视上核星形胶质细胞和神经元对高渗刺激的反应及相互关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗刺激可引起视上核星形胶质细胞合成释放抑制性递质牛磺酸,从而抑制神经元合成释放VP。已知脑内存在Glutamate mediated astrocyte-neuron signaling。SON是脑内的渗透压调节中枢之一,那么SON内是否存在Glutamate mediated astrocyte-neuron signaling,它在高渗刺激下是否起调节作用,其作用机制如何?为此本研究进行了三组实验(实验一、二和三)。此外,急慢性高渗刺激对胶质细胞的影响是否有所不同?我们进行了相关研究(实验四)。
     实验一急性静脉高渗刺激后SON神经元的反应依赖于AST的活性
     目的:观察急性静脉高渗(HS)刺激后,SON内AST和神经元的反应及其相互关系。
     方法:65只SD大鼠被分为4组:第1组正常对照组(n=5)不进行任何处理;第2组为等渗刺激组(IS, n=20),将等渗盐水(0.9% NaCl)注入尾静脉;第3组为高渗刺激组(HS, n=20),将高渗盐水(9% NaCl)注入尾静脉;第4组为氟代柠檬酸+ HS组(FCA plus HS组,n=20),预先向侧脑室缓慢注入1nmol/1μm的FCA,2h后再给高渗刺激;以上动物除第1组外,其余各组均分别存活15,45,90和180 min,每一时间点5只。常规灌流固定、切片,含有SON的切片进行抗VP,抗Fos,抗GFAP的单一或双重免疫荧光染色。
     同时HS刺激前以及刺激后45min,抽取各组大鼠静脉血,用放免法测定血浆VP含量。
     结果:1.急性静脉HS刺激后,SON内AST被激活,反应明显,表现为细胞胞体变大,突起变粗,GFAP深染,平均荧光强度增强,SON-VGL厚度增厚,Fos/GFAP双标细胞增加,以上反应在刺激后45min达到高峰。
     2.刺激后SON内神经元也被激活,Fos阳性胞核明显增加,VP阳性神经元的数目也显著增加,二者的高峰均为90min。
     3.FCA可明显干扰AST和神经元两者的反应。4.刺激后血浆VP水平显著升高,FCA预先处理再给HS刺激血浆VP水平不升高。
     结论:静脉HS刺激后SON内AST反应敏感,在刺激后45min达到高峰,神经元的Fos和VP表达高峰均为刺激后90min,血浆VP含量也升高。FCA是AST代谢抑制剂,结果AST和神经元的反应均被阻断;这表明SON内神经元对HS刺激的反应依赖于AST的活性。
     实验二静脉HS刺激后AST经Cx43 hemichannels释放Glu调节神经元活性
     目的:探讨HS刺激后SON内AST对神经元的调节机制。
     方法:1.整体动物实验:25只SD雄性大鼠被分为5组(5只/组):第1组为正常对照组;第2组为IS组;第3组为HS组;第4组为FCA plus HS组;第5组为甘珀酸+HS组(CBX plus HS组);第6组为PPADS+HS组;第7组为BBG+HS组。按实验一的方法制作动物模型,所有动物成活45min,常规固定、切片,切片进行抗NMDAR-2,抗glutamate,抗GFAP,抗Cx43,抗Fos,抗VP等单一或双重免疫荧光染色。
     2.培养细胞:使用2种细胞模型:
     (1)原代培养的AST,取18天胎鼠的下丘脑,常规分离、纯化培养AST 2周,将培养细胞分为6组:第1组为IS组(用不含Ca2+/Mg2+的DMEM培养);第2组为HS组;第3组为缝隙连接阻断剂(CBX和Gap26)+ HS组;第4组为谷氨酸转运体抑制剂(苏羟基天冬氨酸,THA)+ HS组,第5组为P2Xn受体拮抗剂(PPADS以及BBG)+ HS组,第6组为Ca2+螯合剂(BAPTA-AM)+ HS组,各组均处理1、3、5、7、9、10、12、15min。
     (2)C6细胞系,分组情况同上。
     分别收上述各组原代培养的AST培养液用于HPLC检测Glu含量。而采用流式细胞仪(FCM)测定C6细胞内Glu以及Cx43含量
     结果:1.整体动物实验:急性静脉HS刺激后,引起SON内下列变化: (1)AST的Glu表达明显上调,FCA干扰其上调,CBX则不干扰。(2)AST的Cx43表达明显上调,FCA干扰其上调,CBX则不干扰。(3)神经元NMDAR-2的表达明显上调,FCA和CBX均阻止其上调。(4)神经元内VP的表达上升,FCA,CBX均抑制VP的上升。
     2.培养细胞实验
     (1)HS刺激后,C6胞内Glu表达明显上升,3min达到高峰,以后下降。而原代AST培养液中Glu含量在5min达到高峰,此后呈下降趋势。
     (2)CBX或Gap26 + HS处理后,C6胞内Glu含量明显上升,并一直维持在高表达水平,而原代AST培养液中Glu含量与HS组相比,明显下降。
     (3)THA +HS组,与HS组相比,培养液中Glu含量未见明显差异。
     (4)PPADS或BBG + HS组,与HS组相比,细胞内和培养液中Glu含量均未见明显差异。
     (5)BAPTA-AM+HS组,与HS组相比,细胞内和培养液中Glu含量均未见明显差异。
     (6)培养细胞的Cx43表达也明显增加。
     结论:1.静脉HS后激活SON内AST,被激活的AST增加合成Glu,并通过Cx43 hemichannels释放,作用于SON神经元的NMDAR-2,增加VP的合成释放。
