抑制素基因工程疫苗的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合应用生物信息学技术、基因克隆技术、蛋白质分析技术、基因免疫技术、酶免疫测定技术、放射免疫测定技术等,以猪抑制素α亚基(1~32)基因及绵羊补体C3d基因作为选择基因,制备串联抑制素基因工程疫苗,用于基因免疫绵羊,研究串联抑制素基因免疫对母羊生殖及生殖内分泌的影响,探讨其作用机制。通过串联抑制素基因疫苗应用研究,探索串联抑制素基因疫苗免疫方案,达到提高绵羊繁殖力、降低生产成本、推广繁育新技术的目的,并为抑制素基因疫苗的成功研制奠定基础。主要内容如下:
     1.猪抑制素α亚基抗原表位的预测
     综合应用在线软件PredictProtein、DNAStar软件、Antheprot软件和现代生物信息学技术,分析猪抑制素α亚基的二级结构、抗原表位、亲水性、疏水性、Coil区域、易溶性等理化特性,旨在预测其抗原位点和抗原表位。结果表明:猪抑制素α亚基可能的抗原位点分别是N端1~32、105~130氨基酸区段。由于N端有多个Pro,易构成Coil结构,对抗原表位的形成有一定的影响,所以猪抑制素α亚基的抗原表位可能位于1~32。
     2.串联抑制素基因疫苗的制备与鉴定
     应用基因克隆技术,以猪抑制素α(1~32)基因及绵羊补体C3d基因为选择基因,并引入狗前胰岛素原信号肽基因,制备串联抑制素重组质粒pcDNA-DPPISS-DINH和pcDNA-DPPISS-DINH-sC3d3。通过酶切鉴定,串联抑制素重组质粒pcDNA-DPPISS-DINH和pcDNA-DPPISS-DINH-sC3d3构建正确,并在BHK-21细胞中获得了分泌型表达,为羊抑制素基因工程疫苗的研制奠定了基础。
     3.串联抑制素基因疫苗对绵羊生殖激素的影响
     根据基因免疫技术,以成功制备的串联抑制素重组质粒pcDNA-DPPISS-DINH和pcDNA-DPPISS-DINH-sC3d3为免疫原,对60只绵羊进行基因免疫试验,应用酶联免疫法(ELISA)检测抗抑制素抗体、放射免疫法(RIA)测定处理后不同时期血清中激素水平。结果表明:重组质粒pcDNA-DPPISS-DINH和pcDNA-DPPISS-DINH-sC3d3免疫绵羊后,各实验组P/N值均显著高于对照组(P<0.05),且在第3次加强免疫后抗体水平明显上升。首次免疫后,促卵泡素(FSH)平均含量均高于对照组,且在第2次、第3次加强免疫阶段差异显著(P<0.05)。第2次免疫后促黄体素(LH)、雌二醇(E2)、孕酮(P)含量均高于对照组(P>0.05),第3次加强免疫后E2、P含量均显著高于对照组(P<0.05)。这些结果表明,串联抑制素基因免疫绵羊可促进FSH分泌,进而影响绵羊卵泡发育和诱导绵羊产双羔。
     4.串联抑制素基因免疫诱导绵羊孪生的研究
     为了研究串联抑制素基因免疫对绵羊孪生的影响,以制备的串联抑制素基因疫苗pcDNA-DPPISS-DINH和pcDNA-DPPISS-DINH-sC3d3为免疫原,对120只绵羊进行免疫试验。结果表明:0.6 mg pcDNA-DPPISS-DINH和0.8 mg pcDNA-DPPISS-DINH-sC3d3免疫绵羊后,双羔率分别为22.2%和30.0%,均与对照组间差异显著(P<0.05),并且分子佐剂sC3d能增加绵羊对串联抑制素基因免疫的反应性。串联抑制素重组质粒成功诱导绵羊孪生的研究,为抑制素基因疫苗的研制提供了理论依据和技术支撑。
     5.串联抑制素基因免疫的安全性研究
     用高于正常实验组5倍、10倍(重组质粒pcDNA-DPPISS-DINH 1.5 mg、3.0 mg;pcDNA-DPPISS-DINH-sC3d3 2.0 mg、4.0 mg)的免疫剂量对8只绵羊进行基因免疫试验,旨在确定串联抑制素基因免疫绵羊的安全性。结果表明:串联抑制素基因疫苗pcDNA-DPPISS-DINH和pcDNA-DPPISS-DINH-sC3d3免疫绵羊后,实验羊的精神、食欲、运动等均无异常,体温、脉搏、呼吸均无明显变化,没有观察到基因免疫的任何毒副作用与不良反应。由此得出结论,串联抑制素基因疫苗pcDNA-DPPISS-DINH和pcDNA-DPPISS-DINH-sC3d3免疫绵羊诱导其孪生是安全、可靠的。
Techniques such as bioinformatic, molecular clone, protein analysis, gene immunization, enzyme-linked immunoassay (ELISA), radio immunoassay (RIA) and so on were applied to prepare the tandem inhibin as gene engineering vaccine with inhibinα-subunit (1~32) of pig and complement 3d of sheep, and to study the immune response of tandem inhibin gene vaccine, effects on the reproduction and reproductive endocrinology in sheep, and investigate its mechanism. At the same time, to search the technique of tandem inhibin gene immunization for the best way to increase the reproduction of sheep, reduce the costs and popularize the new technolgoy. The main content presents as follows:
     1. The epitopes prediction of pig inhibinα-subunit
     The secondly structure, epitopes, hydrophobicity, hydrophilicity, coil regions, solvent accessibility and so on were analyzed by use of on-line predictprotein, DNAStar and Antheprot softwares to predict the antigen locus and epitopes of inhibinα-subunit of pig. The results demonstrated that the epitopes of inhibin were probably at or adjacent to amino acids sequence 1~32 and 105~130 of its N-terminal, suggesting that there are some Pro in the N-terminal. The epitopes of inhibin antigen were possibly localized in amino acide sequence 1~32 of its N-terminal.
