人参、西洋参和甘草组织培养研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C. A. Meyer)、西洋参(Panax quinquefolium L.)和甘草(Glycyrrhiza uralensis Fisch.)属于大宗类药材,应用十分广泛。本文建立了人参不定根、西洋参细胞和甘草细胞培养体系,并进行了反应器培养研究。
     本文以5年生人参根为外植体诱导出愈伤组织,在附加IBA5mg·L_(-1)的MS培养基中,由愈伤组织诱导得到人参不定根。采用5L近球型鼓泡式反应器培养人参不定根40天后,生长速率达到50倍。总皂苷含量在培养第30天达到最大值。利用LC-MS鉴定了人参不定根中8种人参皂苷单体(Rg1、Re、Ro、Malonyl-Rb1、Rb1、Rc、Rb2和Rd);人参不定根培养体系生长速度较快,皂苷合成能力也有明显优势。利用诱导子10mg/L MJ培养人参不定根24h后,人参皂苷含量显著提高,其中以二醇型皂苷尤为显著,这一结果与SE, DS, P450基因表达密切相关。抗氧化活性研究表明:人参不定根中皂苷和多糖的DPPH抑制率均高于栽培人参。不定根中皂苷含量为60mg·L_(-1)时,DPPH抑制率为96.03%。
     以5年生栽培西洋参为外植体诱导出愈伤组织,将愈伤组织加入到附加2mg·L_(-1)2,4-D1,0.25mg·L-KT的MS培养基中诱导得到悬浮细胞。5L反应器培养中,西洋参细胞的生长和活性成分含量基本在第21天达到最大值,这一过程与营养成分消耗相关。添加混合诱导子后(100mg·L_(-1)LH和2mg·L_(-1)MJ),细胞的生物量和多糖含量没有显著变化,而皂苷含量要高于添加单一诱导子的处理组。第16天补加30g·L_(-1)蔗糖后,细胞干重生长率以及多糖含量均高于对照组,多糖产率在第21天达到最大值(1.608g/L),为对照组的1.96倍。西洋参两步培养法获得了较高的皂苷产率(31.52mg·L_(-1))和多糖产率(1.72g·L_(-1)),分别是对照组的4.34倍和2.1倍。西洋参细胞中鉴定出了4种成分,分别为Rg1、Re、Rf和Rb1。较高的多糖含量是西洋参悬浮细胞的显著优势,但皂苷含量较低。抗氧化活性研究表明:西洋参细胞中皂苷的DPPH抑制率(55.72%)高于栽培西洋参,栽培西洋参和细胞中多糖的DPPH抑制率均较低。
     以甘草下胚轴为外植体诱导出愈伤组织,将愈伤组织加入到附加1.0mg·L_(-1)2,4-D,1.0mg·L_(-1)NAA,0.2mg·L_(-1)6-BA的MS培养基中诱导得到悬浮细胞。采用5L近球型鼓泡式反应器培养甘草细胞20天后,干重生长率达到最大值。三萜皂苷和黄酮分别在培养第10天和15天达到最大值。采用10L近球型鼓泡反应器培养18天后,甘草悬浮细胞生长率为10.86倍。甘草细胞中鉴定出了5种成分,分别为甘草苷、甘草皂苷B、甘草皂苷J_2、甘草酸和甘草皂苷B_2;甘草细胞中三萜类成分较少且甘草酸含量较低,甘草黄酮的成分和含量与栽培甘草接近。甘草细胞中多糖含量为11.7%,高于栽培甘草。抗氧化活性研究表明:当黄酮浓度为500mg·L_(-1)时,栽培甘草和甘草细胞的DPPH抑制率分别为93.98%和100%。两种材料中甘草多糖的DPPH抑制率则较低。
     以上研究为工业化生产人参、西洋参和甘草的活性成分奠定了基础。
Panax ginseng C. A. Meyer, Panax quinquefolium L. and Glycyrrhiza uralensisFisch. are widely used herb. In this study, adventitious root of P. ginseng, cells of P.quinquefolium and G. uralensis have been established. We also conducted studies onbioreactor culture.
     Callus of ginseng was induced by roots of P. ginseng (5-year-old). Adventitiousroots were initiated from callus which were inoculated onto MS solid mediacontaining5.0mg·L_(-1)IBA. Growth rate of50-fold in5L balloon-type bubblebioreactor (BTBB) was obtained after40days of inoculation. The maximum totalsaponin was achieved on day30. Rg1, Re, Ro, Malonyl-Rb1, Rb1, Rc, Rb2and Rdwere identified from ginseng adventitious root. Ginseng adventitious root culturegrew faster and had a greater capability of ginsenoside production. With24h of10mg·L_(-1)MJ elicitation, level of total saponins in ginseng adventitious root increasedmuch higher than that observed in the control, especially Rb group, which wererelated to the expression of SE, DS and P450. DPPH inhibition of ginsenoside andpolysaccharide were higher in adventitious roots than in native roots, with60mg L_(-1)ginsenoside of ginseng adventitious roots, the DPPH inhibition was96.03%.