     2.HS激活培养的胶质细胞,增加Glu和Cx43的合成,CBX或Gap26不影响Glu的合成,但可阻断其释放;THA, PPADS,BBG和BAPTA-AM对Glu的合成、释放均无明显的影响。
     实验三高(低)渗刺激对胶质细胞释放递质的影响
     目的:探讨HS或低渗刺激后胶质细胞释放的递质是否不同?ATP是否参与对渗透压的调控。
     方法:1.培养细胞,本研究使用2种培养的胶质细胞模型:(1)原代培养的AST取18天胎鼠的下丘脑,常规分离、纯化培养2周;(2)C6细胞系。所有培养细胞分为3组:第1组为IS组;第2组为HS组;各组均处理1、3、5、10、15min。第3组为低渗刺激组;各组均处理1、3、5、10、15min。
     2.分别收上述各组培养液及细胞内液,采用HPLC测定原代培养AST细胞外液Glu以及taurine含量,而用FCM测定C6细胞内Glu以及taurine含量。
     3.采用荧光素-荧光素酶法检测原代培养的AST细胞内液及外液的ATP含量。
     结果:1.HS刺激促进AST主要合成释放Glu,而taurine未见变化
     2.低渗刺激促进AST主要合成释放taurine,而Glu未见变化
     3.与等渗组相比,渗透压发生改变后,细胞内外ATP水平未见显著变化。
     结论:HS刺激引起AST主要合成释放Glu,兴奋神经元释放VP。低渗刺激促进AST主要合成释放taurine,抑制神经元释放VP。而ATP未参与该调节过程。
     实验四急、慢性HS刺激对SON内AST和神经元影响的差异
     目的:探讨急、慢性HS刺激对大鼠行为学以及SON内AST和神经元影响的差异。
     方法:1.动物分组:25只SD雄性大鼠被分为5组(5只/组):第1组为正常对照组;第2组为2%高渗盐水喂养3d组;第3组为2%高渗盐水喂养6d组;第4组为2%高渗盐水喂养9d组;第5组为腹腔9%高渗盐水刺激组,动物成活45min。
     2.一般情况检测:测定大鼠体重以及进食
     3.测定各组大鼠的机械痛阈以及高级神经功能
     4.免疫荣光染色所有动物规定时间点处死,常规固定、切片,切片进行抗GFAP,抗VP,抗Fos,抗Cx43等单一,双重疫荧光染色。结果:1.急性腹腔高渗刺激45min后,SON内AST胞内GFAP与Cx43荧光强度明显上调,GFAP标记的与Cx43标记的SON-VGL厚度增加,Fos/GFAP双标记细胞数目增多,同时AST的突起增长,变粗,胞体变大,呈活化型AST形态。此外VP和Fos阳性神经元的个数也显著增多。
     2.喂2%高渗盐水组
     (1)喂高渗盐水3d后,与对照组相比,Cx43及GFAP表达显著升高,GFAP标记的与Cx43标记的SON-VGL厚度也增加,但低于急性腹腔高渗刺激组。Fos/GFAP双标记细胞数也显著增加,VP和Fos阳性神经元的个数也显著增多。此时,AST的突起有所回缩,细胞大小未见变化。
     (2)喂高渗盐水6d后,Cx43、GFAP的表达下降,GFAP标记的与Cx43标记的SON-VGL厚度均明显降低,Fos/GFAP双标记细胞数以及VP和Fos阳性神经元的个数也显著减少,但仍高于对照组。
     (3)喂高渗盐水9d后,AST的突起回缩,胞体萎缩,Cx43、GFAP的表达明显下降,Fos/GFAP双标记细胞数,VP和Fos阳性神经元的个数也显著减少,GFAP标记的与Cx43标记的SON-VGL厚度均明显降低。
     (4)急性腹腔高渗刺激45min后,大鼠的机械痛阈、体重未见明显变化,而喂盐水3d后,大鼠的机械痛阈逐渐升高,体重变轻,进食量减少,至9d达到峰值,提示大鼠身体机能处于衰竭状态。明暗箱测定大鼠高级神经功能发现,大鼠学习记忆能力下降。
     结论:急性和慢性高渗刺激对AST有所不同,急性刺激可以激活AST,从而参与调节神经元的活性,而慢性高渗刺激后,在早期(3d)AST及神经元的活性明显增强,到后期(6,9d)大鼠身体机能处于衰竭,反应机能明显减退,AST和神经元的反应也就被明显抑制。
It is well known that the hypotonic stimulus induce the synthesis and release of taurine from astrocytes which inhibit the synthesis and release of VP. In brain, glutamate mediated astrocyte-neuron signaling and SON is the center of osmotic regulation. Is the glutamate mediated astrocyte-neuron signaling included in the regulation of SON under hypertonic stimulus. In order to clarify this question, we performed three experiments (first, second and third experiments). Moreover, is there difference between the acute and chronic hypertonic stimulus on the astrocytes? The fourth experiment was performed.
