甘南牧区草地遥感监测与分类经营研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘南地区地处青藏高原的东缘,境内草地资源丰富,但气候严酷,生态环境十分脆弱。在过去的几十年中,甘南牧区由于受气候变化及超载过牧等人类活动的强烈影响,导致90%以上的天然草地处于退化状态。因此,及时有效地监测草地植被的生长状况,研究切实可行的草地畜牧业管理措施,不仅对该区草地畜牧业和社会经济的可持续发展具有重要的作用,而且对区域生态环境的建设具有重大的意义。
     本文通过地面实测生物量数据与17种遥感植被指数的相关性分析,筛选出适宜甘南牧区草地动态变化遥感监测的植被指数,建立了草地生物量和盖度遥感监测模型,分析了甘南草地增强型植被指数和草地生物量的时空变化特点,研究了草地生态恢复力的变化特征,开展了草地分类经营及管理决策。取得如下主要结论:
     (1)通过多种植被指数和野外实测数据的线性回归分析,确定EVI为监测甘南草地的植被指数。通过精度评价,筛选出甘南草地植被的生物量监测模型为y=3738.073x1.553, (R2= 0.626),盖度监测模型为y=101.664+42.3861n(x)(R2=0.449)。
     (2)甘南州EVI月际、年际变化表明:从每年的4-6月EVI呈现增长趋势,其中5,6月份EVI增加速度比较快,基本在每年的7月达到最大值(2001年EVI在8月份达到最大值),然后植被指数开始下降。玛曲县和碌曲县的EVI值相对于其它的县较高,舟曲县的EVI值最小。在9年动态变化中,临潭县、夏河县、舟曲县的变化比较明显,临潭县、夏河县、舟曲县、卓尼县草地EVI在9年间有明显增大的趋势。
     (3)甘南草地生物量9年来有增加趋势,但不显著。对于生物量月际变化来说9年中甘南草地生物量变化呈单峰抛物线分布,草地月际生物量年内变化曲线总体符合草地植被生长的规律。2001-2009年间甘南暖性草丛、温性草原的年最大生物量呈明显上升的趋势(R2=0.529,sig=0.026:R2=0.423,sig=0.058)。
     (4)甘南草地2001-2009年间恢复力最差的草地占整个甘南草地的33.84%,主要分布在卓尼县、迭部县和临潭县;草地恢复力较差的草地占整个草地的15.35%,主要分布于夏河县北部;草地恢复力较高和草地恢复力最高的草地主要分布在玛曲县、碌曲县、夏河县,分别占整个草地的19.66%和31.15%。卓尼县和迭部县草地恢复力较差,玛曲县和碌曲县草地恢复力最好。甘南草地在夏季恢复力最高。春季和冬季草地的变化比较稳定,夏季草地生长旺盛,良好的水热条件使得草地恢复力有所提高。
     (5)甘南草地在空间上利用草地分类经营指数划分为保护型草地和适度经营型草地,其中适度经营型草地是甘南草地的主体。保护型草地主要分布在夏河县、玛曲县、迭部县和舟曲县,其中夏河县保护型草地的面积最大。甘南草地保护型草地的面积约为3.45×104ha,占甘南总可利用草地的1.35%;适度经营型草地的面积为252.2×104ha,占总可利用草地面积的98.65%。对于保护型草地,经营策略主要以禁牧和封育为主,使得严重退化的草地能够进行恢复,提高区域草地生态系统的保育能力。适度经营型草地不仅要追求生态效益,同时也要承担经济生产的功能,但是为了不破坏该草地类型的生态环境,应该确定合理的载畜量,采取轮牧等草地管理措施来管理草地。对于保护型草地和适度经营型草地应该采取不同的管理措施,虽然保护型草地不能给牧民带来经济收入,但是这些损失可以通过集约化经营型草地来补偿,保护型草地主要的功能是体现生态和社会价值,在这个区域应该采取禁牧和围栏措施。适度经营型草地可以承载合理的载畜量,轮牧和夏秋季放牧冬季舍饲的措施应该在这个区域实行。
The Gannan region is located on the northeast of Qinghai-Tibet Plateau, rich in grassland resources but had the severe climatic conditons and the ecological environment is very fragile. In the past decades, natural (climate change) and human factors (overgrazing and deterioration of natural environment) resulting in the degradation of 90% of grasslands in this region. Effective and accurate monitoring of the grassland vegetation changes will not only plays an important role in grassland animal husbandry and sustainable development of social economy and, but also has great significance to the construction of regional ecological environment.