     2. Preparation and identification of tandem inhibin gene vaccine
     Using to the technology of molecular clone, the recombinant plasmid of tandem inhibin were prepareted with inhibinα-subunit (1~32) of pig, complement 3d of sheep and dog preproinsulin signal sequence (DPPISS). The results showed that the recombinant plasmid, pcDNH-DPPISS-DINH and pcDNH-DPPISS-DINH-sC3d3 were constructed successfully. After BHK-21 cells were transfected with the recombinant plasmid pcDNH-DPPISS-DINH and pcDNH-DPPISS-DINH-sC3d3, secreted expression was obtained. All these were the basis of developing the inhibin gene as vaccine for sheep.
     3. Effect of tandem inhibin gene immunization on reproductive hormones of sheep
     According to the technology of gene immunization, 60 sheep were immunized with pcDNA-DPPISS-DINH and pcDNA-DPPISS-DINH-sC3d3, respectively. The P/N values of antibody against inhibin were detected by ELISA (enzyme-linked immunoassay) and the hormone levels were detected in different stage by RIA (radioimmunoassay) after gene immunization of tandem inhibin in sheep. The results showed the P/N values of antibody against inhibin in gene immunization groups of pcDNA-DPPISS-DINH and pcDNA-DPPISS-DINH-sC3d3 were higher than those in control group (P < 0.05), respectively, and the levels of antibody against inhibin were rose significantly after the third immunization. The levels of follicle stimulating hormone (FSH) in gene immunization groups were higher than those in control group after the first immunized, and the difference was significant after the second and third immunization (P<0.05), respectively. The levels of LH, E2 and P were all higher than those in control group after the second immunized, but there is no difference (P>0.05). After the third immunization, the levels of E2 and P were higher than those in control group(P < 0.05), respectively. All the results demonstrated that the recombinant plasmid of tandem inhibin gene as vaccine for sheep can stimulate FSH secretion, so as to effect follicle development and induce sheep twinning.
     4. Tandem inhibin gene immunization to induce sheep twinning
     To study the effect of tandem inhibin gene immunization on sheep twinning, 120 sheep were immunized with pcDNA-DPPISS-DINH and pcDNA-DPPISS-DINH-sC3d3, respectively. After immunization, the twining rate of sheep was 22.2% and 30.0%, respectively, which was significantly higher (P<0.5) than that in the control group. Molecular adjuvant, sC3d (sheep complement 3d) can promote immune response for gene immunization of tandem inhibin on sheep. The study of tandem inhibin gene immunization successfully to induce sheep twinning made theoretical foundation and technical basis for developing the inhibin gene as vaccine for sheep.
     5. Research on safety of tandem inhibin gene immunization
     In order to make sure the safety after tandem inhibin gene immunization on sheep, 8 sheep were immunized with 1.5 mg, 3.0 mg pcDNA-DPPISS-DINH and 2.0 mg, 4.0 mg pcDNA-DPPISS-DINH-sC3d3, respectively. The results showed that the observations of mental conditions, appetite and movement were normal, and the programs of body temperature, pulse and breathing rate were all insignificant change. At the same time, toxicity and adverse reaction were not observed after gene immunization for sheep. So, the gene vaccines of tandem inhibin, pcDNA-DPPISS-DINH and pcDNA-DPPISS-DINH-sC3d3 were safe and reliable.