     The first experiment
     Acute intravenous hyperosmotic stimulus induces activation in the neurons depends on the regulation of astrocytes in supraoptic nucleus
     Objective To investigate the response and relationship between the astrocytes and neurons in SON induced by acute intravenous hypertonic stimulus.
     Methods 65 SD rats were divided into four groups: control group(n=5), Iso-osmia group(IS group,n=20), hypertonic stimulus group(HS group,n=20) and FCA plus HS group(n=20). Except the control group, the rats in other three groups were survived for 15, 45, 90 and 180 min,n=5/per time point, fixation, cut section and anti-VP, anti-Fos, anti-GFAP immunofluorescent staining were preformed by usual methods.
     We also detected the VP content in plasma by radioimmuno assay. Assays were performed blindly.
     Result 1.HS induced SON astrocytes clearly responding and revealed marked cellular hypertrophy with thickened processes, the mean fluorescent intensity of GFAP staining intensified, the mean thickness of SON-VGL thickened, the mean number of Fos/GFAP double labeled astrocytes significantly increased. At 45 min after stimulus, the response peaked.
     2.HS also actived the neurons in SON. The expression of Fos and VP positive neurons were increased.The responsed peak was 45min.
     3.The FCA inhibited the response of astrocytes and neurons after HS.
     4.VP level in plasma was increased after HS and this effect could be inhibited by FCA.
     Conclusion Intravenous hypertonic stimulus induced the response of astrocyte and neuron. This effect could be inhibited by FCA----metabolic inhibitor. It is suggested that the activation of neurons should depend on the the activation astrocytes after intravenous HS in SON.
     The second experiment Astrocytes regulate the activation of neurons by release glutamate through Cx43 hemichannel in SON after the intravenous hypertonic stimulus
     Objective To investigate mechanism of astrocytes regulation neurons in SON.
     Methods 1.35 SD male rats were divided into 7 groups(5 rats/per group): control group, IS group, HS group, FCA plus HS group,CBX plus HS group, PPADS plus HS group and BBG plus HS group. All rats were survived for 45min, fixation, cut section and anti- NMDAR-2, anti-glutamate, anti-GFAP, anti-Cx43, anti-Fos and anti-VP immunofluorescent staining were performed by usual methods.
     2. Cultured cells (1)Primary cultured astrocytes:Cultured astrocytes were divided into 6 groups: IS group, HS group, Gap junction inhibitor(CBX and Gap26) plus HS group, THA plus HS group, P2XnR antagonist(PPADS and BBG) plus HS group and Ca2+chelator(BAPTA-AM) plus HS group.Every group was treated by HS for 1、3、5、7、9、10、12、15min. (2)C6 cells:We cultured C6 cells and divided it into 6 groups as above.
     Culture fluid of primary cultured astrocyte was collected for detecting glutamate content by HPLC. Intracelluar glutamate content of C6 cell was determined by flow cytometry(FCM).
     Results 1.In vivo, FCA inhibited the increase of glutamate and Cx43 after HS while CBX had no the effect. At the same time, the expression of NMDAR-2 and VP were blocked by FCA and CBX.
     2.In vitro, the C6 intracelluar glutamate content or extracelluar fluid glutmamte of cultured astrocyte was increased and peaked at 3min or 5min respectively after HS. After treated by CBX or Gap26, the C6 intracelluar glutamate content kept the high expression. However, the glutamate content in extracelluar fluid was decreased. Moreover,THA, PPADS, BBG or BAPTA-AM has no effect on the intracellular or extracelluar glutamate content. HS also induced the expression of Cx43.
     Conclusion Intravenous HS induced the synthesis and release of glutamate from astrocyte through Cx43 hemichannel. And then the glutamate affected the NMDAR-2 and increased the synthesis and release of VP.
     The third experiment The effect of hypertonic(hypotonic) stimulus on the transmitter release from astrocytes
     Objective To investigate if the hypertonic or hypotonic stimulus induced the astrocyte to release different transmitter and ATP was included in the regulation of osmotic pressure.
     Methods 1.Cultured cells: Primary cultured astrocytes and C6 cells were divided into three groups: IS group, HS group and hypotonic stimulus group. HS group and hypotonic stimulus groups were both treated for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.and 15 min.
     2.Culture fluid of primary cultured astrocytes was collected for detecting glutamate and taurine content by HPLC. Intracelluar glutamate and taurine content of C6 cells were determined by FCM.
     3.Luciferin-luciferase based luminescence assay was used for detecting the ATP content.
     Results 1.HS induced the release of glutamate(not taurine)from astrocyte
     2.Hypotonic stimulus induced the release of taurine(not glutamate) from astrocyte.
     3.ATP had no change with the change of osmotic pressure. Conclusion HS induced the release of glutamate from astrocytes and activated the neurons to release VP. Hypotonic stimulus induced the release of taurine from astrocytes which inhibited the release of VP from neurons. ATP was not included in the regulation of osmotic pressure in SON.