     This research compared the correlation between 17 vegetation indices and grassland biomass, and found out the suitable VI to monitoring Gannan grassland change. The best VI was used to establish the Gannan grassland biomass/cover monitoring models. The VI and grassland biomass spatial-temporal variation were analyzed. The grassland resilience characteristics and the grassland classification management method were studied. Main conclusions obtained as follows:
     (1) The linear regression analysis between field survey data and MODIS data showed that the EVI was the best index to simulate the forage dry biomass and cover in the Gannan region from 17 vegetation indices (Ⅵs) evaluated. The results of precision estimation for models showed that the grassland biomass estimated model was:y=3738.073x1.553 (R2=0.626), grassland cover estimated model was:y=101.664+42.3861n(x) (R2=0.449).
     (2) The EVI monthly and yearly variation showed that:the EVI value increased from April to July during 2001 to 2009 and got the maximum at July except 2001, then the EVI value decreased. Maqu and Luqu had relatively higher EVI value and Zhouqu had the EVI minimum. The variation of EVI during 9 years was more obvious in Lintan, Xiahe, Zhouqu. The EVI increased obviously in Lintan, Xiahe, Zhouqu, Zhouni from 2001 to 2009.
     (3) The grassland biomass increased slightly from 2001 to 2009. The grassland biomass monthly variation was the single-peak parabola distribution and matched to grassland growth rule. The grassland biomass of warm temperate tussock, temperate steppe increased obviously from 2001 to 2009 (R2=0.529, sig=0.026; R2=0.423, sig=0.058).
     (4)The grassland with the lowest resilience accounted for 33.84% of the available grassland from 2001 to 2009. These grasslands mainly located in Zhuoni, Diebu and Lintai counties. The grassland with lower resilience mainly located in the northern of Xiahe county and accounted for 15.35% of available grassland in Gannan. Grassland with the highest and higer resilience mainly located in Maqu, Luqu and Xiahe, and accounted for 19.66% and 31.15%, respectively. The resilience of Zhuoni and Diebu counties were lower than other counties. Maqu and Luqu counties had the highest resilience. The grassland in Gannan had the highest resilience in summer and had the relatively stable condition in winter and spring. In fall, the grassland resilience was obviously decreased.
     (5)The index of classification management of grassland (ICG) was used to subdivide grassland into conservation grassland and moderately productive grassland in the Gannan region where no grassland fell into intensively productive grassland. The moderately productive grassland was the main grassland type in Gannan. Most conservation grassland located in Xiahe, Maqu, Diebu and Zhouqu and the area of conservation grassland in Xiahe was the largest. The area of conservation grassland is 3.45×104ha, accounted for 1.35% of the available grassland while the area of moderately productive grassland is 252.2×104ha accounted for 98.65% of the available grassland. Different management techniques should be applied to conservation, moderately and intensive productive grassland. Although the grassland in conservation sector could not provide the income for resident farmers, these losses can be compensated by the increase income of intensively productive grassland. In this study, grasslands divided into conservation sector can be mainly devoted to ecological and social values in the future. Anti-grazing and fencing had been suggested to restore degraded grasslands in the Gannan regions. The moderately productive grassland was suggested to carry out reasonable carrying capacity and rotational grazing by grazing in the summer and autumn and shelter feeding in winter and spring to achieve the balance between livestock need and forage supply.
引文
[1]李海亮,赵军.草地遥感估产的原理与方法[J].草业科学,2009,26(3):34-38.
    [2]朴世龙,方精云,贺金生,肖玉.中国草地植被生物最及其空间分布格局[J].植物生态学报[J].植物生态学报,2004,28(4):491-498.
    [3]于格,鲁春霞,谢高地.草地生态服务功能的研究进展[J].资源科学,2005,27(6):172-179.
    [4]姜立鹏,覃志豪,谢雯.基于单时相MODIS数据的草地退化遥感监测研究[J].中国草地学报,2007,29(7):39-43.
    [5]李博.中国北方草地畜牧业动态监测研究[M].北京:中国农业科技出版,1993.
    [6]刘兴元,梁天刚,龙瑞军,郭正刚.北方牧区草地资源分类经营机制与可持续发展[J].生态学报,2009,29(11):5851-5859.
