胀果甘草细胞培养及查尔酮合成酶基因的cDNA克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘草是中国常用的中药,是重要的药用植物。除药用价值外,甘草在食品、饮料、卷烟、化妆品等工业中也广泛使用。近年来,由于人们破坏性地对野生甘草采挖,使野生植物几乎灭绝。故开展甘草组织培养工作,尤其是大规模悬浮培养具有重要意义。
     黄酮类化合物是甘草中一大类生物活性成分,它们具有抗溃疡、抗菌、抗炎、抗氧化、抗HIV、抗肿瘤等作用。查尔酮合成酶是所有黄酮类化合物合成的关键酶。它催化3分子的丙二酰辅酶A与1分子对羟基苯丙烯酰辅酶A缩合成柚皮素查尔酮,以此为支架其他黄酮类化合物得以衍生出来。查尔酮合成酶活性的积累与黄酮类化合物的积累是紧密相关的。
     本实验切取胀果甘草无菌苗的子叶、胚轴、根段3种外植体进行了愈伤组织诱导和继代培养,建立了甘草悬浮细胞培养体系,测定了悬浮培养的细胞生长曲线;并且研究了接种量、条件培养基和外源激素对悬浮细胞的影响。结果表明子叶来源的愈伤组织最适合悬浮培养;悬浮培养的最佳接种量为35g/L;条件培养基的最佳用量为总培养体积的1/3;最适合胀果甘草悬浮培养的的培养基是附加NAA 1.0mg/L+KT 0.5mg/L激素组合的MS培养基。
     利用RT-PCR方法,从胀果甘草愈伤组织中克隆了查尔酮合酶基因的cDNA片断,并进行了序列分析。测序结果表明,我们克隆所得到的cDNA片段包含一个开放阅读框架,由1170bp核苷酸组成,编码一个由389个氨基酸残基组成的多肽。与紫花苜蓿、大豆、豌豆等几种豆科植物CHS基因的核苷酸同源率在80%以上,氨基酸同源率在90%以上。已将得到的序列提交GenBank/EMBL/DDBJ注册,序列号为EU706287。
Liquorice is a famous medicinal plant. Besides the massive use in Chinese medicine, it is widely used in food, beverage, cigarette, cosmetic and other industries. And tissue culture are considered to be hopeful way to alleviate the crisis of natural resources.
     Flavonoids form a class of secondary metabolites which are abundant in liquorice, they have stronger bio-activity. Pharmacological investigation concluded that they had antioxidant, antibacterial, anti-ulcerous, anti-inflammatory, antitumer, anty-HIV and many other activities. Chalcone Synthase (CHS) is a key enzyme in the biosynthesis of all classes of flavonoids, CHS can catalyze the condensation of 3 moleculars of malonyl-CoA and one molecular of hydroxycinnamoyl-CoA ester to form a naringenin-chalcone intermediate. Further isomerization and substitution of this central intermediate leads to the synthesis of other flavonoids. And variation of the expression of CHS might change the content of flavonoids in liquorice.
     Different explants of plantlet of Glycyrrhiza inflate were cultured on the MS media containing different plant hormones to induce callus and Glycyrrhiza inflate suspension cell culture was established when the induced callus were transferred to liquid medium. The cultures were incubated at 25±1℃in the dark with continuing agitation (120rpm). In basis of this, the growth curve of suspension cell of Glycyrrhiza inflate was measured. In this study, we also have investigated the effects of the initial callus amount, conditioned medium (CM) and hormone on the growth of suspension cell. The results indicated that the callus induced from cotyledon was the best initial callus for cell suspension culture among the three different explants; the optimal initial callus amount for cell suspension culture is 35g/L; the optimal use amount of condition medium is one third of total volume and the optimal medium was MS+NAA 1.0 mg/L+KT 0.5mg/L.