     The fourth experiment The difference between the effects of acute and chronic hypertonic stimulus on the astrocytes and neurons in SON
     Objective To investigate the different between the acute and chronic HS on the astrocytes and neurons in SON
     Methods 1.25 SD male rats were divided into 5 groups(5 rats/group): control group, HS 3d group(feeding 2% hypertonic saline for 3d), HS 6d group(feeding 2% hypertonic saline for 6d), HS 9d group(feeding 2% hypertonic saline for 9d), acute HS group.
     2.Determined body weigh and foodintake.
     3.Detected the paw withdrawal mechanical threshold.
     4.The anti-GFAP, anti-Cx43, anti-Fos and anti-VP immunofluore-scent staining were preformed by usual methods.
     Results 1. At 45min after acute celiac HS, SON astrocytes revealed marked cellular hypertrophy with thickened processes, the mean fluorescent intensity of GFAP staining intensified, the mean thickness of SON-VGL thickened, the mean number of Fos/GFAP double labeled astrocytes and VP/Fos positive neurons significantly increased.
     2. Feeding 2% hypertonic saline group:
     (1)After feeding hypertonic 2% saline for 3d, compared with control group, the expression of Cx43 and GFAP were increased and the thickness of SON-VGL thickened.And at the same time, the Fos/GFAP double labeled astrocytes and VP/Fos positive neurons also increased. However, the changes were fewer than that in the acute hypertonic stimulus.
     (2)After feeding hypertonic 2% saline for 6d, the expression of Cx43 and GFAP, the thickness of SON-VGL, and the number of VP/Fos positive neurons all decreased compared with acute HS group.
     (3)After feeding hypertonic 2% saline for 9d, the expression of Cx43 and GFAP, the thickness of SON-VGL, and the number of VP/Fos positive neurons all obviously decreased compared with acute HS group. And the cell body exhibited atrophy with the retracted processes.
     (4)For the acute HS group, the paw withdrawal mechanical threshold and body weigh had no change. However, after feeding 2% saline for 3d, the paw withdrawal mechanical threshold was higher than that in the acute HS group. The body weigh and foodintake were also decreased. By the detecting of ethology, the ability of learning and memory also decreased.
     Conclusion Acute and chronic HS have different effect on the astrocytes.Acute HS could activate astrocytes which regulate the neurons in turn. However, after the chronic HS, the astrocytes and neurons were activated at the early stage(3d) and inhibited at the later stage(6d, 9d).The phenomenom prompted us that the rats were exhausted at the later stage of chronic HS which inhibited the astrocytes and neurons.
引文
[1]杨志军、饶志仁、徐如祥,等。高渗刺激后大鼠下丘脑神经元和AST内钙的动态变化。中华神经医学杂志;2003;2:199-202.
    [2] Stricker EM, Verbalis JG. Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. Am.J.Physiol 1986; 250: 267-275.
    [3] Brimble MJ, Dyball RE. Characterization of the responses of oxytocin-and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J.Physiol 1977; 271: 253-271.
    [4] Salm A.K. Mechanisms of glial retraction in the hypothalamo -neurohypophysial system of the rat. Exp. Physiol. 2000; 85, 197-202.
    [5] Bourque CW, Oliet SH, Richard D.Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol. 1994; 15: 231-274.
    [6] Dong YX, Xiong KH, Rao ZR, et al. Fos expression in catecholaminergic medullary neurons inducedby chemical stimulation of stomach projecting to the paraventricular nucleus of hypothalamus in rats. China Natl J New Gastroenterol, 1997;3 (2): 72-74.
    [7]董元祥,熊抗辉,饶志仁,等.大鼠延髓至下丘脑室旁核的儿茶酚胺能投射神经元在胃伤害性刺激后的Fos表达。解剖学报,1996;27:20-25.
    [8]段丽,饶志仁,陈良为,等。神经组织细胞的多重标记技术。(关新民等主编:神经生物学实验技术与科学思维)2004,华中科技大学出版社,武汉,P.253-258.
    [9] Rohlmann A , Laskawi R , Hofer A , et al. Astrocytes as rapid sensors of peripheral axotomy in the facial nucleus of rats. Neuroreport, 1994;5, 409-412.
    [10] Tian GF, Takano T, Lin JHC,et al, Nedergaard M. Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Advanced Drug Delivery Reviews,2006; 58:773–787.
    [11] Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 2000; 97:8629-8634.
    [12] Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science, 1994; 263, 1768-1771.
    [13]杨志军,饶志仁,徐如祥,等。高渗刺激下大鼠下丘脑神经元和AST钙的动态变化。中国临床康复,2005,9(1):220-222
    [14] Lan L, Yuan H, Duan L, et al. Blocking the glial function suppresses subcutaneous formalin-induced nociceptive behavior in the rat. Neurosci Res. 2007; 57, 112-119.
    [15] Qin M,Wang JJ, Cao R, et al.The lumber spinal cord glial cells actively modulate subcutaneous flrmalin induced hyperalgesia in the rat. Neuroscience Research, 2006 ;55:442-450.
    [16] Starbuck EM, Wilson WL, Fitts DA. Fos-like immunoreactivity and thirst following hyperosmotic loading in rats with subdiaphragmatic vagotomy. Brain Res. 2002; 931:159–167.