    [7]李建龙,王建华.我国草地遥感技术应用研究进展与前景展望[J].遥感技术与应用,1998,13(2):64-67.
    [8]Taylor, B. F., Dini, P.W., Kidson, J.W. Determination of seasonal and international variation in New Zealand pasture growth from NOAA-7data[J]. Remote sensing of environment,1985,17:177-192.
    [9]Paruelo, J. M., Epstein, H.E., Lauenroth, W.K., Burke, I.C. ANPP estimates from NDVI for the central grassland region of the United States[J]. Ecology,1997,78(3):953-958.
    [10]Prince, S. D., Tucker, C.J. Satellite remote sensing of rangelands in Botswama II:NOAA AVHRR and herbaceous vegetation[J]. International Journal of Remote Sensing,1986,7(11):1555-15701.
    [11]Justice, C. O., Hiernaux, P.H. Monitoring the grasslands of the Sahel using NOAA/AVHRR data: Niger 1983[J]. International Journal of Remote Sensing 1986,7(11):1475-1479.
    [12]李建龙,蒋平.遥感技术在大面积天然草地估产和预报中的应用探[J].武汉测绘科技大学学报,1998,23(2):153-157.
    [13]朴世龙,方精云.最近18年来中国植被覆盖的动态变化[J].第四纪研究,2001,21(4):294-302.
    [14]徐敏云,李运起,谢帆等.河北省草地产量动态监测[J].草业学报,2010,19(1):211-218.
    [15]张学艺.基于EOS/MODIS的几种植被指数[J].安徽农业科学,2009,37(26):12842-12845,12850.
    [16]Kawamura, K., Akiyama, T., Yokota, H., Tsutsumi, M., Yasuda, T., Watanabe, O., Wang, G., Wang, S. Monitoring of forage conditions with MODIS imagery in the Xilingol steppe, Inner Mongolia[J]. International Journal of Remote Sensing,2005,26(7):1423-1436.
    [17]Turner, D. P., Ritts, W.D., Cohen, W.B., et al. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring[J]. Global Change Biology,2005,11(4):666-684.
    [18]Dubinin, M., Potapov, P., Lushchekina, A., Radeloff, V.C.. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing[J]. Remote sensing of Environment,2010,114(8):1638-1648.
    [19]Yebra, M., Chuvieco, E., Riano, D. Estimation of live fuel moisture content from MODIS images for fire risk assessment[J]. Agricultural and Forest Meteorology,2007,148(4):523-536.
    [20]Paruelo, J. M., Golluscio, R.A. Range assessment using remote sensing in northwest Patagoni(Argentia)[J]. Journal of Range Management,1994,47(6):498-502.
    [21]Merrill, E. H., Bramber-Brodahl, M.K., Marrs, R.W., Boyce, M.S. Estimation of green herbaceous Phytomass from Landsat MSS data in Yellowstone National Park[J]. Journal of Range Management,1993,46(2):151-157.
    [22]McDaniel, K. C., Haas, R.H. Assessing mesquite grass vegetation condition from Landsat[J]. Photogrammetric Engineering and Remote Sensing,1982,48:441-450.
    [23]Yang, J., Prince, S.D.. Remote sensing of savanna vegetation changes in Eastern Zambia 1972-1989[J]. International Journal of Remote Sensing,2000,21(2):301-322.
    [24]Todd, S. W., Hoffer, R.M., Milchunas, D.G. Biomass estimation on grazed and ungrazed rangeland using spectral indices[J]. International Journal of Remote Sensing,1998,19(3):427-438.
    [25]Shoshany, M., Kutiel, P., Lavee, H. Monitoring temporal vegetation cover changes in Mediterranean and arid ecosystems using a remote sensing technique:case study of the Judean Mountain and the Judean Desert[J]. Journal of Arid Environments,1996,33(1):9-21.
    [26]史培军,李博,李忠厚,湖涛.大面积草地遥感估产技术研究以内蒙古锡林郭勒草原估产为例[J].草地学报,1994,2(1):9-13.
    [27]黄敬峰,王秀珍,胡新博.新疆北部部同类型天然草地产草量遥感监测模型[J].中国草地,1999,1:7-11,18.
    [28]赵冰茹,刘闯,刘爱军,王正兴.利用MODIS-NDIV进行草地估产研究-以内蒙古锡林郭勒草地为例[J].草业科学,2004,21(8):12-15.