引文
[1]曹少先,邢朝芳,张德坤,等.双拷贝抑制素基因疫苗pcISI的构建和表达及免疫[J].畜牧兽医学报, 2008, 39(5): 672-676
    [2]曹学亮.串联抑制素基因免疫对小鼠生殖激素的影响[D].中国农业科学院硕士学位论文, 2006
    [3]陈德富,陈喜文.现代分子生物学实验原理与技术[M].北京:科学技术出版社, 2006
    [4]崔先利,杨利国,茆达干,等.抑制素基因免疫对黄牛孪生的影响[J].中国农业大学学报, 2006, 11(3): 27-30
    [5]邓涛,陈乃玲,陈天宝,等.丙肝病毒(HCV)基因免疫实验研究[J].中国免疫学杂志, 1999, 11: 494-496
    [6]冯建忠.羊繁殖实用技术[M].北京:中国农业出版社, 2004
    [7]冯忠武.动物生物疫苗[M].北京:化学工业出版社, 2007
    [8]郭宪,焦硕,岳耀敬,等.肉羊多胎技术的研究与应用[A]. 2007中国羊业进展.北京:中国农业出版社, 2007, 182-185
    [9]郭宪,岳耀敬,焦硕,等.串联抑制素基因免疫诱导绵羊孪生的研究[J].畜牧兽医学报, 2009, 40(8): 1145-1149
    [10]郭志勤.家畜胚胎工程[M].北京:中国科学技术出版社, 1998
    [11]华进联,李松,窦忠英,等.抑制素免疫对羊生殖的影响[J].畜牧兽医杂志, 2000, 19(3): 15-17
    [12]黄光菊,俞颂东.抑制素在动物繁殖中的应用[J].上海畜牧兽医通讯, 2005, (3): 48-49
    [13]黄群山,冯保华,武浩,等.抑制素主动免疫提高山羊排卵率[J].中国兽医学报, 1999, 19(1): 95-96
    [14]姜勋平.基因免疫的原理和方法[M].北京:科学出版社, 2004
    [15]姜勋平,杨利国.卵泡抑制素主动和被动免疫及基因免疫研究进展[J].畜牧与兽医, 2000, 32(4): 38-40
    [16]姜勋平,杨利国,刘桂琼,等.抑制素基因免疫对小鼠生殖的影响[J].中国兽医学报,2002, 22(4): 368-370
    [17]靳彦文. DNA疫苗接种的安全性[J].生物技术通讯, 2001, 12(1): 55-59
    [18]雷东锋.现代生物化学与分子生物学仪器与设备[M].北京:科学技术出版社, 2006
    [19]李晓丽,郭志云,曾宪根.抑制素的研究进展及其在动物繁殖中的应用[J].四川畜牧兽医, 2003, 11: 30-32
    [20]刘娜,刘彦威.抑制素免疫提高家畜的排卵率和产仔数[J].畜牧兽医杂志, 1996, 15(2): 52-54
    [21]娄华.基因免疫研究进展及其面临的问题[J].中国兽医科技, 1999, 29(12): 19-21
    [22]吕秋军,丁林茂.生物技术药物临床前安全性评价研究进展[J].中国新药杂志, 2001, 10(4): 252-256
    [23]茆达干,杨利国,曹少先,等.卵泡抑制素与乙肝表面抗原融合质粒的构建及表达[J].中国免疫学杂志, 2003, 19(11): 775-778
    [24]茆达干,杨利国,叶荣,等.抑制素α(1~32)基因免疫对大鼠卵泡发育和生殖激素的影响[J].中国农业科学, 2003, 36(12): 1554-1559
    [25]茆达干,张志杰,杨利国,等.抑制素基因免疫大鼠的免疫应答与基因表达[J].畜牧兽医学报, 2007, 38(7): 713-717
    [26]孟松树,李曦,智海东,等. CpG DNA对鸡传染性喉气管炎病毒DNA疫苗免疫效果的影响[J].中国农业科学, 2001, 34(3): 342-344
    [27]宁章勇,于书敏,刘文菊,等.基因免疫研究进展[J].实验动物科学与管理, 2003, 20(3): 28-36
    [28]彭师奇.多肽药物化学[M].北京:科学出版社, 1993
    [29]乔纳森·佩夫斯纳.生物信息学与功能基因组学[M].孙之荣译.北京:化学工业出版社, 2006
    [30]卿玉玲,任红. DNA疫苗安全性研究现状[J].国外医学(流行病学传染病学分册), 2002, 29(3): 129-132
    [31]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南(第二版)[M].金冬雁译.北京:科学出版社, 1998
    [32]萨姆布鲁克J,拉塞尔EF.分子克隆实验指南(第三版)[M].黄培堂译.北京:科学出版社, 2005
    [33]桑润滋,田树军,李铁栓.肉羊快繁新技术[M].北京:中国农业大学出版社, 2003
    [34]沈维雄,魏徵,崔大敷.人抑制素α亚基片段的合成及抗体的制备[J].生殖与避孕, 1993, (2): 90-94
    [35]孙树汉,戴建新,张平武.核酸疫苗[M].上海:第二军医大学出版社, 2000
    [36]孙颖,鲁桂琛,王德心,等.人体抑制素α亚基片段的合成及活性研究[J].药学学报, 1996, 31(2): 107-111
    [37]唐胜球,董小英,邹晓庭.家畜卵泡抑制素的研究进展[J].中国畜牧杂志, 2003, 39(5): 54-56
    [38]唐泰山,郭爱珍,陆承平.细菌DNA对小鼠脾淋巴细胞转化的影响[J].中国免疫学杂志, 2004, 20(8): 535-536
    [39]王进荣.抑制素被动免疫对母牛卵泡发育和生殖内分泌的影响及作用机制研究[D].南京农业大学博士学位论文, 2001
    [40]王进荣,杨利国,王元兴.人抑制素α亚基主动免疫对鸡卵泡发育和性腺激素及产蛋率的影响[J].南京农业大学学报, 2000, 23(4): 63-66
    [41]王克夷.蛋白质导论[M].北京:科学出版社, 2007
    [42]王乐三. SPSS在医学科研中的应用[M].北京:化学工业出版社, 2007
    [43]王立新,徐薇,关庆东,等. C3d-P28增强乙肝病毒基因免疫诱导的特异性细胞免疫应答[J].细胞与分子免疫学杂志, 2003, 19(3): 242-244
    [44]王水莲,薛立群,陈小军,等.抑制素pCIS基因免疫对黄牛卵泡发育和生殖激素的影响[J].畜牧兽医学报, 2009, 40(6): 830-835
    [45]吴结革,茆达干,乔真真,等.抑制素与羊GM-CSF基因融合表达质粒pCGMISI和pEGMISI的构建[J].畜牧与兽医, 2008, 40(9): 13-16
    [46]吴乃虎.基因工程原理[M].北京:科学出版社, 1998
    [47]吴忠良,范嵋君,赵克强,等.抑制素主动免疫对山羊繁殖率的影响[J].畜牧与兽医, 2000, 32(1): 21
    [48]夏银,赵旭庭,张小冬,等.抑制素被动免疫对大鼠排卵率及血浆雌二醇与孕酮的影响[J].畜牧兽医学报, 1999, 30(1): 7-11
    [49]邢朝芳.两种新的抑制素基因疫苗免疫大鼠的效果比较及作用机制分析[D].南京农业大学硕士学位论文, 2005