    [17] Edling Y, Ingelman-Sundberg M, Simi A. Glutamate activates c-fos in glial cells via a novel mechanism involving the glutamate receptor subtype mGlu5 and the transcriptional repressor. Glia, 2007; 55, 328-340.
    [18] Ludwig M, Johnstone LE, Neumann I, et al.Direct hypertonic stimulation of the rat supraoptic nucleus increases c-fos expression inglial cells rather than magnocellular neurons. Cell Tissue Res.1997; 287, 79-90.
    [19] Matsunaga W, Osawa S, Miyata S, et al.Astrocytic Fos expression in the rat posterior pituitary following LPS administration. Brain Res.2001; 898, 215-223.
    [20] Miyata S, Tsujioka H., Itoh M, et al, Time course of Fos and Fras expression in the hypothalamic supraoptic neurons during chronic osmotic stimulation. Molecular Brain Res.2001; 90: 39-47.
    [21] Oldfield BJ, Bicknell R J, McAllen RM, t al.Intravenous hypertonic saline induces Fos immunoreactivity in neurons throughout the lamina terminalis. Brain Res. 1991; 561: 151-156.
    [22] Penny M.L, Bruno S.B , Cornelius J, et al. The effects of osmotic stimulation and water availability on c-Fos and FosB staining in the supraoptic and paraventricular nuclei of the hypothalamus. Exp. Neurol. 2005; 194: 191-202.
    [23] Pirnik Z, Mravec B, Kiss A. Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: colocalization with vasopressin, oxytocin, and tyrosine hydroxylase. Neurochem Int.2004; 45: 597–607.
    [24] Suzuki S, Li A.J, Akaike T, et al. Intracerebroventricular infusion of fibroblast growth factor-1 increases Fos immunoreactivity in periventricular astrocytes in rat hypothalamus. Neurosci. Lett.2001; 300, 29-32.
    [25] Thimm J, Mechler A, Lin H, et al. Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels.J Biol Chem. 2005;280(11):10646-54.
    [26] Dutton GR, Barry M, Simmons ML, et al: Astrocyte taurine. Ann.N.Y.Acad.Sci. 1991; 633: 489-500.
    [27] Huxtable RJ. Taurine in the central nervous system and the mammalian actions of taurine. Prog.Neurobiol. 1989; 32: 471-533.
    [28] Huxtable RJ. Physiological actions of taurine. Physiol Rev.1992;72:101-163.
    [29] Campistron G, Geffard M, Buijs RM. Immunological approach to the detection of taurine and immunocytochemical results. J Neurochem. 1986; 46: 862-868.
    [30] Torp R, Haug FM, Tonder N,et al. Neuroactive amino acids in organotypic slice cultures of the rat hippocampus: an immunocytoch -emical study of the distribution of GABA, glutamate, glutamine and taurine. Neuroscience 1992; 46: 807-823.
    [31] Storm-MathisenJ, Ottersen OP. Antibodies against amino acid neurotransmitters. In: Panula P, Paivarinta H, Soinila S(Eds), Neurohistochemistry: Modern Methods and Applications. Alan R Liss, New York, 1986; 107-136.
    [32] Decavel C, Hatton GI: Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells. J.Comp Neurol. 1995; 354: 13-26.
    [33] Miyata S, Itoh T, Lin SH, et al: Temporal changes of c-fos expression in oxytocinergic magnocellular neuroendocrine cells of the rat hypothalamus with restraint stress. Brain Res.Bull. 1995; 37: 391-395.
    [34] Pow DV. Immunocytochemistry of amino-acids in the rodent pituitary using extremely specific, very high titre antisera. J.Neuroendocrinol. 1993; 5: 349-356.
    [35] Deleuze C, Duvoid A, Hussy N. Properties and glial origin of osmotic -dependent release of taurine from the rat supraoptic nucleus. J Physiol. 1998; 507 ( Pt 2):463-471.
    [36] Nilius B, Eggermont J, Voets T, et al: Properties of volume-regulated anion channels in mammalian cells. Prog.Biophys. Mol.Biol. 1997; 68: 69-119.
    [37] Ottersen OP. Quantitative assessment of taurine-like immunoreactivity in different cell types and processes in rat cerebellum: an electronmicroscopic study based on a postembedding immunogold labelling procedure. Anat.Embryol.(Berl) 1988;178:407-421.
    [38] Crepel V, Panenka W, Kelly ME, et al. Mitogen-activated protein and tyrosine kinases in the activation of astrocyte volume-activated chloride current. J.Neurosci. 1998; 18: 1196-1206.
    [39] Tilly BC, van den BN, Tertoolen LG, et al. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J.Biol.Chem. 1993; 268: 19919-19922.
    [40] Voets T, Manolopoulos V, Eggermont J, et al. Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J.Physiol 1998;506(Pt 2):341-352.
    [41] Deleuze C, Desarmenien MG., Moos FC. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrinestructure. Prog Neurobiol. 2000;62: 113-134.
    [42] Hussy N, Deleuze C, Pantaloni A,et al. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possiblerole in osmoregulation. J Physiol. 1997; 502 ( Pt 3):609-621.
    [43] Rampon C, Luppi PH, Fort P, et al.Distribution of glycine-immunoreactive cell bodies and fibers in the rat brain. Neuroscience 1996; 75: 737-755.