    [29]陶伟国,徐斌,刘丽军,杨秀春,覃志豪.同利用状况下草原遥感估产模型[J].生态学杂志,2007,26(3):332-337.
    [30]李聪,肖继东,曹古州,石玉,杨志华.应用MODIS数据估算草地生物量[J].干旱区研究2007,24(3):386-391.
    [31]除多,姬秋梅,德吉央宗,普次.利用EOS/MODIS数据估算西藏藏北高原地表生物量[J].气象学报,2007,65(4):612-621.
    [32]李月臣,宫鹏,刘春霞等.北方13省1982年-1999年植被变化及其与气候因子的关系[J1.资源科学,2006,28(2):109-117.
    [33]高清竹,李玉娥,林而达,江村旺扎,万运帆,熊伟,王宝山,李文福.藏北地区草地退化的时空分布特征[J].地理学报,2005,60(6):965-973.
    [34]杨久春,张树文.近50年呼伦湖水系草地退化时空过程及成因分析[J].中国草地学报,2009,31(3):13-19.
    [35]边多,李春,杨秀海,边巴次仁,李林.藏西北高寒牧区草地退化现状与机理分析[J].自然资源学报,2008,23(2):254-262.
    [36]刘纪元,徐新良,邵全琴.近30年来青海三江源地区草地退化的时空特征[J].地理学报,2008,63(4):364-376.
    [37]吕海燕,徐斌,杨秀春等.锡林郭勒草原产草量与碳储量的遥感估测[J].安徽农业科学,2010,38(32):18466-18468.
    [38]杨元合,朴世龙.青藏高原草地植被覆盖变化及其与气候因子的关系[J].植物生态学报, 2006,30(1):1-8.
    [39]张连义,王刚,宝路如,尔敦扎玛,镡建国,郭志忠.锡林郭勒盟草地MODIS-NDVI植被指数和估产牧草产最季节变化特征——以2005年4-9月的变化为例[J].草业科学,2008,25(3):6-11.
    [40]马文红,方静云,杨元合,安妮尔·买买提.中国北方草地生物量动态及其与气候因子的关系[J].中国利学:生命科学,2010,40(7):632-641.
    [41]郭正刚,王锁民,梁天刚,张自和.草地资源分类经营初探[J].草业学报,2004,13(2):1-6.
    [42]Guo, Z. G., Liang, T.G., Liu, X.Y. et al. A new approach to grassland management for the arid Aletai region in Northern China[J]. The Rangeland Journal 2006,28:97-104.
    [43]郭正刚,梁天刚,刘兴元.新疆阿勒泰地区草地类型特征及其分类经营[J].应用生态学报,2004,15(9):1594-1598.
    [1]王兮之,杜国桢,梁天刚,戴若兰,王刚.基于RS和GIS的甘南草地生产力估测模型构建及其降水空间分布模式的确立[J].草业学报,2001,10(2):95-102.
    [2]张丛.基于RS和GIS的甘南草地生态服务价值评估及其分类经营模式优化[D].兰州大学,2010.
    [3]张丛.基于RS和GIS的甘南草地生物量生态服务价值评估及其分类经营管理模式优化[D].兰州大学,2010.
    [4]王迅.基于3S技术的甘南地区生态风险评价研究[D].兰州大学,2010.
    [5]胡珀.甘南藏族自治州生态环境安全研究[D].兰州大学,2008.
    [6]焦亮.甘南藏族自治州玛曲县草地植物区系研究[D].甘肃农业大学,2007.
    [7]姚玉壁,余优森.青藏高原东北缘牧区雪灾的研究[J].气象,20(2):47-51.
    [8]夏文韬.基于MOP及3S技术的甘南牧区曹旭平衡决策研究[D].兰州大学,2010.
    [9]邹文涛,张韬,郝飞,孟庆伟.锡林郭勒盟典型草原区植被光谱特征研究[J].内蒙古农业大学学报,2008,29(1):61-64.
    [10]张连义.锡林郭勒草地牧草产量遥感监测模型的研究[D].内蒙古农业大学,2006.
    [11]冯险峰.GIS支持下的中国陆地生物最遥感动态监测研究[D].陕西师范大学硕士学位论文,2000.
    [12]梅安新,彭望碌,秦其明,刘慧平.遥感导论[M].北京:高等教育出版社,2001.
