatic alcoholysis of fish oils using different reactor types [J]. Biochem Eng J, 2009, 44: 271–279
    [25] Mu?ío M.M., Esteban L., Robles A., et al. Synthesis of 2-monoacylglycerols rich in polyunsaturated fatty acids by ethanolysis of fish oil catalyzed by 1,3 specific lipases [J]. Process Biochem, 2008, 43(10): 1033-1039
    [26] Damstrup M.L., Jensen T., Spars? F.V., et al. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction [J]. J Am Oil Chem Soc, 2005, 82: 559–564
    [27] Yang T.K., Rebsdorf M., Engelrud U., et al. Monoacylglycerol synthesis via enzymatic Glycerolysis using a simple and efficient reaction system [J]. J Food Lipids, 2005,12: 299–312
    [28] Esmelindro ?.F.A., Fiametti K.G., Ceni G., et al. Lipase-catalyzed production of monoglycerides in compressed propane and AOT surfactant[J], J Supercrit Fluid, 2008,47(1) :64-69
    [29] Jackson M.A., King J.W. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide [J]. J Am Oil Chem Soc, 1997, 74: 103–106
    [30] Ferreira-Dias S., Correia A.C., Baptista F.O., et al. Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases [J]. J Mol Catal B-Enzym, 2001, 11: 699–711
    [31] Compton D.L., Vermillion K.E., Laszlo J.A. Acyl migration kinetics of 2-monoacylglyc erols from soybean oil via 1H NMR [J]. J Am Oil Chem Soc, 2007, 84(4): 343-348
    [32] Ericsson E.M., Fax?lv L., Weissenrieder A., et al. Glycerol monooleate-blood interactions [J]. Colloid surface B, 2009, 68: 20-26
    [33] Nielsen L.S., SchuberT.L., Hansen J. Bioadhesive drug delivery systems I. Characteris ation of mucoadhesive roperties of systems based on glyceryl mono-oleate and glyceryl monolinoleate [J].European J Pharm Sci, 1998, 6: 231-239
    [34] Monduzzi M., Ljusberg-Wahren H., Larsson K. A 13C NMR study of aqueous dispersins of reversed lipid phases[J].Langmuir, 2000, 16(19): 7355-7358
    [35] Popescu G., Barauskas J., Nylander T., et al. Liquid crystalline phases and their dispersions in aqueous mixtures of glycerol monooleate and glyceryl monooleyl ether [J]. Langmuir, 2007, 23: 496-503
    [36] Fregolente L.V., Batistella C.B., Filho R.M., et al. Response surface methodology applied to optimization of distilled monoglycerides production [J]. J Am Oil Chem Soc, 2005, 82(9): 673-678
    [37] Ghamgui H., Miled N., Reba? A., et al. Production of mono-olein by immobilizedStaphylococcus simulans lipase in a solvent-free system: Optimization by response surface methodology [J]. Enzyme microb tech, 2008, 39: 717-723
    [38] Moquin P.H.L., Temelli F. Production of monoolein from oleic acid and glycerol in supercritical carbon dioxide media: a kinetic approach [J]. J Supercrit Fluid, 2008, 44: 40-47
    [39] Zeng F.K., Yang B., Wang Y.H., et al. Enzymatic Production of Monoacylglycerols with Camellia Oil by the Glycerolysis Reaction [J]. J Am Oil Chem Soc, 2010
    [40] Goff H.D. Ice cream, in Fox P.F., McSweeney P.L.H.. Advanced Dairy Chemistry Volume 2 Lipids(Third Edition)[M]. Springer US Press, 2007, PP.442
    [41]章朝晖,冯巧嫦.高纯度单脂肪酸甘油酯的制备[J].精细石油化工, 2001, 2: 18-22
    [42]张大金.分子蒸馏单硬脂酸甘油酯的研制[J].广东化工, 1989, 3: 47-54