     By using RT-PCR method, a cDNA fragment of 1170bp length was successful obtained, it contained a complete opening reading frame and encoded a protein of 389 amino acids. The CHS gene cloned from Glycyrrhiza inflate has more than 80% sequence homology at the nucleotide level and more than 90% similarity at the amino acid level compared with Medicago sativa, Glycine max, Pisum sativum etc. The G. inflate CHS sequence was submitted to the GenBank and the accession number as EU706287.
引文
[1]中国植物志编委会.中国植物志[M].第四十二卷(第二分册).北京:科学出版社.1998
    [2]王荷生.植物区系地理[M].北京:科学出版社.1992,18~176
    [3]乔世英,成树春,王志本.中国甘草[M].北京:中国农业科学技术出版社.2004,1~12
    [4]李学禹.甘草属分类系统与新分类群的研究[J].植物研究.1993,13(1):13~43
    [5]国家药典委员会.中华人民共和国药典(第二部)[M],北京:化学工业出版社.1995
    [6]陈红.甘草药理作用概述[J].海峡药学.2005,17(4):37~41
    [7]许秋霞,邹敏.甘草的药理作用概述[J].实用中医药杂志.2005,21(7):450~451
    [8]李铁民,梁再赋.甘草提取物及衍生物的抗病毒研究现状[J].中草药.1994,25(12):655~658
    [9]Isddns P O18,甘草查尔酮A——一个新的有效的抗利什曼原虫药[J].国外医药·植物药分册,1994,9(4):173
    [10]Mitscher LA, Park YH, Clark D, et al. Antimicrobial agents from higher plants: Antimicrobial ksoflavamoeds and related substances from G. glahra L. var typica. J Nat Prod[J].1980,43(20):259
    [11]Hibasami H, Iwase H, Yoshioka K, et al. Glycyrrhizin induces apoptosis in human stomach cancer KATO Ⅲ and human promyelotic leukemia HL-60 cells[J]. Int J Mol Med.2005,16: 233~236
    [12]Hibasami H, Iwase H, Yoshioka K, et al. Glycyrrhetic acid (a metabolic substance and aglycon of glycyrrhizin) induces apoptosis in human hepatoma, promyelotic leukemia and stomach cancer cells[J]. Int J Mol Med.2006,17:215~219
    [13]Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus[J]. J Med Chem.2005,48:1256~1259
    [14]王立,李家恒.中国甘草属植物研究进展[J].草业科学.1999,16(4):28~31
    [15]唐建军,张禄源.植物次生代谢、离体培养条件下次生代谢物积累及其调控研究进展[J].中国野生植物资源.2001,17(4):1~5
    [16]郑光植.植物细胞培养及其次生代谢产物(第二卷)[M].昆明:云南大学出版社.1992
    [17]孙春玉.西洋参愈伤组织培养及其次生代谢物的研究[D].吉林农业大学硕士学位论文.2004.
    [18]中国科学院上海植物生理所细胞室编译.《植物组织和细胞培养》[M].上海科学技术出版社.1978
    [19]Nakagawa K. et al. Release and crystallization of berberine in the liquid medium of thalictrum minus cell suspension culture[J]. Plant Cell Rep.1984,3(6):254
    [20]奚元龄,颜昌敬.植物细胞培养手册[M].农业出版社.1992
    [21]郑光植.药用植物组织培养在工业生产上应用研究的进展[J].植物生理学通讯.1980,4:1
    [22]李宝健,曾庆平.植物生物技术原理与方法.湖南科学技术出版社[M].1990
    [23]Fujita y, Hara Y. The effective Production of shikonin bycultures with an increased cell population[J]. Agric. Biol. Chem.1985,49:2071~2075