    [13]牛志春,倪绍祥.青海湖环湖地区区草地植被生物量遥感监测模型[J].地理学报,2003,58(5):695-702.
    [14]田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    [15]李海亮,赵军.草地遥感估产的原理与方法[J].草业科学,2009,26(3):34-38.
    [16]李春艳.舟山市松材线虫入侵林地生态格局动态监测研究[D].北京林业大学硕士论文,2007.
    [17]Jordan, C. F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969,50:663-666.
    [18]文军,王介民.一种由卫星遥感资料获得的修正的土壤调整植被指数[J].气候与环境研究1997,2(3):302-309.
    [19]Richardson., A. J. Wiegand C.L.. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing,1977,43(12):1541-1552.
    [20]韩爱惠.用MODIS数据监测京津塘风沙源工程区植被指数的选择及合成[J].国土资源遥感,2004,3:54-56.
    [21]Kanfman, Y. J., Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE Trans Geosci Remote Sensing,1992,30:261-270.
    [22]Daughtry, C. S. T., Vanderbilt V.C., Pollara, V.J. Variability of reflectance measurements with sensor altitude and canopy type[J]. Agronomy Journal,1982,74:744-751.
    [23]Major, D. J., Baret, F., Guyot, G. A ratio vegetation index adjusted for soil brightness[J]. International Journal of Remote Sensing 1990,11:720-727.
    [24]Huete, A. R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988, 25(3):295-309.
    [25]Leprieur, C., Kerr, Y.H., Mastorchio, S. et al. Monitoring vegetation cover across semi-arid regions: Comparison of remote observations from various scalesSensing[J]. International Journal of Remote 2000,21(2):281-300.
    [26]Qi, J., Chenbouni, A., Huete, A. R., et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment,1994,48(2):119-126.
    [27]Huete, A., Justice, C. and Liu, H. Development of vegetation and soil indices for MODIS-EOS[J]. Remote Sensing of Environment,1994,49(3):224-234.
    [28]Pinty, B., Verstraete, M.M. GEMI:a non-linear index to monitor global vegetation from satellites[J]. Vegetation,1992,101(15-20):
    [29]罗亚,徐建华,岳文泽.基于遥感影像的植被指数研究方法述评[J].生态科学,2005,24(1):75-79.
    [30]王福民,黄敬峰,唐延林等.新型植被指数及其在水稻叶面积指数估算上的应用[J].中国水稻科学,21(2):159-166.
    [31]Gamon, J. A. A narrow-wave band spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment,1992,4(1):35-44.
    [32]李建龙,蒋平.遥感技术在大面积天然草地估产和预报中的应用探[J].武汉测绘科技大学学报,1998,23(2):153-157.
    [33]呼格吉勒图.锡林河流域草地现状及冷季载畜量研究[D].内蒙古大学硕士论文,2007.
    [34]官茉莉EOS/MODIS简介[J].气象教育与科技,2003,25(3):7-11.
    [35]黄家洁,万幼川,刘良明MODIS的特性及其应用[J].地理空间信息,2003,1(4):20-28.
    [36]何善炜,季东,刘晓峰.EOS卫星Aqua星载设备及其用途简介[J].气象水文装备,2005,16(6):30-31.
    [37]孟宪红,吕世华,张堂堂MODIS近红外水汽产品的检验、改进及初步应用-以黑河流域金塔绿洲为例[J].红外与毫米波学报,2007,26(2):107-111.
    [38]林文鹏.基于MODIS波谱分析的作物信息提取研究[D].中国科学院研究生院(遥感应用研究所),2006.
    [39]Xie, H. J., Zhou, X.B., Vivoni, E. et al. GIS based NEXRAD precipitation database, automated approaches for data processing and visualization[J]. Computers and Geoscience,2005,31(1): 65-76.
    [40]Huete, A., Justice, C. and Liu, H. Development of vegetation and soil indices for MODIS-EOS[J]. Remote Sensing of Environment,1994,49:224-234.
    [41]Tucker, C. J., Fung, I.Y., Keeling, C.D. et al. Relationship between atmospheric CO2 variations and a satellite derived vegetation index[J]. Nature,1986,319:195-199.
    [42]Kasturirangan, K. Ground based measurements for interpretation of vegetation indices over developing countries[J]. Advance in space research,1996,17:31-34.