    [43] Kuhrt N.H., Welch E.A., Kovarik F.J.Molecularly distilled monoglycerides.1. preparation and properties [J]. J Am Oil Chem Soc, 1950, 27: 310-313
    [44]约翰逊R.W.氟里兹E.工业脂肪酸及其应用[M].北京:中国轻工业出版社, 1992
    [45]梁振明.分子蒸馏单甘酯的特性及工业生产[J].中国食品添加剂, 2005, 5: 95-98 (102)
    [46]梁振明.分子蒸馏单甘酯生产工艺[J].现代食品科技, 2005, 21(1): 97-98(102)
    [47] Akamatsu taku. Separation of polyol fatty acid monoesters[P]. JP 0648986, 1994
    [48]孙登文,湛日景.用溶剂结晶法分离单脂肪酸甘油脂的工艺.CN 1 074 898 A. 1993
    [49] Zinnen H.A. Process for separating mono-, di- and triglycerides [P]. US Patent 4797233, 1989
    [50] Gutsche B.. Column chromatography for separation of components of polyol ester mixtures [P]. DE: 4335461, 1995
    [51] Maekawa Y., Suzuki H., Hasegawa M.. Purification of monoglycerides [P]. JP61166399, 1986
    [52] Yu Z.R., Singh B., Rizvi S.S.H., et al. Solubilities of fatty acids, fatty acid esters, triglycerides, and fats and oils in supercritical carbon dioxide [J]. J Supercrit Fluids, 1994, 7(1): 51-59
    [53] Peter S.. Process for extraction of glycerol from glyceride mixtures [P]. DE 4118487, 1992
    [54] Schoenfelder W. Determination of monoglycerides, diglycerides, triglycerides and glycerol in fats by means of gel permeation chromatography[C-VI 5b(02)] [J]. Eur J Lipid Sci Technol, 2003, 105: 45-48
    [55]李在均,潘教麦.光度法测定非离子表面活性剂的研究[J].日用化学工业,2000, 30(1): 53-54
    [1] Damstrup M.L., Jensen T., Spars? F.V., et al. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction [J]. J Am Oil Chem Soc, 2005, 82(8): 559– 564
    [2] Pawongratn R., Xu X., H-Kittikun A.. Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK [J]. Food Chem, 2007, 104(1): 251– 258
    [3] Pelan B.M.C., Watts K.M., Campbell I.J., et al.The stability of aerated milk protein emulsions in the presence of small molecule surfactants [J]. J Dairy Sci, 1997, 80(10): 2631- 2638
    [4] Zhang Z., Goff H.D..On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride [J]. Int Dairy J, 2005, 15(5): 495- 500
    [5] Sonntag N.O.V..Glycerolysis of Fats and Methyl Esters—Status, Review, and Critique [J]. J Am Oil Chem Soc, 1982, 59(10): 795A– 802A
    [6] Noureddini H., Harkey D.W., Gutsmanc M.R.. A continuous process for the Glycerolysis of Soybean Oil [J]. J Am Oil Chem Soc, 2004, 81(2): 203- 207
    [7] Peng L., Xu X., Tan T.. Enzymatic production of high quality monoacylglycerols, In: Mohan, R.M. (Eds.), Research Advances in Oil Chemistry [M]. 1, GRN, Calcutta, India, 2000, pp 53- 78
    [8] Mu?ío M.M., Esteban L., Robles A., et al. Synthesis of 2-monoacylglycerols rich in polyunsaturated fatty acids by ethanolysis of fish oil catalyzed by 1,3 specific lipases [J]. Process Biochem, 2008, 43(10): 1033- 1039
    [9] Esteban L., Mu?ío M.M., Robles A., et al. Synthesis of 2-monoacylglycerols (2-MAG) by enzymatic alcoholysis of fish oils using different reactor types [J]. Biochem Eng J, 2009, 44(2–3): 271– 279
    [10] Ghamgui H., Miled N., Reba? A., et al. Production of mono-olein by immobilized staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology [J]. Enzyme microb Tech, 2006, 39: 717- 723