     Callus of P. quinquefolium was induced by roots of P. quinquefolium (5-year-old).Cells were initiated from callus which were inoculated onto MS solid mediacontaining2mg·L_(-1)2,4-D,0.25mg·L_(-1)KT. In a bioreactor, the dry cell weight, thecontents of ginsenosides and polysaccharide reached the maximum peaksimultaneously on about21days and the results showed that cell growth andmetabolites synthesis related to nutrients consumption. LH at100mg L_(-1)with methyljasmonate (MJ) at2mg L_(-1)synergistically stimulated ginsenoside accumulation in P.quinquefolium cells compared with100mg L_(-1)LH. Using a fed-batch cultivationstrategy, polysaccharide production was enhanced to1.608g L1, which was1.96-foldgreater than with batch cultivation. Two-stage cultivation caused a significant increasein total saponins yield (31.52mg·L_(-1)) and polysaccharide yield (1.72g·L_(-1)) cellcultures. This value was increased by4.34-fold and2.1-fold compared to the batchcultivation, respectively. Rg1, Re, Rf and Rb1were identified from P. quinquefoliumcells. The higher polysaccharide content is an obvious advantage of P. quinquefolium cells. However, the ginsenoside contents in the cell cultures are still much lower thanthat in field cultivated. DPPH inhibition of ginsenoside in P. quinquefolium cells washigher than that in native root. DPPH inhibition of polysaccharide both in native P.quinquefolium and cells are lower.
     Callus of G. uralensis was induced by hypocotyls of G. uralensis. Cells wereinitiated from callus which were inoculated onto MS solid media containing1.0mg·L_(-1)2,4-D,1.0mg·L_(-1)NAA,0.2mg·L_(-1)6-BA. The maximum dry weight,triterpenoids and flavonoids were achieved on day20,10and15, respectively in10LBTBB. Maximum growth rate of10.86-fold in10L BTBB were obtained after18days of inoculation. Liquiritin, licorice glycoside B, licorice saponin J2, glycyrrhizicacid and licorice saponin B2were identified from G. uralensis cells. Triterpenoids in G.uralensis cells are much less than that in native licorice. However, flavonoids in cellsare similar to the native licorice. Content of polysaccharide in cells (11.7%) is higherthan that in native. About93.98%and100%DPPH inhibition occurred with500mgL_(-1)flavonoids of native licorice and cells. DPPH inhibition of polysaccharide in nativelicorice and cells are lower.
     These results provide a theoretical reference for an efficient production of activemetabolites of above three kinds of plants.
引文
[1]戴向辰,长鞭红景天悬浮体系建立及反应器培养的研究:[硕士学位论文],北京;北京林业大学,2010
    [2] Wu SQ, Lian ML, Gao R et al, Bioreactor application on adventitious root cultureof Astragalus membranaceus, In Vitro Cell. Dev. Biol.—Plant, DOI10.1007/s11627-011-9376-1
    [3] Zabala MA, Angarita M, Restrepo JM et al, Elicitation with methyl-jasmonatestimulates peruvoside production in cell suspension cultures of Thevetiaperuviana, In Vitro Cell.Dev.Biol.—Plant,2010,46:233~238
    [4] Suthar S, Ramawat KG, Growth retardants stimulate guggulsterone production inthe presence of fungal elicitor in fed-batch cultures of Commiphora wightii, PlantBiotechnol Rep,2010,4:9~13
    [5] Shukla AK, Shasany AK, Verma RK et al, Influence of cellular differentiation andelicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesisin Catharanthus roseus, Protoplasma,2010,242:35~47
    [6]高明波,张卫,李兴泰等,联合调控对中国红豆杉细胞关键酶基因表达的影响,中国生物工程杂志,2010,30(8):31~36
    [7]李干雄,张京维,骆雪兰等,促进剂组合对中国红豆杉细胞悬浮培养紫杉醇合成的影响,中草药,2010,41(9):1552~1555
    [8]张坚,高文远,王娟等,杠柳细胞悬浮培养体系的建立及有效成分杠柳毒苷和4-甲氧基水杨醛含量的测定,天津中医药,2010,27(2):163~165
    [9]颜日明,张志斌,邱晓芳等,高产绿原酸杜仲细胞悬浮培养体系优化研究,中草药,2010,41(2):301~304