    [43]Cao, Y., Chen, H., Ouyang, H. et al. Based on remote sensing data:A case study of Ejin natural oasis landscape[J]. Journal of Natural Resources 2006,21:481-488.
    [44]Huete, A. R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988, 25:295-309.
    [45]Steven, M. D. The sensitivity of the OSAVI vegetation index to observational Parameters[J]. Remote sensing of Environment,1998,63:49-60.
    [46]Marsett, R. C., Qi, J.G., Heilman, P. et al. Remote sensing for grassland management in the arid southwest[J]. Rangeland Ecology and Management,2006,59:530-540.
    [47]Jordan, C. F. Derivation of leaf area index from quality or light on the forest floor[J]. Ecology 1969,50:663-666.
    [48]Xue, L. H., Cao, W.X., and Yang, L.Z. Predicting grain yield and protein content in winter wheat at different supply levels using canopy reflectance spectra[J]. Pedosphere,2007,17:646-653.
    [49]Pinty, B. a. V, M.M. GEMI:A Non-Linear Index to Monitor Global Vegetation from Satellites[J]. Vegetation,1992,101:15-20.
    [50]吕海燕,徐斌,杨秀春等.锡林郭勒草原产草量与碳储量的遥感估测[J].安徽农业科学,2010,38(32):18466-18468.
    [51]张学艺.基于EOS/MODIS的几种植被指数[J].安徽农业科学,2009,37(26):12842-12845.12850.
    [52]朴世龙,方精云,贺金生等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
    [53]李霞.北疆地区草地地上生物量遥感监测研究[D].兰州大学硕士论文,2008.
    [54]Gao, X., Huete, A.R., Ni, W. et al. Optical-biophysical relationships of vegetation spectra without background contamination[J]. Remote Sensing of Environment,2000,74:609-620.
    [55]Huete, A. R., Didan, K., Miura, T. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment,2002,83:195-213.
    [56]Li, Z. Q., Yu, G.R., Xiao, X.M. et al. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and limate data[J]. Remote Sensing of Environment, 2007,107:510-519.
    [57]Fu, G., Shen, Z.X., Zhang, X.Z. et al. Modeling gross primary productivity of alpine meadow in the northern Tibet Plateau by using MODIS images and climate data[J]. Acta Ecologica Sinica, 2006,30:264-269.
    [1]孙晶,王俊,杨新军.社会-生态系统恢复力研究综述[J].生态学报,2007,27(12):5371-5381.
    [2]高江波,赵志强,李双成.基于地理信息系统的青藏铁路穿越区生态系统恢复力评价[J].应用生态学报,2008,19(11):2473-2479.
    [3]葛怡,史培军,徐伟等.恢复力研究的新进展与评述[J].灾害学,2010,25(3):119-129.
    [4]Adger, W. N., Hughes, T.P., Folke, C., et al. Social-Ecological Resilience to Coastal Disasters[J]. Science,2005,309:1036-1039.
    [5]刘婧,史培军,葛怡等.灾害恢复力研究进展综述[J].地球科学进展2006,21(2):
    [6]Brinn, W., Holling, C.S.,Carpenter, S.R. et al.. Resilience adaptability and transformability in social-ecological systems[J]. Ecology and Society,2004,9(2):5-12.
    [7]Fikret, B., Cristiana, S. Building resilience in lagoon social-ecological systems:a local-level perspective[J]. Ecosystems,2005,8:967-974.
    [8]Washington-Allen, R. A., Ramsey, R. and West, N. E.. Spatiotemporal mapping of the dry season vegetation response of sagebrush steppe[J]. Community Ecology,2004,5:69-79.
    [9]Washington-Allen, R. A., Ramsey, R., West, N. E., et al.. Quantification of the ecological resilience of drylands using digital remote sensing[J]. Ecology and Society,2008,13:33.
    [10]Adger, W. N. Social and ecological resilience:Are they related?[J]. Progress in Human Geography,2000,24(3):347-364.
    [11]Allison, H. E., Hobbs, R.J. Resilience, adaptive capacity and the "Lock-in Trap" of the Western Australian agricultural region[J]. Ecology and Society,2004,9(1):3.
    [12]Klein, R. J. T., Smith, M.J. Goosen, H. et al. Resilience and vulnerability:coastal dynamics or Dutch dikes?[J]. The Geographical Journal,1998,164(3):259-268.