    [11] Yang T.K., Rebsdorf M., Engelrud U., et al. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system [J]. J Food Lipids, 2005, 12(4): 299– 312
    [12] Esmelindro ? F.A., Fiametti K.G., Ceni G., et al. Lipase-catalyzed production of monog lycerides in compressed propane and AOT surfactant [J]. J Supercrit Fluids 2008, 47(1): 64– 69
    [13] Ferreira-Dias S., Correia A.C., Baptista F.O., et al. Contribution of response surface de sign to the development of glycerolysis systems catalyzed by commercial immobilized lipases [J]. J Mol Catal B Enzym, 2001, 11(4–6): 699– 711
    [14] Bornscheuer. Lipase-catalyzed syntheses of monoacylglycerols [J]. Enzyme and Micro bial Technology, 1995, 17: 578- 586
    [15]刘波,李丹.茶籽油的保健功能及应用现状[J].茶叶通报, 2008, 30(3):112- 114
    [16] Yamane T., Kang S.T., Kawahara K., et al. High-yield diacylglycerol formation by solid-phase enzymatic glycerolysis of hydrogenated beef tallow[J]. J Am Oil Chem Soc, 1994, 71(3): 339– 342
    [17] Compton D.L., Vermillion K,E., Laszlo J.A.. Acyl Migration Kinetics of 2-Monoacylgl ycerols from Soybean Oil via 1H NMR[J]. J Amer Oil Chem Soc, 2007, 84: 343- 348
    [18] Laszlo J.A., Compton D.L., Vermillion K.E.. Acyl Migration Kinetics of Vegetable Oil 1,2-Diacylglycerols [J].J Am Oil Chem Soc, 2008, 85: 307- 312
    [19] Mattson F.H., Volpenhein R.A.. Synthesis and properties of glycerides. J Lipid Res, 1962, 3: 281– 295
    [20] Boswinkel G., Derksen J.T.P., Van’t R.K., et al. Kinetics of acyl migration in mono glycerides and dependence on acyl chain length [J]. J Am Oil Chem Soc, 1996, 73: 707– 711
    [21] Xu X., Balchen S., H?y C.E., et al. Production of Specific-Structured Lipids by Enzym atic Interesterification in a Pilot Continuous Enzyme Bed eactor [J]. J Am Oil Chem Soc, 1998, 75: 1573- 1579
    [22] Kaewthong W., Sirisansaneeyakul S., Prasertsan P., et al. Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase [J]. Process Biochem, 2005, 40(5): 1525– 1530
    [23] H-Kittikun A., Kaewthong W., Benjamas C.. Continuous production of monoacylglyce rols from palm olein in packed-bed reactor with immobilized lipase PS [J]. Biochem Eng J, 2008, 40(5): 1525- 1530
    [24] Moquin P.H.L., Temelli F.T.. Production of monoolein from oleic acid and glycerol in supercritical carbon dioxide media: A kinetic approach [J]. J. of Supercritical Fluids, 2008, 44: 40- 47
    [1]刘少友,甑卫军,闽黎园,等.红花油脂肪酸单甘酯的合成及其宏观动力学研究[J].日用化学工业, 2004, 34(4): 217-219
    [2] Paiva A.L., Balc?o V.M., Malcata F.X. Kinetics and mechanisms of reactions catalyzed by immobilized lipases [J].Enzyme Microb Tech, 2000, 27(3-5): 187- 204
    [3] Taylor F., Kurantz M.J., Craig J.C. Kinetics of continuous hydrolysis of tallow in a multi-layered flat-plate immobilized-lipase reactor [J]. J Am Oil Chem Soc, 1992, 69 (6): 591–594
    [4] Padmini P., Rakshit S.K., Baradarajan A. Kinetics of enzymatic hydrolysis of rice bran oil in organic system [J]. Enzyme Microb Technol, 1994, 16: 432–435
    [5] Stamatis H., Xenakis A., Menge U., et al. Kinetic study of lipase catalyzed esterification reactions in water-in-oil microemulsions [J]. Biotechnol Bioeng, 1993, 42: 931–937