    [50]杨灿锋.猪垂体中卵泡抑制素受体的分析[D].南京农业大学硕士学位论文, 2002
    [51]杨利国.动物繁殖学[M].北京:中国农业出版社, 2003
    [52]杨利国,胡少昶,魏平华,等.酶免疫测定技术[M].南京:南京大学出版社, 1998
    [53]杨利国,张居农,王进荣,等.应用猪精液抑制素主动免疫法诱导黄牛孪生[J].中国农业科学, 2002, 35(2): 207-212
    [54]余琼.抑制素研究进展[J].动物科学与动物医学, 2004, 21(9): 10-12
    [55]袁慧君,王三虎.基因免疫研究进展[J].河南职业技术师范学院, 2004, 32(3): 42-46
    [56]袁正宏,方昕,郑玲洁,等.免疫途径及载体对乙肝病毒DNA疫苗免疫效果影响的研究[J].中华微生物学及免疫学杂志, 1999, 19(1): 29-32
    [57]岳耀敬.抑制素-C3d DNA疫苗的构建及免疫作用[D].中国农业科学院硕士学位论文, 2008
    [58]岳耀敬,焦硕,郭宪,等.绵羊C3d基因克隆及分子特征[J].农业生物技术学报, 2008, 16(4): 573-579
    [59]张成云,吴志焕,曾宪根.新疆细毛羊抑制素α亚基cDNA的克隆、序列分析与表达[J].畜牧兽医学报, 2009, 40(1): 15-19
    [60]张德坤,杨利国,曹少先,等.抑制素基因免疫对母羊生殖内分泌的影响[J].南京农业大学学报, 2005, 28(4): 76-79
    [61]张德坤,杨利国,张红琳,等.抑制素基因免疫诱导单胎绵羊孪生的研究[J].中国农业大学学报, 2004, 9(4): 40-45
    [62]张居农,剡根强.高效养羊综合配套新技术[M].北京:中国农业出版社, 2001
    [63]张茂林,扈荣良,余兴龙,等.不同转染介质对狂犬病病毒糖蛋白基因免疫的效应[J].中国兽医学报, 2000, 20(6): 528-531
    [64]张铁军,张友南.抑制素来源、作用及调节的研究[J].生理科学进展. 1992, 23(3): 33-36
    [65]张维铭.现代分子生物学实验手册[M].北京:科学出版社, 2007
    [66]张小冬,程瑞禾,夏银.人抑制素合成肽与猪精液抑制素提取物主动免疫对母羊生殖激素妊娠及产羔的影响[J].南京农业大学学报, 1998, 21(4): 69-74
    [67]张晓梅,周玲,刘海鹰,等. HBsAg基因免疫条件优化的比较[J].中华实验和临床病毒学杂志, 1997, 11(3): 97, 15
    [68]张忠诚.家畜繁殖学[M].北京:中国农业出版社, 2003
    [69]赵有璋.现代中国养羊[M].北京:金盾出版社, 2005
    [70] Al-Obaidi S.A.R., Bindon B.M., Hillard M.A., et al. Reproductive characteristics of lambs actively immunized early in life with inhibin-enriched preparations from follicular fluid of cows[J]. J. Reprod. Fert., 1987, 81: 403-414
    [71] Andersson A.M., Petersen J.H., Jorgensen N., et al. Serum inhibin B and follicle-stimulating hormone levels as tools in the evaluation of infertile men: siginificance of adequate reference values from proven fertile men[J]. The Journal of Clinical Endocrinology & Metabolism, 2004, 89(6): 2873-2879
    [72] Anderson S.T., Bindon B.M., Hillard M.A., et al. Increased ovulation rate in Merino ewes immunized against small synthetic peptide fragments of the inhibin alpha subunit[J]. Reorod. Fertil. Dev., 1998, 10(5): 421-431
    [73] Arai K., Watanabe G., Taya K., et al. Roles of inhibin and estradiol in the regulation of follicle-stimulating hormone and luteinizing hormone secretion during the estrous cycle of the rat[J]. Biol. Reprod., 1996, 55(1): 127-133
    [74] Arai K.Y., Watanabe G., Arai K., et al. Contribution of endogenous inhibin to the decline of the secondary surge of follicle-stimulating hormone in the rat[J]. Reprod. Fertil. Dev., 2001, 13(2-3): 203-209
    [75] Bindon B., Piper L., Cahill L., et al. Genetic and hormonal factors affecting superovulation[J]. Theriogenology, 1986, 25(1): 53-70
    [76] Chen Y., Liu Z., Yang Y., et al. Infertility in mice induced by the rhesus monkey chorionic gonadotropin beta-subunit glycoprotein (rmCGbeta) using DNA immunization[J]. Mol. Cell Biochem., 2002, 231(1-2): 89-96
    [77] Chow Y.H., Chiang B.L., Lee Y.L., et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated bycodelivery of various cytokine genes[J]. The Journal of Immunology, 1998, 160: 1320-1329