    [13]王俊,杨新军,刘文兆.半干旱区社会—生态系统干旱恢复力的定量化研究[J].地理科学进展,2010,29(11):1385-1390.
    [14]An, H. Y., Yao, Y.B., Yin, D., Wang, R.Y., Cheng, C.P. and Zhang, X.Y. Ecoclimate resources and ecological agriculture division in Gannan plateau[J]. Arid Meteorology,2007,25:67-72.
    [15]Wessels, K. J., Prince, S.D., Carrol, M. et al. Relevance of rangeland degradation in semiarid northeastern South Africa to the nonequilbrium theory[J]. Ecolocical Applications,2007, 17(3):815-827.
    [16]Wessels, K. J., Prince, S.D., Forst, P.E. et al. Assessing the effects of human induced land degradation in the former homelands of northern South Africa with a lkm AVHRR NDVI time-series[J]. Remote Sensing of Environment,2004,91(1):47-67.
    [17]Westman, W. E., O'Leary, J.F. Measures of resilience:the response of coastal sage scrub to fire[J]. Vegetation,1986,65(3):179-189.
    [18]Pickup, G., Foran, B.D. The use of spectral and spatial variability to monitor cover change on inert landscapes[J]. Remote Sensing of Environment,1987,23(2):361-363.
    [1]陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社,2000.
    [2]安卯柱,高娃,朝鲁.内蒙古第四次草地资源调查草地生产力测定及计算方法简介[J].内蒙古草业2002,14(4):20-21.
    [3]李建龙,蒋平.遥感技术在大面积天然草地估产和预报中的应用探[J].武汉测绘科技大学学报,1998,23(2):153-157.
    [41任继周.草业科学研究方法[M].北京:中国农业出版社,1998.
    [5]徐敏云,李运起,谢帆等.河北省草地产量动态监测[J].草业学报,2010,19(1):211-218.
    [6]刘古宇,黄敬峰,吴新宏等.草地生物量的高光谱遥感估算模型[J].农业工程学报,2006,22(2):111-115.
    [7]徐斌,杨秀春,陶伟国等.草原产草量遥感估算方法发展趋势及影响因素[J].草业学报,2007,16(2):1-8.
    [8]陶伟国,徐斌,杨秀春.草原产草量遥感估算方法发展趋势及影响因素[J].草业学报,2007,16(2):1-8.
    [9]呼格吉勒图.锡林河流域草地现状及冷季载畜量研究[D].内蒙古大学硕士论文,2007.
    [10]李海亮,赵军.草地遥感估产的原理与方法[J].草业科学,2009,26(3):34-38.
    [11]刘云芳,李瑞,张克斌,王百田.基于NDVI的农牧交错带草地植被数量动态研究[J].干旱区资源与环境,2007,21(10):137-143.
    [12]冯险峰.GIS支持下的中国陆地生物量遥感动态监测研究[D].陕西师范大学硕士学位论文,2000.
    [13]下兮之,杜国桢,梁天刚,戴若兰,王刚.基于RS和GIS的甘南草地生产力估测模型构建及其降水空间分布模式的确立[J1.草业学报,2001,10(2):95-102.
    [14]张连义.锡林郭勒草地牧草产最遥感监测模型的研究[D].内蒙古农业大学,2006.
    [15]邹文涛,张韬,郝飞,孟庆伟.锡林郭勒盟典型草原区植被光谱特征研究[J1.内蒙古农业大学学报,2008,29(1):61-64.
    [16]朴世龙,方精云,贺金生等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
    [17]Svoray, T. SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid zone:A modification of the water-cloud model[J]. International Journal of Remote Sensing,2002,23(19):4089-4100.
    [18]吕海燕,徐斌,杨秀春等.锡林郭勒草原产草量与碳储量的遥感估测[J].安徽农业科学,2010,38(32):18466-18468.
    [19]Stone, M. Cross-validatory choice and assessment of statistical predictions[J]. Journal of the Royal Statistical Society,1974,36:111-133.
    [20]Olden, J. D., Jackson, D.A.. Torturing data for the sake of generality:how valid are our regression models?[J]. Ecoscience,2000,7(4):501-510.
    [21]Davidson, A., Wang, S.S., Wilmshurtst, J. Remote sensing of grassland-shrubland vegetation water content in the short wave domain[J]. Applied earth observation and geoinformation,2006,8: 225-236.