    [6] Lortie R., Trani M., Ergan F. Kinetic study of the lipase-catalyzed synthesis of triolein[J]. Biotechnol Bioeng, 1993, 41: 1021–1026
    [7] Rizzi M., Stylos P., Riek A.,et al. A kinetic study of immobilized lipase catalyzing the synthesis of isoamyl acetate by transesterification in n-hexane [J], Enzyme Microb Technol, 1992, 14: 709–714
    [8] Reyes H.R. Kinetic modeling of interesterification reactions catalyzed by immobilized lipase [J]. Biotechnol Bioeng, 1994, 43: 171–182
    [9] Zhang T., Yang L., Zhu Z., Wu J. The kinetic study on lipase-catalyzed transesterification of -cyano-3-phenoxybenzyl alcohol in organic media [J], J Mol Catal B: Enzym, 2002,18: 315–323
    [10] Xu Y., Du X., Liu D. Study on the kinetics of enzymatic interesterification of triglyceri des for biodiesel production with methyl acetate as the aryl acceptor [J]. J Mol Catal B: Enzym, 2005, 32: 241–245
    [11] Peng LF, Xu XB, Tan TW. Lipase catalyzed production of high quantity monoglycerides [J]. Res Adv Oil Chem, 2000, 1: 53–77
    [12] Heisler A., Rabiller C., Hublin L. Lipase catalysed isomerisation of 1,2-(2,3)- diglyce ride into 1,3-diglyceride [J]. Biotechnol. Lett, 1991, 13 (5): 327–330
    [13] Lykids A., Mongios V., Arzoglon P. Kinetics of the two-step hydrolysis of triac ylglycer ol by pancreatic lipases [J]. Eur. J. Biochem. 1995, 230(3): 892–898
    [14] Dandik L., Aksoy H.A. The kinetics of hydrolysis of Nigella sativa (black cumin) seed oil catalyzed by native lipase in ground seed [J]. J Am Oil Chem Soc, 1992, 69 (12):1239–1241
    [15]徐静,徐晓明,高素君,等.酶法制备生物柴油的酯交换反应动力学[J].厦门大学学报(自然科学版), 2009, 48(2): 232-235
    [16] Tan T., Yin C. The mechanism and kinetic model for glycerolysis by 1,3 position specific lipase from Rhizopus arrhizus[J]. Biochem Eng J, 2005, 25: 39–45
    [17] Cheirsilp B., Kaewthong W., H-Kittikun A. Kinetic study of glycerolysis of palm olein for monoacylglycerol production by immobilized lipase [J]. Biochem Eng J, 2007, 35: 71-80
    [18]孙敦伟,吴晓红,张琳.高效液相色谱法在甘油含量测定中的应用研究[J].化学世界, 2007, 11: 646-649
    [19]彭志英.食品酶学导论[M].第二版.北京:中国轻工业出版社, 2009: pp52
    [20]何国庆,丁立孝.食品酶学[M].北京,化学工业出版社, 2006: pp57-58
    [21] Reyes H.R. Kinetic modeling of interesterification reactions catalyzed by immobilized lipase [J]. Biotechnol Bioeng, 1994, 43: 171–182
    [22] Chen J.P., Wang H.Y. Improved properties of bilirubin oxidase by entrapment in alginate–silicate sol–gel matrix [J]. Biotech Technol, 1998, 12 (11): 851–853
    [23] Romero M.D., Calvo L., Alba C., et al. A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane [J]. J Biotech, 2007, 127: 269–277
    [24] Yang T., Rebsdorf M., Engelrud U.,et al. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system [J]. J Food Lipids, 2005, 12: 299-312
    [25] Piyatheerawong W., Iwasaki Y., Xu X.,et al. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases[J]. J Mol Catal-Enz, 2004, 28, 19–24
    [26] McNeill G.P., Shimizu S., Yamane T. Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride[J]. J Am Oil Chem Soc, 1990, 67(11): 779–783
    [27] Brady C., Metcalfe L., Slaboszewski D., et al. Lipase immobilized on a hydrophobic microporous supports for the hydrolysis of fats [J], J Am Oil Chem Soc, 1988, 65: 917–921