    [78] Cumminst L.J., O’Shea T., Al-Obaidi S.A.R., et al. Increase in ovulation rate after immunization of Merino ewes with a fraction of bovine follicular fluid containing inhibin activity[J]. Journal of Reprodution and Fertility, 1986, 77: 365-372
    [79] Daniel J.B., Stacey C.C., Teresa K.W. Mechanisms of inhibin signal transduction[J]. Recent Progress in Hormone Research, 2001, 56: 417-450
    [80] Danko I., Fritz J.D., Jiao S., et al. Pharmacological enhancement of in vivo foreign gene expression in muscle[J]. Gene Ther., 1994, 1(2): 114-121
    [81] Davis H.L., Michel M.L., Mancini M., et al. Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen[J]. Vaccine, 1994, 12(16): 1503-1509
    [82] Dempsey P.W., Allison M.E.D., Akkaraju S., et al. C3d of complement as a moulecular adjuvant: bridging innate and acquirred immunity[J]. Science, 1996, 271: 348-350
    [83] Dhar A., Doughton B.W., Pruysers E., et al. Effect of immunization against the alpha N (alphaN) and alpha C (alphaC) peptides of the alpha43 subunit of inhibin on antral follicular growth and atresia and the patterns of gonadotrophin secretion in ewes[J]. Reproduction, 2001, 121: 707-718
    [84] Dimitrios M., John D.L. The electrostatic nature of C3d-complement receptor 2 association[J]. The Journal of Immunology, 2004, 172: 7537–7547
    [85] Douglas B.L., Robert G.W. DNA vaccines methods and protocols[M]. Humana Press Inc., 2000
    [86] Echternkamp S.E., Gregory K.E., Dickerson G.E., et al. Twinning in cattle: II. Genetic and enviromental effects on ovulation rate in pohertal heifers and postparrum cows and the effects of ovulation rate on embryonic survival[J]. Journal of Animal Science, 1990, 68: 1877-1888
    [87] Findlay J.K. An update on the roles of inhibin, activin and follistatin as local regulators of folliculogenesis[J]. Bio. Reprod., 1993, 48: 15-23
    [88] Findlay J.K., Russell D.L., Doughton B., et al. Effect of active immunization against the amino-terminal peptide (alpha N) of the alpha 43kDa subunit of inhibin (alpha 43) on fertility of ewes[J]. Reproduction, Fertility and Development, 1994, 6(2): 265-267
    [89] Forage R.G., Brown R.W., Oliver K.J., et al. Immunization against an inhibin subunit produced by recombinant DNA techniques results in increased ovulation rate in sheep[J]. J. Endocrinol., 1987, 114(2): R1-R4
    [90] Garnier J., Gibrat J.F., Robson B. GOR method for pridicting protein secondary structure from amino acid sequence[J]. Methods Encymol., 1996, 266: 540-553
    [91] Garnier J., Osguthorpe D.J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins[J]. Journal of Molecular Biology, 1978, 120: 97-120
    [92] Gershoni J.M., Stern B., Denisova G. Combinatorial libraries, epitope structures and the prediction of protein conformations[J]. Immunology Today, 1997, 18: 108-110
    [93] Glencross R.G., Bleach E.C.L., Wood S.C., et al. Active immunization of heifers against inhibin: effects on plasma concentrations of gonadotrophins, steroids and ovarian follicular dynamics during prostaglandin-synchronized cycles[J]. Journal of Reproduction and Fertility, 1994, 100: 599-605