    [44] Van den Pol AN, Gorcs T. Glycine and glycine receptor immunoreactivity in brain and spinal cord. J.Neurosci. 1988; 8:472-492.
    [45] Vallet P, Baertchi AJ. Spinal afferents for peripheral osmoreceptors in the rat. Brain Res. 1982; 239: 271-274.
    [46] Leng G, Mason WT, Dyer RG.The supraoptic nucleus as an osmoreceptor. Neuroendocrinology 1982; 34: 75-82.
    [47] Osaka T, Kannan H, Kasai M, et al: Osmotic responses of rat paraventricular neurons by pressure ejection method. Brain Res.Bull. 1990; 24: 493-497.
    [48] Parpura V, Basarsky TA, Liu F, Jeftinija K,et al. Glutamate-mediated astrocyte-neuron signaling. Nature, 1994; 369 :744-747.
    [49] Hua X, Malarkey EB, Sunjara V, et al. Ca2 + -dependent glutamate release involves two classes of endop lasmic reticulum Ca2 + stores in astrocytes. J Neurosci Res, 2004, 76∶86~97.
    [50] Maienschein V, MarxenM, VolknandtW, et al. A plethora of presynaptic p roteins associated with ATP storing organellesin cultured astrocytes. Glia, 1999, 26∶233~244.
    [51] Montana V, Ni Y, Sunjara V, et al. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci, 2004, 24∶2633~2642.
    [52] Bezzi P, Carmignoto G, PastiL, et al.Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature, 1998, 391∶281~285.
    [53] Ye ZC, Wyeth SW, Baltan S, et al. Functional hemichannels in astrocytes: a novelmechanism of glutamate release. J Neurosci, 2003, 23∶3588~3596.
    [54] North R A. Molecular physiology of p2X recep tor [ J ].Pysiol. Rev , 2002, 82: 1013 - 1067.
    [55] Duan S, Anderson CM, Keung EC et al. P2X7 receptor -mediated release of excitatory amino acids from astrocytes. J Neurosci. 2003 , 23 (4) : 1320 - 1328.
    [56] DomercqM, Brambilla L, Pilati E, et al. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: Control by TNF-alpha and prostaglandins. J Biol Chem, 2006, 281∶30684~30696.
    [57] Chen X, Wang L, Zhou Y,et al.“Kiss-and-run”glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci. 2005; 25: 9236–9243.
    [58] Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling [J ]. Physiol Rev,2006,86(3) :1009-1031.
    [59] Todd A , Fiaccok D M. Astrocyte calcium elevations : properties , propagation , and effects on brain signaling [J ]. Glia,2006,54 (7) :676 -690.
    [60] Suadicani S O, Brosan C F, Scemes E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling..JNeurosci,2006,26 :1378-1385.
    [61] Bezzi P ,Volterra A. A neuron-glia signaling network in the active brain. Current Opinion in Neurobiology, 2001, 11: 384-394.
    [62] Bergles DE, Roberts JD, Somogyl,et al. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 2000, 405:187-191.
    [63] Ge WP, Yang XJ, Zhang ZJ, et al. Long-Term Potentiation of Neuron-Glia Synapses Mediated by Ca2+-Permeable AMPA Receptors. Science, 2006; 312:1533-1537.
    [64] Wittkowski W,Brinkmann H. Changes of extent of neurovascular contacts and number of neuro-glial synaptoid contacts in the pituitary posterior lobe of dehydrated rats. Anat Embryol (Berl). 1974, 146: 157–165.
    [65] Hatton, G.I. Glial-neuronal interactions in the mammalian brain. Adv Physiol Educ.2002; 26: 225-237.
    [66] Froes MM, Correia AH, Garcia-Abreu J,et al. Gap junctional coupling between neurons and astrocyte in primary central nerveous system cultures. Proc Natl Acad Sci USA. 1999, 7541-7546.
    [67] Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT,et al. Functional coupling between neurons and glia. J Neurosci. 2000, 20(11):4091-8.
    [68] Araque A, Parpura V, Sanzgiri RP, et al. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci.1999; 22:208-215.
    [69] Nadkarni S, Jung P. Modeling synaptic transmission of the tripartite synapse. Phys Biol. 2007, 4(1):1-9
    [70] Grosche J, Matyash V, M?ller T, Verkhratsky A,et al. Microdomainsfor neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci. 1999, 2(2):139-43.
    [71] Bennett MV, Contreras JE, Bukauskas FF, et al. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 2003; 26(11):610-617.
    [72] Contreras JE, Sáez JC, Bukauskas FF, et al. Functioning of cx43 hemichannels demonstrated by single channel properties. Cell Commun Adhes. 2003,10(4-6):245-9
    [73] Dzubay JA, Jahr CE. The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci. 1999; 19:5265-5274.
    [74] Jourdain P, Bergersen LH ,Bhaukaurally K, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci,2007,10 ( 3) :331-339.
    [75] Fiaccot A, Mccarthy K D. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons [ J ]. J Neurosci,2004,24 (3) :722-732.