    [28] Yang D., Rhee J.S. Stability of the lipase immobilized on DEAE-sephadex for continuous lipid hydrolysis in organic solvent [J]. Biotechnol. Lett. 1991, 13 (8): 553–558
    [1] Mikov M., Lutisan J., Cvengros J. Balance equations for molecular distillation [J]. Separ Sci Technol, 1997, 32(18): 3051-3066
    [2] Batistella C.B., Wolf-Maciel M.R. Modeling, simulation and analysis of molecular distillators: centrifugal and falling film [J]. Comput Chem Eng, 1996, 20 (supplement 1): S19-S24
    [3] Cvengros J., Pollák S., Mikov M.,et al. Film wiping in the molecular evaporator[J]. Chemical Engineering Journal, 2001, 81(1-3): 9-14
    [4] Kawala Z., Dakiniewicz P. Influence of evaporation space geometry on rate of distillation in high-vacuum evaporator [J]. Separ Sci Technol, 2002, 37(8): 1877-1895
    [5] Cvengros J., Mikov M., Lutisan J. Modelling of fractionation in a molecular evaporator with divided condenser [J]. Chem Eng Process, 2000, 39(3): 191-199
    [6] Lutisan J., Mikov M., Cvengros J. The influence of entrainment separator on the process of molecular distillation [J]. Separa Sci Technol, 1998, 33(1): 83-96
    [7] Fregolente L.V., Fregolente P.B.L., Chicuta A.M., et al. Effect of operation conditions on the concentration of monoglycerides using molecular distillation [J]. Chem Eng Res Des, 2007, 85(A11):1524-1528
    [8] Fregolente L.V., Batistella C.B., Filho R.M., et al. Response surface methodology applied to optimization of distilled monoglycerides production [J]. J Am Oil Chem Soc, 2005, 82(9): 673-678.
    [9] Ghamgui H., Miled N., Reba? A., et al. Production of mono-olein by immobilized staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology [J]. Enzyme Microb Tech, 2006, 39: 717-723
    [10] Esteban L., Mu?ío M.M., Robles A., et al. Synthesis of 2-monoacylglycerols (2-MAG) by enzymatic alcoholysis of fish oils using different reactor types [J]. Biochem Eng J, 2009, 44: 271-279
    [11] Mu?ío M.M., Esteban L., Robles A., et al. Synthesis of 2-monoacylglycerols rich in polyunsaturated fatty acids by ethanolysis of fish oil catalyzed by 1,3 specific lipases [J]. Process Biochem, 2008, 43(10): 1033-1039
    [12] Damstrup M.L., Jensen T., Spars? F.V., et al. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction [J]. J Am Oil Chem Soc, 2005, 82: 559-564
    [13] Yang T.K., Rebsdorf M., Engelrud U., et al. Monoacylglycerol synthesis via enzymatic Glycerolysis using a simple and efficient reaction system [J]. J Food Lipids, 2005, 12: 299-312
    [14] Esmelindro ?.F.A., Fiametti K.G., Ceni G., et al. Lipase-catalyzed production of monoglycerides in compressed propane and AOT surfactant [J]. J Supercrit Fluid, 2008, 47(1):64-69
    [15] Jackson M.A., King J.W. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide [J]. J Am Oil Chem Soc,1997,74: 103-106
    [16]姜美仁,吴利东,尹侠.刮膜式分子蒸馏技术精制单甘酯工业生产装置设计[J]. 2009, (8): 134-137
    [17]时宏,郭洪.面向21世纪的分子蒸馏单甘酯工业[J].中国食品添加剂, 2000(4): 54-59
    [18]冯武文,杨村,于宏奇.分子蒸馏技术与日用化工(Ⅰ)——分子蒸馏技术的原理及特点[J].日用化学工业, 2002, 32(5): 74-76