    [24]Haray T. Morimoto and Fujita Y. Production of Shikoninderivatives by Cell Suspension Cultures of Lithospermum erythrorhizon V Differences in the production between callus and suspension Cultures[J]. Plant Cell Rep.1987,6:8~I1
    [25]Schlatman J E, Nuutila A M, van Gulik W M, et al. Scale up of ajmalicine production by plant Cell cultures of Catharanthus roses[J]. Biotechnol. Bioeng,1993,41:253~262
    [26]任振兴.黄琴愈伤组织培养及其次级代谢物合成调控的研究[D].山西大学硕士学位论文.2006
    [27]梁玉玲,管延英,阳丽,等.胀果甘草愈伤组织培养及甘草酸含量分析[J].河北大学学报,2000,20(4):365~368
    [28]于林清,何茂泰,王照兰,等.甘草组织培养快速繁殖技术研究[J].中国草地.1999,(1):12~14,18
    [29]霍云谦.甘草愈伤组织诱导及体细胞胚的发生[D].保定:河北农业大学硕士学位论文.2005
    [30]芮和恺,忻晓君,顾慧芬,等.甘草的组织培养[J].植物生理学通讯.1986,(4):54
    [31]安利佳,李凤霞,张俊敏,等.豆科植物组织培养的研究[J].植物学报.1992,34(10):743
    [32]杨世海,刘晓峰,果德安,等.培养基及培养条件对甘草愈伤组织生长和黄酮类化合物合成的影响[J].吉林农业大学学报.2005,27(3):289~292,295
    [33]裴雁曦,郝建平.甘草的组织培养[J].内蒙古农业科技.1999,(3):16
    [34]邹翠霞,王京刚,佟少明,等.刺果甘草的组织培养及植株再生[J].植物生理学通讯.
    2006,42(6):1129~1130
    [35]曹君迈,陈彦云,任贤.甘草愈伤组织再分化的研究[J].作物杂志.2006,(3):24~26.
    [36]李长潇.中药甘草的快速繁殖[J].植物学通报.1986,4(1~2):84
    [37]Hiroaki Hayashi, Noboru Hiraoka, Yasumasa Ikeshiro. Differential regulation of soyasaponin and betulinic acid production by yeast extract in cultured licorice cells[J]. Plant Biotechnology.2005,22(3),241~244
    [38]侯篙生,陈士云,杨茂忠,等.甘草细胞培养物中Echinatin的分离与鉴定[J].植物学报.1993,35(7):567~572
    [39]Henry M, A M Edy, Marty. Isolation of Licorice protoplasts(Glycyrrhiza glabra Var typica) from cell suspension cultures not producing glycyrrhetinic acid[J]. C R Acad Sci Ser 111, 1984, (299):899~903
    [40]刘颖,魏景芳,李冬杰,等.稀土元素对甘草细胞生长及甘草酸合成的影响[J].广西植物.2006,26(1):101~104
    [41]杨英,何峰,季家兴,等.四种前体对胀果甘草细胞悬浮培养生产甘草黄酮的调控效果评价[J].武汉植物学研究.2007,25(5):484~489
    [42]杨英,何峰,余龙江,等.胀果甘草悬浮培养细胞合成甘草总黄酮[J]-云南植物研究.2007,29(4):444~446
    [43]陈士云,杨茂忠,侯篙生.内循环气升式生物反应器培养甘草细胞[J].武汉植物学研究.1994,12(4):380~384
    [44]Chilton MD, Tepfer DA, Petit A, et al. Agrobacterium rhizogenes inserts T DNA into the genome of host plant root cell[J]. Nature.1982,295(5847):432~434
    [45]陈士云,侯高生.生产植物次生代谢物几项新技术研究进展[J].生物工程进展.1993,14(2):43~45
    [46]黄炼栋,胡之璧等.青嵩,等六种药用植物发状根的研究[J].上海中医药杂志.1995,(8):41~42
    [47]燕飞,梁玉玲,崔东亚,等.发根农杆菌转化胀果甘草的研究[J].河北大学学报(自然科学版).2004,24(5):526~531
    [48]Yoshihisa Asada, Wei Li, Takafumi Yoshikawa. Isoprenylated flavonoids from hairy root cultures of Glycyrrhiza glabra[J]. Phytochemisty.1998,47:389~392
    [49]高京秀.甘草发根中甘草甜素的生产.国外医学[J].中医中药分册.1990,12(6):44
    [50]张荫麟,周新华,杨岚,等.甘草的发状根培养.中草药[J].1990,21(12):23~26
    [5l]杜旻,向德军,丁家宜,等.甘草毛状根培养系统的建立及化学成分分析[J].植物资源与环境学报.2001,10(1):7~10