    [94] Gray P.C., Bilezikjian L.M., Vale W. Antagonism of active by inhibin and inhibin receptors: a functional role for betaglycan-glycan[J]. Molecular and Cellular Endocrinology, 2001, 180(1-2): 47-53
    [95] Green T.D., Montefiori D.C., Ross T.M. Enhancement of antibodies to the human immunodeficiency virus type 1 envelope by using the molecular adjuvant C3d[J]. Journal of Virology, 2003, 77(3): 2046-2055
    [96] Groome N.P., Hancock J., Betteridge A., et al. Monoclonal and polyclonal antibodies reactive with the 1-32 amino terminal sequence of the alpha subunit of human 32K inhibin[J]. Hybridoma, 1990, 9: 31-42
    [97] Guo X., Yue Y.J., Jiao S., et al. Tandem inhibin gene immunization to induce sheep twinning[J]. J. Appl. Anim. Res., 2010, 37: 93-96
    [98] Hahn J. Attempts to explain and reduce variability of superovulation[J]. Theriogenology, 1992, 38(2): 269-275
    [99] Han L., Mao D.G., Zhang D.K., et al. Development and evaluation of a novel DNA vaccine expressing inhibinα(1–32) fragment for improving the fertility in rats and sheep[J]. Animal Reproduction Science, 2008, 109(1-4): 251-265
    [100] Hannan J.P., Young K.A., Guthridge J.M., et al. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d[J]. J. Mol. Biol., 2005, 346(3): 845–858
    [101] Hasegawa Y., Miyamoto K., Fukuda M., et al. Immunological study of ovarian inhibin[J]. Endocrinol. Jpn., 1986, 33(5): 645-654
    [102] Hennies M., Voglmayr J.K., Dietrich E., et al. Hormonal response of female goats to active immunization against a recombinant human inhibinα-subunit, and establishment of an enzyme-linked immunosorbent assay for caprine follicle-stimulating hormone[J]. Reproduction in Domestic Animals, 2001, 36(2): 65-71
    [103] Hertan R., Farnworth P.G., Fitzsimmons K.L., et al. Identification of high affinity binding sites for inhibin on ovine pituitary cells in culture[J]. Endocrinology, 1999, 140(1): 6-12
    [104] Holm L., Sander C. Mapping the protein universe[J]. Science, 1996, 273: 595-602
    [105] Jameson B.A., Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants[J]. Bioinformatics, 1988, 4(1): 181-186
    [106] Kingsley D.M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms[J]. Genes & Dev., 1994, 8: 133-146
    [107] Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology, 1982, 157(1): 105-132
    [108] Levy J., Harris J., Chen J., et al. Electrogastrographic in children: toward the development of standard methods, reproducible results, and reliable normative data[J]. Journal of Pediatric Gastroenterology and Nutrition, 2001, 33(4): 455-461
    [109] Ling N., Ying S.Y., Ueno N., et al. Isolation and partial characterization of a Mr 32,000protein with inhibin activity from porcine follicular fluid[J]. Proc. Natl. Acad. Sci. USA, 1985, 82: 7217-7221
    [110] Loehr B.I., Pontarollo R., Rankin R., et al. Priming by DNA immunization augments T-cell responses induced by modified live bovine herpesvirus vaccine[J]. Journal of General Virology, 2001, 82: 3035-3043
    [111] Lumpkin M., Andres N.V., Paul F., et al. Evidence for a hypothalamic site of action of inhibin to suppress FSH release[J]. Endocrinology, 1981, 108(3): 1101-1104.