    [22]朴世龙,方精云.最近18年来中国植被覆盖的动态变化[J].第四纪研究,2001,21(4):294-302.
    [23]李月臣,宫鹏,刘春霞等.北方13省1982年-1999年植被变化及其与气候因子的关系[J].资源科学,2006,28(2):109-117.
    [1]郭正刚,王锁民,梁天刚,张自和.草地资源分类经营初探[J].草业学报,2004,13(2):1-6.
    [2]Yue., M., Wei., F.Z. Based on energy evaluation for agricultural ecological system of Gannan Tibetan autonomous prefecture[J]. Research of Agricultural modernization,2009,30:95-97.
    [3]Nan, Z. B. The grassland farming system and sustainable agricultural development in China[J]. Grassland Science,2005,51:15-19.
    [4]Wang, X. G., Han, J.G. Recent grassland policies in China:an overview[J]. Outlook on Agriculture, 2005,34:105-110.
    [5]Shi, P. J., Wang, J.A., Feng, W.L. et al. Response of eco-environmental security to land use/cover changes and adjustment of land use policy and pattern in China[J]. Advances in Earth Science, 2006,21:111-119.
    [6]Guo, Z. G., Liang, T.G. and Zhang, Z.H. Classification management for grassland in Gansu Province, China[J]. New Zealand Journal of Agricultural Research,2003,46:123-131.
    [7]Nie, X. M., Zhao, C.Z., Zhang, G.H.. Investigation of present situation and achievements of grazing withdrawal project in source region of Yellow River[J]. Grassland and Turf,2008,2:59-63.
    [8]Guo, Z. G., Gao, X.H., Liu, X.Y. et al. Ecological economic value and functions and classification management for grassland in Gannan prefecture, Gansu province[J]. Journal of Mountain Science, 2004,22:655-660.
    [9]Guo, Z. G., Liang, T.G., Liu, X.Y. et al. A new approach to grassland management for the arid Aletai region in Northern China[J]. The Rangeland Journal 2006,28:97-104.
    [10]Ren, J. Z., Hu, Z.Z., Zhao, J. et al. A grassland classification system and its application in China[J]. The Rangeland Journal,2008,30:199-209.
    [11]Li, X. L., Yuan, Q.H., Wan, L.Q. et al. Perspectives on livestock production systems in China[J]. The Rangeland Journal 2008,40:947-969.
    [12]Wang, J., Wei, Y.M. and Sun, X.Y. Effects of excessive grazing on grassland eco-system services valuation[J]. Journal of natural resources,2006,21:109-117.
    [13]杨敏,费永俊,柯林等.中国草地生态服务价值研究进展[J].草业与畜牧,2010,(3):45-48.
    [14]于格,鲁春霞,谢高地.青藏高原草地生态系统服务功能的季节动态变化[J].应用生态学报,2007,18(1):47-51.
    [15]谢高地,肖玉,鲁春霞.生态系统服务研究:进展、局限和基本范式[J].植物生态学报,2006,30(2):191-199.
    [16]王瑞杰,覃志豪.基于MODIS数据的中国草地生态体系价值估算研究[J].中国草地学报,2007,29(1):50-54.
    [17]Costanza, R., d'Arge, R., de Groot, R. et al. The value of the world's ecosystem services and natural capital[J]. Nature,1997,387:23-260.
    [18]Guo, Z. W., Xiao, X.M, Gan, Y.L. et al. Ecosystem functions, services and their values:A case study in Xingshan Couty of China[J]. Ecological Economics,2001,38:141-154.
    [19]谢高地,鲁春霞,肖玉等.青藏高原高寒草地生态系统服务价值评估[J].山地学报,2003,21(1):50-55.
    [20]王瑞杰,覃志豪.基于MODIS数据的中国草地生态系统价值估算研究[J].中国草地学报,2007,29(50-54):
    [21]闵庆文,刘寿东,杨霞.内蒙古典型草原生态系统服务功能价值评估研究[J].草地学报,2004,12(3):165-175.
    [22]谢高地,张钇锂,鲁春霞等.中国自然草地生态系统服务价值[J].自然资源科学,2001,16(1):47-53.
    [23]郭正刚,梁天刚,刘兴元.新疆阿勒泰地区草地类型特征及其分类经营[J].应用生态学报,2004,15(9):1594-1598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700