    [1] Yamane T. Monoacylglycerols. In Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation (M.C. Flickinger and S. W. Drew, eds.), John Wiley&Sons, New York, NY. 1999, pp1810-1818
    [2] Stutz R.L., Del Vecchio A.J., Tenney R.J. et al. The role of emulsifiers and dough conditioners in foods, Food Prod. Dev. 1973,7:52-60
    [3] Glycerol Monooleate Processing. NOSB TAP Review, OMRI, 2001
    [4] Ericsson E.M., Faxalv L., Weissenrieder A., et al. Glycerol monooleate-blood interactions [J]. Colloids and Surfaces B: Biointerfaces, 2009, 68:20-26
    [5] Final report on the safety assessment of glyceryl oleate. Cosmetic Ingredient Review Expert Panel, J Am Coll Toxicol, 1986, -413
    [6] Plasman V., Caulier T., Boulos N. Polyglycerol esters demonstrate superior antifogging properties for films [J]. Plastics, Additives and Compounding, 2005, 7(2): 30-33
    [7]胡勇刚.高含量高碘值单甘酯的合成及其贮存稳定性能研究[J].食品工业科技, 2001, 1: 196-199
    [8]陈振林,熊华,齐金峰,等.抗氧化剂对米糠油贮存稳定性的影响[J].中国油脂, 2008, 33(11): 31-34
    [9]赵世民.表面活性剂:原理、合成、测定及应用[M].北京:中国石化出版社, 2005, pp143-144
    [10]韩军岐,张有林,陈雷.葵花籽油的超声波提取及抗氧化研究[J].食品工业科技, 2005, 26(1): 52-54
    [11]焦学瞬.天然食品乳化剂和乳状液——组成、性质、制备、加工与应用[J].北京:科学出版社, 1999, pp248
    [12] Tang S., Kerry J.P., Sheehan D., et al. Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation[J]. Food Res Int., 2001, 34: 651-657
    [13] Nielsen N.S., Yang T., XU X., et al. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor [J]. Food Chem., 2006, 94, 53–60.
    [14] Akoh C.C., Moussata C.O. Characterization and oxidative stability of enzymatically produced fish and canola oil-oxidative structured lipids [J]. J Amer Oil Chem Soc, 2001, 78: 25-30
    [15] Senanayake S., Shahidi F. Chemical and stability characteristics of structured lipids from borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils [J]. J Food Sci, 2002, 67, 2038-2045
    [16] Altmann H.J., Grunow W., Mohr U., et al. Effects of BHA and related phenols on the forestomach of rats [J]. Food Chem Toxicol, 1986, 24: 1183-1188
    [17]陆豫,甘利军,陈葆仁.L-抗坏血酸棕榈酸酯的合成[J].精细化工, 1996, 3: 17-18
    [18]曹栋,章立群.新型营养性抗氧化剂L-抗坏血酸棕榈酸酯[J].粮食与油脂, 2000, 2: 9-11
    [19]耿志明,俞巧玲,曹建民. L-抗坏血酸棕榈酸酯特性和应用[J].江苏食品与发酵, 1997(1): 31-37
    [20]赵克华,卢江,肖海波,等.AS在食用植物油贮藏过程中的抗氧化作用研究[J].中国公共卫生, 1999, 15(5): 434-435
    [1] Ericsson E.M., Faxalv L., Weissenrieder A., et al. Glycerol monooleate-blood interactions [J]. Colloid Surface B, 2009, 68: 20-26
    [2] Glycerol Monooleate Processing. NOSB TAP Review, OMRI, 2001
    [3] Final report on the safety assessment of glyceryl oleate. Cosmetic Ingredient Review Expert Panel, J Am Coll Toxicol, 1986,-413
    [4] Goff H.D. Ice Cream, in Fox P.F., McSweeney P.L.H. Advanced Dairy Chemistry Volume 2 Lipids(Third Edition)[M]. Springer US Press, 2007, PP.442
    [5] Zhang, Z., Goff, H.D. On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride [J]. Int Dairy J, 2005, 159: 495-500
    [6]刘爱国,杨明.冰淇淋配方设计与加工技术[M].化学工业出版社, 2008, PP43
    [7]杨玉玲,许时婴.低脂冰淇淋的性质研究[J].食品科学, 2005, 26(09): 87-92
    [8]胡勇刚,邓静.分子蒸馏单甘酯的分子结构对低脂冰淇淋质构的影响[J].食品工业科技, 2007, 28(11): 196-201