    [112] Mais V., Cetei N.S., Muse K.N., et al. Hormonal dynamics during luteal-follicular transition[J]. Journal of Clinical Endocrinology & Metabolism, 1987, 64(6): 1109-1114
    [113] Mao D.G, Yang L.G., Ye R., et al. Effect of inhibinα(1-32) gene immunization on the follicular development and reproductive hormones in rats[J]. Agricultural Sciences in China, 2003, 2(3): 337-343
    [114] McCullagh D.R. Dual endocrine activity of the testes[J]. Science, 1932, 76: 19-20
    [115] Medan M.S., Arai K.Y., Watanabe G. Inhibin: Regulation of reproductive function and practical use in females[J]. Animal Science Journal, 2007, 78(1): 16-27
    [116] Medan M.S., Takedom T., Aoyagi Y., et al. The effect of acitve immunization against inhibin on gonadotropin secretions and follicular dynamics during the estrous cycle in cows[J]. Journal of Reproduction and Development, 2006, 52(1): 107-113
    [117] Medan M.S., Watanabe G., Sasaki K., et al. Effects of passive immunization of goats against inhibin on follicular development, hormone profile and ovulation rate[J]. Reproduction, 2003, 125: 751-757
    [118] Meyer R.L., Wheaton J. E. Measurement of dimeric inhibin in porcine serum: evidence for low concentrations and existence of binding proteins[J]. Demestic Animal Endocrinology, 1996, 13(6): 503-510
    [119] Miller W.L., Huang E.S.R. Secretion of ovine luteining hormone in vitro: Differential positive control by 17β-estradiol and a preparation of porcine ovarian inhibin[J]. Endocrinology, 1985, 117(3): 907-911
    [120] Morris D.G., McDermott M.G., Diskin M.G., et al. Effect of immunization againstsynthetic peptide sequences of bovine inhibinα-subunit on ovulation rate and twin-carving rate in heifers[J]. Journal of Reproduction and Fertility, 1993, 97: 255-261
    [121] Morris D.G., McDermott M.G., Grealy M., et al. Effect of immunization against synthetic peptide sequences of theαN-subunit of bovine inhibin on ovulation on rate, gonadotrophin concentrations and fertility in heifers[J]. Journal of Reproduction and Fertility, 1995, 203(2): 285-291
    [122] O'Shea T., Cummins, L.J., Bindon, B.M., et al. Increased ovulation rate in ewes vaccinated with an inhibin-enriched fraction from bovine follicular fluid[J]. Proc. Aust. Soc. Reprod. Biol., 1982, 14: Abstr. 85
    [123] Raz E., Carson D.A., Parker S.E., et al. Intradermal gene immunization: the possible role DNA uptake in the induction of cellular immunity to viruses[J]. Proc. Natul. Acad. Sci. USA, 1994, 91(20): 9519-9523
    [124] Robertson D.M., Giacometti M., Foulds M., et al. Isolation of inhibinα-subunit precursor proteins from bovine follicular fluid[J]. Endocrinology, 1989, 125(4): 2141-2149
    [125] Sander H.J., Meijs-Roelofs H.M.A., Kramer P., et al. Inhibin-like activity in ovarian homogenates of prepubertal female rats and its physiological significance[J]. Journal of Endocrinology, 1985, 107: 251-257
    [126] Satterlee D.G., Cadd G.G., Fioretti W.C. Active immunization of broiler breeder hens with a recombinant chicken inhibin fusion protein enhances egg lay[J]. Poult. Sci., 2002, 81(4): 519-528
    [127] Scanlon A.R., Sunderland S.J., Martin T.L., et al. Active immunization of heifers against a synthetic fragment of bovine inhibin[J]. Journal of Reprodunction and Fertility, 1993, 97(1): 213-222
    [128] Sewani C.R., Bagdasarian M.M., Ireland J.J., et al. Display of an inhibin epitope in a surface-exposed loop of the E.coli heat-labile enterotoxin B subunit[J]. Vaccine, 1998, 16(17):1611-1619
    [129] Shi F., Mochida K., Ogura A., et al. Follicle selection in cyclic guinea pigs with activeimmunization against inhibin alpha-subunit[J]. Life Sci., 2000, 66(25): 2489-2497
    [130] Shigekawa K., Dower W.J. Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells[J]. Biotechniques, 1988, 6(8): 742-751
    [131] Siegrist C.A., Barrios C., Martinez X., et al. Influence of maternal antibodies on vaccine responses: inhibition of antibody but not T cell responses allows successful early prime-boost strategies in mice[J]. Eur. J. Immunol., 1998, 28(12): 4138-4148
    [132] Suter M., Lew A.M., Grob P., et al. BAC-VAC, a novel generation of (DNA) vaccines: A bacterial artificial chromosome (BAC) containing a replication- competent, packaging–defective virus genome induces protective immunity against herpes simplex virus[J]. Proc. Natl. Acad. Sci. USA, 1999, 96(22): 12697-12702