    [52]刘春生.ITS序列和p·香树酯醇合成酶基因与甘草酸形成和积累的相关性研究[D].北京中医药大学硕士生论文.2006
    [53]Hrazdina G, Wagner G J. Metabolic pathways as enzyme complexes:evidence for the synthesis of phenylpropanoids and flavonoids of membrane-associated enzyme complexes[J]. Arch Biochem Biophys,1985,237:88~100
    [54]杨建玲.黄蜀葵查尔酮合成酶基因的克隆[D].北京:中国农业科学院生物技术研究所.2004
    [55]Karin Springob, Jun-ichiro Nakajima, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Nat. Prod. Rep.2003,20:288~303
    [56]Norimoto Shimada, Takashi Nakatsuka, Masahiro Nishihara. et al. Isolation and characterization of a cDNA encoding polyketide reductase in Lotus japonicas[J]. Plant Biotechnology.2006,23:509~513
    [57]Akashi T, Aoki T, Ayabe S. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice[J]. Plant Physiology,1999,121(3):821~828
    [58]Kovalenko P.G., Maliuta S.S. An effect of transformation by Ri-plasmids and elicitors on licorice cells and secondary metabolites production[J]. Ukr. Bioorg. Acta.2003,1(1):50~ 60
    [59]P. G. Kovalenko, V. P. Antonjuk, S. S. Maliuta. Secondary metabolites synthesis in transformed cells of Glycyrrhiza glabra L. and Potentilla alba L. as producents of radioprotective compounds[J]. Ukrainica Bioorganica Acta.2004,1(2):13~22
    [60]李楠,高广瑞,魏景芳,等.甘草悬浮培养细胞与甘草草药、植株中甘草酸的检测[J].华北农学报.2007,22(增刊):197~199
    [61]Hayashi H, Huang P, Inoue K. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra[J]. Plant Cell Physiol.2003,44:401~ 411
    [62]Hayashi H, Sakai T, Fukui H, Tabata M. Formation of soyasaponins in licorice cell
    suspension cultures[J]. Phytochem.1990,29:3127~3129
    [63]Hayashi H, Fukui H, Tabata M. Examination of triterpenoids produced by callus and cell suspension cultures of Glycyrrhiza glabra[J]. Plant Cell Rep.1988,7:508~511
    [64]杨世海,刘晓峰,果德安,等.不同附加物对甘草愈伤组织培养中黄酮类化合物形成的影响[J].中国药学杂志.2006,41(2):96~99
    [65]杨世海,刘晓峰,果德安,等.稀土元索对甘草愈伤组织生长及黄酮类化合物含量的影响[J].中药材.2005,28(7):533~534
    [66]杨世海,刘晓峰,马秀华,等.不同理化因子对甘草愈伤组织生长和黄酮类化合物合成的影响[J].吉林农业大学学报.2006,28(1):47~50
    [67]胡金锋,沈凤嘉.甘草属植物化学成分研究概况[J].天然产物研究与开发.1996,8(3):77~91
    [68]徐志栋,王敏,康怀萍.甘草属植物三菇成分研究概况[J].河北轻化工学院学报.1998,19(1):10~15
    [69]惠寿年,董阿玲.国内对甘草化学成分的研究进展[J].中草药.1999,30(4):313~315.
    [70]孙明谦.甘草中化学成分的研究[D].吉林大学硕士学位论文.2006
    [71]王巧娥.甘草有效成分的新型提取技术及高速逆流色谱分离方法研究[J].厦门大学博士学位论文.2004
    [72]LI Wei, Yoshihisa Asada, Takafumi Yoshikawa. Flavonoid constituents from Glycyrrhiza glabra hairy root cultures [J]. Phytochemistry,2000,55(5):447~456
    [73]曾路,张如意,王动,等.粗毛甘草化学成分研究[J].植物学报.1991,33(2):124~129.