    [76] Perea G, Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses [ J ]. Science,2007,317 :1083 -1086
    [77] Mothet J-P, Pollegionil, Ouanounou G, et al. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependentrelease of the gliotransmitter D2serine [ J ]. Pro Natl Acad Sci,2005,102 (15) :5606-5611.
    [78] Panatier A , Theodosis DT , Mothet J-P, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory [J ]. Cell ,2006,125 (4) :775-784.
    [79] Pangrsic, Potokar M, Stenovec M, et al. Exocytotic release of ATP from cultured astrocytes [ J ]. J Biol Chem,2007,282 ( 39 ) :28749-28758.
    [80] Zhang Zhi-jun, Chen Gang , Zhou Wei, et al. Regulated ATP release from astrocytes through lysosome exocytosis [J ]. Nat Cell Biol,2007,9 (8) :945 -953.
    [81] Kozlov AS, Angulo MC, Audinate, et al. Target cell-specific modulation of neuronal activity by astrocytes [J ]. Pro Natl Acad Sci,2006,103 (26) :10058 -10063.
    [82] Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial clles in vitro. Science, 1997, 277:1684-1687.
    [83] Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature,2003; 424:778-783.
    [84]袁华、段丽、邱勇,等。大鼠侧脑室注射甘珀酸后下丘脑视上核星形细胞和神经元对高渗刺激反应的影响。解剖学报;2004;35 (2):127-131.
    [85] Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nature Neurosci. 2007;10:1369-1346.
    [86] Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Rev. Neurosci. 2007, 8: 57-69.
    [87] Lan L, Yuan H, Duan L, et al. Blocking the glial function suppresses subcutaneous formalin-induced nociceptive behavior in the rat. Neurosci Res. 2007; 57, 112-119.
    [88] Qin M, Wang JJ, Cao R, et al. The lumber spinal cord glial cellsactively modulate subcutaneous flrmalin induced hyperalgesia in the rat. Neuroscience Research, 2006 ;55:442-450.
    [89] Duan L, Shen J, Yuan H, et al. The expression and relationship between astrocytes and neurons in the supraoptic nucleus after hyperosmotic stimuli by using light-and electron-microscopic techniques. Neurosci. Bull. 2004; 21, 33-38.
    [90] Yuan H, Duan L, Qiu JY, et al. Response of SON astrocytes and neurons to hyperosmotic stimulation after carbenoxolone injection into the lateral ventricle. Acta. Anatomica Sinica,2004;
    [91] Hussy N, Deleuze C, Desarménien MG, et al Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure.Prog Neurobiol. 2000;62:113-134.
    [92] Xiong JJ, Hatton GI. Differential responses of oxytocin and vasopressin neurons to the osmotic and stressful components of hypertonic saline injections: a Fos protein double labeling study. Brain Res 1996;719: 143-153.
    [93] Pasantes-Morales H, Franco R, Ochoa L,et al. Osmosensitive release of neurotransmitter amino acids: relevance and mechanisms. Neurochem Res. 2002;27:59-65.
    [94]申晶、段丽、袁华,等。低渗刺激后大鼠视上核内AST和神经元的可塑性改变及其相互关系。神经解剖学杂志;2005;21:39-44
    [95] Hassel RE, Contestabile A, Villani L, et al. An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J Neurochem.1987; 48:1377-1385.
    [96] Hassel B, Paulsen RE, Johnsen A, et al .Selective inhibition of glial cell metabolism in vivo by fluorocitrate. Brain Res.1992; 576: 120-124.
    [97] Watkins LR,Martinb D, Ulrich P, et al. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain, 1997; 71, 225-235.
    [98] Jellinck PH, Monder C, McEwen BS, et al. Differential inhibition of 11 beta-hydroxysteroid dehydrogenase by carbenoxolone in rat brain regions and peripheral tissues. J Steroid. Biochem. Mol. Biol.1993; 46, 209-213.
    [99] Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424: 778-783.
    [100] Anderson CM, Nedergaard M. Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends in Neuroscience 2006, 29:257-262.
    [101] Oldfield BJ, Bicknell RJ, Mcallen RM, et al. Intravenous hypertonic saline induces Fos immunoreactivity in neurons th roughout the lamina terminalis. Brain Res, 1991,561: 151-156
    [102] Ding JM, De Coursey PJ, Buggy J. c-f os immunoreactivity in hypothalamic muclei after dehydration stress. Abstr Soc Neurosci,1990, 16 : 148-151
    [103] Hatakeyama S, Kawai Y, Ueyama T, et al. Nitricoxide synthase-containing magnocellular neurons of the hypothalamus synthesize oxytocin and vasopressin and express Fos following stress stimuli. J Chem N euroanat, 1996, 11 (2) : 243-256
    [104] Laskawi R, Rohlmann A, Landgrebe M, et al. Rapid astroglial reactions in the motor cortex of adult rats following peripheral facial nerve lesions. Eur. Arch. Otorhinolaryngol 1997; 254, 81-85.
    [105] Colburn RW, Rickman AJ, DeLeoJA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp. Neurol. 1999; 157, 289-304.
    [106] Tanaka KF, Takebayashi H, Yamazaki Y, et al. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance. Glia,2007; 55, 617-631.
    [107] Hashimoto K, Parker A, Malone P, et al. Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in experimental ocular hypertension in monkeys and after exposure to elevated pressure in vitro. Brain Res.2005; 1054, 103-115.