    [133] Takedomi T., Kishi H., Medan M.S., et al. Active immunization against inhibin improves superovulatory response to exogenous FSH in cattle[J]. Journal of Reproduction and Development, 2005, 51(3): 341-346
    [134] Tang D.C., Devit M., Johnston S.A. Genetic immunization is a simple method for eliciting an immune response[J]. Nature, 1992, 356: 152-154
    [135] Tannetta D.S., Feist S.A., Bleach E.C., et al. Effects of active immunization of sheep against an amino terminal peptide of the inhibin alpha C subunit on intrafollicular levels of active A, inhibin A and follistatin[J]. Journal of Endocrinology, 1998, 157(1): 157-168
    [136] Taya K. Roles of inhibin in regulation of FSH secretion and folliculogenesis in mammals[J].Curr. Trends Exp. Endocrinol., 1993, 1: 97-116
    [137] Thomas T., Jonathan A., Walter J.S., et al. The immunology of DNA vaccines[M]. In: Lowrie D.B. and Whalen R.G., Methods in Medicine, vol.29, DNA vaccines: Methods and Protocols. Totowan N.J. Humana Press Inc., 1999, 37-64
    [138] Tong T.Z., Fan H.Y., Tan Y.D., et al. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus[J]. Biochemical and Biophysical Research Communications, 2006, 37(4): 845-851
    [139] Uccella S., La Rosa S., Genasetti A., et al. Localization of inhibin/activin subunits in normal pituitary and in pituitary adenomas[J]. Pituitary, 2000, 3(3): 131-139
    [140] Vanage G.R., Mehta P.B., Moodbidri S.B., et al. Effect of immunization with synthetic peptide corresponding to region 1-17 of human seminal plasma inhibin on fertility of male rats[J]. Arch. Androl., 2000, 44(1): 11-21
    [141] Voglmayr J.K., Mizumachi M., Washington D.W., et al. Immunization of rams against human recombinant inhibin alpha-subunit delays, augments, and extends season-related increase in blood gonadotropin levels[J]. Biology of Reproduction, 1990, 42(1): 81-86
    [142] Wang L.S., Sunyer J.O., Bello L.J. Fusion to Cad enhances the immunogenicity of the E2 glycoprotein of type 2 bovine viral diarrhea virus[J]. J. Virol., 2004, 78(4): 1616-1622
    [143] Wang X.L., Li D.J., Yuan M.M., et al. Enhancement of humoral immunity to the hCGβprotein antigen by fusing a molecular adjuvant C3d3[J]. J. Repro. Immunol., 2004, 63(2): 97–110
    [144] Wenstrom K.D., Owen J., Chu D.C., et a1. Alpha-fetoprotein, free beta-human chorionic gonadotropin, and dimeric inhibin A produce the best results in a three-analyte, multiple-marker screening test for fetal Down syndrome[J]. Am. J. Obstet. Gynecol., 1997, 177(5): 987-99l
    [145] Wenstrom K.D., Owen J., Chu D.C., et al. Prospective evaluation of freeβ-subunit of human chorionic gonadotropin and dimeric inhibin A for aneuploidy detection[J]. American Journal of Obstetrics and Gynecology, 1999, 181(4): 887-892
    [146] Wheaton J.E., Carlson K.M., Kusina N.T. Active and passive immunoneutralization of inhibin increases follicle-stimulating hormone levels and ovulaton rate in ewes[J]. Biology of Reproduction, 1992, 47(3): 361-367
    [147] Wheaton J.E., Godfrey R.W. Plasma LH, FSH, testosterone, and age at puberty in ram lambs actively immunized againstα-subunit peptide[J]. Theriogenology, 2003, 60: 933-941
    [148] Wolff J.A., Malone R.W., Williams P., et al. Derect gene transfer into mouse muscle invivo[J]. Science, 1990, 247(4949): 1465-1468
    [149] Wrathall J.H., McLeod B.J., Glencross R.G., et al. Inhibin immunoneutralization by antibodies raised against synthetic peptide sequences of inhibin alpha subunit: effects on gonadotrophin concentrations and ovulation rate in sheep[J]. Journal of Endocrinology, 1990, 124(1): 167-176
    [150] Xiang R.L., Zhou F., Yang Y., et al. Construction of plasmid pCMV4-rZPC’DNA vaccine and analysis of its contraceptive potential[J]. Biology of Reproduction, 2003, 68(5): 1518-1524
    [151] Ying S.Y. Inhibin, activins and follistatins: gonadal proteins modulating the secretion of follcle-stimulatig hormone[J]. Endocrine Reviews, 1988, 9(2): 267-293
    [152] Ying S.Y., Becker A., Ling N., et al. Inhibin and beta type transforming growth factor (TGFβ) have opposite modulating effects on the follicle stimulating hormone (FSH)-induced aromatase activity of cultured rat granulosa cells[J]. Biochemical and Biophysical Research Communications, 1986, 136(3): 969-975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700