    [74]杨岚,刘永隆,林寿全.六种甘草属植物根中黄酮类成分的高效液相色谱分析[J].药学学报.1990,25(11):840~848
    [75]邢国秀,李楠,王童,等.甘草中黄酮类化学成分的研究进展[J].中国中药杂志.2003,28(7):593~596
    [76]姚新生.天然产物化学(第四版)[M].人民卫生出版社.北京.2003,173
    [77]周国辉,伍蔚萍,等.甘草黄酮化学成分的最新进展[J].中国药品标准.2004,(1):10~13
    [78]刘丙灿,方积年.甘草葡聚糖的分离纯化与化学结构[J].药学学报.1991,16(9):672
    [79]王岳五,张海波,吕杰,等.甘草残渣中多糖GPS抗肿瘤作用的研究.南开大学学报(自然科学)[J].2000,33(4):46
    [80]贾世山.甘草地上部分的活性成分和资源利用[J].中草药.1994,25(2):106~107
    [81]阚毓铭,赵海宝,刘训红,等.刺果甘草化学成分的研究[J].中草药.1994,25(1):3~6
    [82]Li GB, Zhang HY, Fan YQ, et al. Migration behavior and separation of active components in Glycyrrhiza uralensis Fisch and its commercial extract by micellar electrokinetic capillary chromatography[J]. Journal of Chromatography A.1999,863:105~114
    [83]杨建红,韩桂茹,冯丽,等.薄层扫描法测定甘草中甘草次酸含量[J].中国中药杂志,1991,16(4):232~234
    [84]Cao YH, Wang Y, Ji C, et al. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection[J]. Journal of Chromatography A.2004,1042:203~209
    [85]杨文远,郝凤霞.用RP-HPLC法同时测定甘草中的甘草酸和甘草次酸[J].宁夏大学学报(自然科学版).2005,26(1):56~58
    [86]付玉杰,祖元刚,赵春建,等.超临界二氧化碳萃取甘草黄酮的工艺[J].应用化学.2003,20(12):1217~1219
    [87]Wang QE, Frank SCL, Wang XR. Isolation and purification of inflacoumarin A and licochalcone A from licorice by high-speed counter-current chromatography[J]. Journal of Chromatography A.2004,1048:51~57
    [88]Tan TW, Huo Q, Ling Q. Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system[J]. Biotechnology Letters.2002,24:1417~ 1420
    [89]Wang QE, Ma SM, Fu BQ, et al. Development of multi-stage countercurrent extraction technology for the extraction of glycyrrhizic acid (GA) from licorice (Glycyrrhiza uralensis Fisch) [J]. Biochemical Engineering Journal.2004,2:285~292
    [90]付玉杰,赵文灏,侯春莲等.超声提取—高效液相色谱法测定甘草中甘草酸含量[J].植物研究.2004,25(2):210~212
    [91]孙萍,李艳,成玉怀.甘草总黄酮的微波提取及含量测定[J].时珍国医国药.2003,14(5):266~267
    [92]SUN Chen, XIE Yuchun, and LIU Huizhou. Microwave-assisted Micellar Extraction and Determination of Glycyrrhizic Acid and Liquiritin in Licorice Root by HPLC[J]. Chin. J. Chem. Eng.2007,15(4):474~477
    [93]Kreuzaler F, Hahlbrock K. Enrymic synthesis of aromatic compounds in higher plants: formation of naringenin (5,7,4'-trihydroxy-flavanone) from p-coumaroyl-coenzyme A and malonyl-coenzyme A[J]. FEBS Lett.1972,28:69~72
    [94]Reimold U, Kroeger M, Kreuzaler F, et al. Coding and 3'-noncoding nucleotide sequence of chalcone synthase messenger RNA and assignment of amino acid sequence of the enzyme[J]. EMBO J.1983,2:1801~1806
    [95]Martin C R. Structure, function, and regulation of the chalcone synthase in International Review of Cytology [J]:A Survey of Cell Biology (K.Jeon and J Jarvik,eds), Academic Press, New York.