    [108] Stuesse SL, Crisp T, McBurney DL, et al. Neuropathic pain in aged rats: behavioral responses and astrocytic activation. Exp. Brain Res.2001; 137, 219-227.
    [109] Zenz R, Eferl R, Scheinecker C, et al. Activator protein 1 ( Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther, 2008; 10: 201– 210
    [110] Brinton RD, Yamazaki R, Gonzalez CM, et al. Vasopressin-induction of the immediate early gene, NGFI-A, in cultured hippocampal glial cells. Mol. Brain Res.1998; 57, 73-85.
    [111] Rubio N. Interferon-γinduces the expression of immediate early genes c-fos and c-jun in astrocytes. Immunology, 1997; 91, 560-564.
    [112] Choi HW, Lee SS, Lee JK, et al. Regulation of c-fos and c-jun gene expression by lipopolysaccharide and cytokines in primary culturedastrocytes: effect of PKA and PKC pathways. Arch Pharm Res.2004; 27, 396-401.
    [113] Pendlebury ST, Dyball REJ, Honda K. Expansion of plasma volume by intragastric isotonic saline inhibits supraoptic neurones in rats. J. Endocrinol.1992; 135, 527-533.
    [114] Wang K, Guldenaar SEF, McCabe JT. Fos and Jun expression in rat supraoptic nucleus neurons after acute vs. repeated osmotic stimulation. Brain Res.1997; 746, 117-125.
    [115] Burbach JPH, De Hoop MJ, Schmale H, et al. Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei. Neuroendocrino -logy,1984; 39:582-584.
    [116] Carlson SH, Beitz A, Osborn JW. Intragastric hypertonic saline increases vasopressin and central Fos immunoreactivity in conscious rats. Am. J. Physiol.1997; 272 (Regulatory Integrative Comp. Physiol. 41): R750–R758.
    [117] Daniel EE, Yazbi AE, Mannarino M, et al. Do gap junctions play a role in nerve transmissions as well as pacing in mouse intestine? Am J Physiol Gastrointest Liver Physiol. 2007;292:G734-745.
    [118] Sherman TG, McKelvy JF, Wastson SJ. Vasopressin mRNA regulation in individual hypothalamic nuclei: a northern and in situ hybridization study. J Neurosci.1986; 6: 1685-1694.
    [119] Meister B, Villar MJ, Ceccatelli VS, et al. Localization of chemical messengers in magnocellular nuueons o the hypothalamic supraoptic and paraventricular nuclei: an immunohistochemical study using experimental manipulation. Neuroscience, 1990; 37: 603-633.
    [120] Parpura V, Scemes E, Spray DC. Mechanisms of glutamate release from astrocytes: gap junction“hemichannels”, purinergic receptors and exocytotic release. Neurochem Int.2004, 45:259-264.
    [121] Montana V, Malarkey EB, Verderio C, et al. Vesicular transmitter release from astrocytes. Glia, 2006; 54:700-715.
    [122] Stout CE, Costantin JL, Naus CC, et al. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels, J. Biol. Chem. 2002,277:10482– 10488.
    [123] Bao XY, Lee SC, Reuss L, et al. Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci U S A. 2007, 104 (12): 4919–4924.
    [124] Hawat G, Baroudi G. Differential modulation of unapposed connexin 43 hemichannel electrical conductance by protein kinase C isoforms. Pflugers Arch. 2008 Jan 3 [Epub ahead of print]
    [125] Morita M, Saruta C, Kozuka N, et al. Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade. Glia 2007;55:508-515
    [126] Sa′eza JC, Retamala MTA, Basilio D, et al. Connexin-based gap junction hemichannels: Gating mechanisms. Biochimica et Biophysica Acta 2005,1711: 215–224
    [127] Pow DV, Sullivan R, Reye P,et al. Localization of taurine transporters, taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain. Glia. 2002; 37:153-168.
    [128] Hussy N, Deleuze C, Desarménien MG, et al Osmotic regulation of neuronal activity: a new role for taurine and glial cells in ahypothalamic neuroendocrine structure.Prog Neurobiol. 2000;62:113-34.
    [129] Xiong JJ, Hatton GI. Differential responses of oxytocin and vasopressin neurons to the osmotic and stressful components of hypertonic saline injections: a Fos protein double labeling study. Brain Res 1996;719: 143-153.
    [130] Pasantes-Morales H, Franco R, Ochoa L,et al. Osmosensitive release of neurotransmitter amino acids: relevance and mechanisms. Neurochem Res. 2002;27:59-65.
    [131]申晶、段丽、袁华,等。低渗刺激后大鼠视上核内AST和神经元的可塑性改变及其相互关系。神经解剖学杂志;2005;21:39-44
    [132] Patrizia DI, Sonya K, Ciccarelli R, et al. Mechanisms of apop tosis induced by purine nucleosides in astrocytes. Glia, 2002, 38:179-190.
    [133] Hawrylak N, Boone D, Salm AK. The surface density of glial fibrillary acidic protein immunopositive astrocytic processes in the rat supraoptic nucleus is reversibly altered by dehydration and rehydration. Neurosci Lett. 1999; 17;277:57-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700