    [9] Barfod, N.M., Krog, N., Larsen, G., et al. Effects of emulsifiers on protein-fat interaction in ice cream mix during aging 1: Quantitative analyses [J]. Fat Science Technology, 1991, 93: 24-29
    [10] Goff, H.D., Jordan, W.K. Action of emulsifiers in promoting fat destabilization during the manufacture of ice cream [J]. J Dairy Sci, 1989, 72:18-29
    [11] Pelan B.M.C., Watts, K.M., Campbell, I.J., et al. The stability of aerated milk protein emulsions in the presence of small molecule surfactants [J]. J Dairy Sci, 1997, 80: 2631-2638
    [12]饶佳家,陈忠敏,陈柄灿.两相真空高压均质机制备丝素蛋白包埋O/W乳液及其稳定性[J].材料导报, 2009, 23(2): 82-84(88)
    [13] Aime D.B., Arntfield S.D., Malcolmson L.J., et al. Textural analysis of fat reduced vanilla ice cream products [J]. Food Res Int, 2001, 34: 237-246
    [14]袁博,许时婴,冯忆梅.稳定剂和乳化剂对低脂冰淇淋品质的影响[J].无锡轻工业大学学报, 2003, 22(2): 79-82
    [15] Segall K.I., Goff H.D. A modified ice cream processing routine that promotes fat destabilization in the absence of added emulsifier [J]. Int Dairy J, 2002, 2: 1013-1018
    [16] Van Boekel M.A.J.S., Walstra P. Stability of oil-in-water emulsions with crystals in the disperse phase [J]. Colloids Surf, 1981, 3: 109-118
    [17] Berger K.G.. Ice cream in food emulsions [M]. 3rd ed. S.E. Friberg, and K. Larsson, ed. Marcel Dekker, Inc., New York, N.Y. 1997, pp 413-490
    [18]Marshall R.T., Goff H.D., Hartel R.W. Ice Cream [M], 6th ed. Kluwer Academic/ Plenum Publishers, New York, N.Y., 2003
    [19] Mann E.J. Ice Cream-part 1[J]. Dairy Ind. Int. 1997, 62(5): 17-18
    [20] Hartel R.W., Muse M., Sofjan R. Effects of Structural Attributes on Hardness and Melting Rate of Ice Cream[R]. In Ice Cream II: Proceedings of the Second IDF International Symposium held in Thesaloniki. B. Tharp, ed. Greece, 14–16 May 2003. International dairy federation, Brussels, Belgium, 2004, pp124
    [21] Bodyfelt F.W., Tobias J., Trout G.M. The sensory evaluation of dairy products[M]. New York: Van Nostrand Reinhold, 1988
    [22] Morris. Balancing act: engineering flavours for low fat foods [J].Chilton’s Food Engineering, 1992, 64(8): 77-78, 80-82
    [23] Stampanoni Koeferli C.R., Piccinali P., Sigrist S. The influence of fat, sugar and non-fat milk solids on selected taste, flavor and texture parameters of a vanilla ice cream [J].Food Qual Prefer, 1996, 71(2): 69-79
    [24] Barfod N.M. The emulsifier effect[J]. Dairy Ind Int, 2001, 66: 32-33
    [25]许时婴,王璋.冰淇淋的结构——乳状液与泡沫[J].冷饮与速冻食品工业,1995, 2:39
    [26] Crowhurst B. Emulsification of ice cream[J].Dairy Ind Int,1990,55(10):37
    [27] Dziezak J.D. Emulsifiers: the interfacial key to emulsion stability [J].Food Technol, 1988, 42(10): 172
    [28] Goff H.D. Emulsifiers in ice cream: how do they work [J]? Morden Dairy, 1988, 67(3): 15
    [29] Baer R.J.,Wolkow M.D., Kasperson K.M. Effect of emulsifiers on the body and texture of low fat ice cream[J]. J Dairy Sci, 1997, 80(12): 3123-3132
    [30]许时婴,王璋.冰淇淋制造中使用的配料[J].冷饮与速冻食品工业,1996,(1): 38-39
    [31] Pelan B.M.C., Watts K.M., Campbell I.J., et al. The stability of aerated milk protein emulsions in the presence of small molecule surfactants [J]. J Dairy Sci, 1997, 80: 2631-2638

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700