    [96]Koes R E, Spelt C E, Mol J N M, et al. The chalcone synthase multigene family of Petunia hybrida:sequence homology,chromosomal location and evolutionary aspects[J]. PIant Mol Biol.1987,10:159~169
    [97]Koes R E, Spelt C E, Reif H J, et al. Floral tissue of petunia hybrid (v30) expresses only one member of the chalcone synthase multigene family[J]. Nucleic Acids Res.1986,14: 5229-5239
    [98]Koes R E, Spelt C E, van den Elzen P J M, et al. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J]. Gene.1989,81:245~257
    [99]Rvder T B. Hedrick S A. Bell J N. et al. Orizanization anddifferential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris[J]. Mol Gen Genet.1987.210:219~233
    [100]Durbin M L, McCaig B, Clegg M T Molecular evolution of chalcone synthase multigene family in the morning glory genome[J]. Plant Mol. Biol.2000,42:79-92
    [101]Wienand U, Weydemann U, Nielsbach-Kloesgen U, et al. Molecular cloning of the c2 locus of Zea mays, the gene coding for chalcone synthase[J]. Mol.Gen.Genet.1986,203:202~ 207
    [102]Franken I, Niesbach-Klosgen U, Weydemann U, et al.The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene[J]. EMBO J, 1991,10:2605~2612
    [103]Rhode W,Dorr S, Salamini F, et al. Structure of a chalcone synthase gene from Hordeum vulgare[J]. Plant Mol. Bio.1991,16.1103~1106
    [104]Staflbrd H A. Flavonoid evolution:an enzymic approach.Plant[J]. Physiol.1991,96:680~ 685
    [105]Koes R E, Quattrocchio F, Mol J N M. The flavonoid biosynthetic pathway in Plants:function and evolution[J]. Bioessays.1994,16:123~132
    [106]Kubitzki K. PhenylProPanoid metabolism in relation to land plant origin and diversification[J]. Plant Physiol.1987,131:17~24
    [107]Markham K R.BryoPhyte flavonoids. their structures, distribution, and evolutionary significance in Bryophytes their Chemistry and Chemical Taxonomy(H.D.Zinsmeister and R.Mues, eds.)[M], Clarendon Press. Oxford.1990
    [108]Markham K R Distribution of flavonoids in the lower plants and its evolutionary significance.in the Flavonoids(J B Harborne. ed.)[N] Chapman and Hall, London.1988
    [109]TroPf S, Karcher B, Schroder G, Schroder J.Reaction mechanisms of homodimeric. Plant Polyketide synthases(stilbene and chalcone synthase). A single active site for the condensing reaction 15 sufficient for synthesis of stilbenes. chalcones. And 6'-deoxy-chalcones[J]. Biol Chem,1995,270:7922~7928
    [110]Lanz T. TroPf S, MamerF J, et al. The role of cysteines in Polyketide syntheses site directed mutagenesis of resveratrol and chalcone syntheses. two enzymes in different plant-specific pathways[J]. Biol Chemo.1991,266:9971~9976
    [111]Sommer H, Saedler H. Structure of the chalcone synthase gene of Antirrhinum majus [J]. Mol Gen Genet.1986,202:429~414
    [112]Ferrer J L, Jez J M, Bowman M E, Dixon R A, Noel J P Structure of chalcone synthase and the molecular basis of plant Polyketide biosynthesis[J]. Nat Struct Biol.1999,6(8):775~ 784
    [113]Beerhues L. Robeneck H, Wiermann RChalcone syntheses from spinach (Spinacia oleraceaL.)[J]. Planta,1988.173:544~553
    [114]Durbin M L, McCaig B, Clegg M T. Molecular evolution of chalcone synthase multigene family in the morning glory genome[J]. Plant MoL Biol.2000,42:79~92
    [115]Knogge W, Schmelzer E, Weissenbock G. The role of chalcone synthase in the regulation of flavonoid biosynthesis in developing oat primary leaves[J].Arch Biochem Biophys.1986, 250:364-372
    [116]Hahlbrock, Scheel D. Physiology and molecular Biology of Phenylpropanoid metabolism.Ann Rev[J]. Plant Mol Biol.1989,40:347~369
    [117]Lue W L, Kuhn D, Nicholson R L. Chalcone synthase activity in sorghum mesocotyls inoculated with Colletrichum graminicola[J]. Physiol Mol Plant Patho.1989,35:413~ 422
    [118]Meier B M, Shaw N, Slusarenko A J. Spatial and temporal accumulation of defense gene transcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria-induced hypersensitive cell death[J]. Molecular Plant Microbe Interactions.1993,6:453~466
    [119]Junghans H, Dalkin K 1, Dixon R A. Stress responses in Alfala (Medicago saliva L.).15. characterization and expression patterns of members of a subset of the chalcone synthase multigene family[J]. Plant Mol Biol.1993.22:239~253
    [120]Chappeil J, Hahlbrock K. Transcription of Plant defense genes in response to UV light or fungal elicitor[J]. Nature.1984,311:76~78
    [121]Cramer C L, Ryder T B, Bell J N, et al. Rapid switching of plant gene expression induced by fungal elicitor[J]. Science.1984,227:1240~1242
    [122]Lawton M A, Lamb C J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection[J]. Molecular and Cellular Biol.1987,7:335~340
    [123]Van der Krol A R, Lenting P E, et al. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation[J]. Nature.1988,333:866~869
    [124]Van der Krol A R, Mur L A. de Lange P, et al. Antisense chalcone synthase genes in Petunia:visualization of variable transgene expression[J]. Mol Gen Genet.1990,220:204~ 212
    [125]Van der Krol A R, Mur, L A, Beld M M. Flavonnoid genes in petunia:addition of a limited number of gene copies may lead to a suppression of gene expression[J].The Plant Cell. 1990,2:291~299
    [126]Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalone synthase gene into petunia results in reversible cosuppession of homologous genes in traps[J].The Plant Cell. 1990,2:279~289
    [127]Courtney-Gutterson N, Napoli C, Lemieux C, et al. Modification of flower color in florist's chrysanthemum:production of white-flowering variety through molecular genetics[J], Biotechnology.1994,12:268~271
    [128]Elomaa P, Holton T. Modification of flower colour using genetic engineering[J]. Biotechnology and Genetic Engineering Reviews.1994,12:63~88
    [129]Elomaa P, Honkanen J, Puska R, et al. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower[J]. Pigmentation. Bio/Technology.1993,11:508~511
    [130]Verhoeyen M E, Bovy A, Collins G, et al. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway[J], Exp Bot.2002,53(377):2099-2106
    [131]Lukaszewicz M, Matysiak-Kata I,Skala J, et al. Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content[J]. Agric Food Chem. 2004,52(6):1526~33
    [132]侯学文,郭勇.接种量及蔗糖浓度对悬浮培养玫瑰茄细胞生长的影响[J].华南农业大学学报.2000,21(4):51~54
    [133]张美萍,王义,孙春玉,等.基质pH值和接种量对西洋参愈伤组织悬浮培养物的影响[J].中药材.2003,26(10):701~702
    [134]孟玉玲,贾敬芬.中麻黄悬浮培养体系的建立[J].西北植物学报.1995,15(5),1~5.
    [135]罗建平,郑光植.人参培养细胞单细胞克隆的条件培养[J].生物工程学报.1995,11(1):58~62
    [136]王慕邹,等.常用中草药高效液相色谱分析[M].科学出版社.北京.1999,79~84.
    [137]于冰,李海英,张绍军,等.用TRIzoI试剂一步法提取甜菜花蕾中的总RNA[J].黑龙江大学自然科学学报.2004,21(1),138~140
    [138]林金科,开国银.茶树RNA的提取与鉴定[J].福建农林大学学报.2003,32(1),70~73
    [139]刘春生,王文全.甘草不同器官RNA提取方法研究[J].北京中医药大学学报.2006,29(10):705~707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700