    [10]齐香君,陈如意,王薇,秦艽细胞悬浮培养研究(Ⅰ),中草药,2010,41(3):472~475
    [11]齐香君,陈如意,王薇,秦艽细胞悬浮培养研究(Ⅱ),中草药,2010,41(4):636~638
    [12]陈书安,王晓东,袁晓凡等,藏红花细胞悬浮培养体系的建立及优化,生物技术通报,2010,7,157~160
    [13]潘学武,杨学领,石亚亚等,Cu~(2+)刺激喜树悬浮培养细胞喜树碱生物合成的研究,武汉生物工程学院学报,2010,6(2):83~87
    [14]Zhao JL, Zhou LG, Wu JY, Effects of biotic and abiotic elicitors on cell growthand tanshinone accumulation in Salvia miltiorrhiza cell cultures, Appl MicrobiolBiotechnol,2010,87:137~144
    [15]Hao GP, Du XH, Zhao FX et al, Fungal endophytes-induced abscisic acid isrequired for flavonoid accumulation in suspension cells of Ginkgo biloba,Biotechnol Lett,2010,32:305~314
    [16]陶金华,濮雪莲,江曙,内生真菌诱导子对茅苍术细胞生长及苍术素积累的影响,中国中药杂志,2011,36(1):27~31
    [17]Wang J, Gao WY, Zhang J et al, Combination effect of lactoalbumin hydrolysateand methyl jasmonate on ginsenoside and polysaccharide production in Panaxquinquefolium L. cells cultures, Acta Physiol Plant,2011,33:861~866
    [18]Cui XH, Murthy HN, Wu CH et al, Adventitious root suspension cultures ofHypericum perforatum: effect of nitrogen source on production of biomass andsecondary metabolites, In Vitro Cell.Dev.Biol.—Plant,2010,46:437~444
    [19]Cui XH, Murthy HN, Wu CH et al, Sucrose-induced osmotic stress affectsbiomass, metabolite, and antioxidant levels in root suspension cultures ofHypericum perforatum L, Plant Cell Tiss Organ Cult,2010,103:7~14
    [20]Pinhatti AV, Nunes JM, Maurmann N et al. Phenolic compounds accumulation inHypericum ternum propagated in vitro and during plant developmentacclimatization, Acta Physiol Plant,2010,32:675~681
    [21]Aslam J, Mujib A, Fatima Z et al, Variations in vinblastine production at differentstages of somatic embryogenesis, embryo, and field-grown plantlets ofCatharanthus roseus L.(G) Don, as revealed by HPLC, In VitroCell.Dev.Biol.—Plant,2010,46:348~353
    [22]Pati PK, Kaur J, Singh P, A liquid culture system for shoot proliferation andanalysis of pharmaceutically active constituents of Catharanthus roseus (L.) G.Don. Plant Cell Tiss Organ Cult, DOI10.1007/s11240-010-9868-4
    [23]Aslam J, Mujib A, Sharma MP et al, Influence of freezing and non-freezingtemperature on somatic embryogenesis and vinblastine production inCatharanthus roseus (L.) G. Don. Acta Physiol Plant, DOI10.1007/s11738-010-0569-8
    [24]Gurel E, Yucesan B, Aglic E et al, Regeneration and cardiotonic glycosideproduction in Digitalis davisiana Heywood (Alanya Foxglove), Plant Cell TissOrgan Cult, DOI10.1007/s11240-010-9824-3
    [25]孙丹,铁皮石解圆球茎生物反应器培养及有效成分含量的分析:[硕士学位论文],延边;延边大学,2010
    [26]王凯,潘利华,查学强等,稀土元素铈对霍山石斛类原球茎悬浮培养细胞生长和多糖合成的影响,食品科学,2010,31(5):131~136
    [27]黄蓓,洪萨丽,金青等,硝普钠、植酸和水杨酸对悬浮培养的霍山石斛原球茎生长和生理活性的影响,食品科学,2010,46(5):423~426
    [28]杨广隶,雷公藤胚状体培养合成次生代谢产物初步研究:[硕士学位论文],杨凌;西北农林科技大学,2010
    [29]Liu YH, Liang ZS, Zhang YJ, Induction and in vitro alkaloid yield of calluses andprotocorm-like bodies (PLBs) from Pinellia ternate, In VitroCell.Dev.Biol.—Plant,2010,46:239~245
    [30]黄滔,高文远,王娟等,离体培养条件对人参不定根生长及其活性成分合成的影响,2010,35(1):13~17
    [31]于飞飞,水杉离体组织培养及其影响黄酮类物质合成因素的研究:[硕士学位论文],重庆;西南大学,2010
    [32]Varsha S, Shaily G, Kishan GR, Increased puerarin biosynthesis during in vitroshoot formation in Pueraria tuberosa grown in growtek bioreactor with aeration,Physiol Mol Biol Plants,17(1):87~92
    [33]Wu HJ, Wang XX, Yan Li et al, Propagation of Gentiana macrophylla (Pall) fromhairy root explants via indirect somatic embryogenesis and gentiopicrosidecontent in obtained plants, Acta Physiol Plant, DOI10.1007/s11738-011-0762-4
    [34]战晴晴,金钺,魏建和等,北柴胡不定根培养及茉莉酸甲酯处理对柴胡皂苷含量的影响,生物技术通讯,2011,22(1):57~60
    [35]张坚,高文远,王娟等,诱导子Ag+, La3+对杠柳不定根生长及杠柳毒苷积累影响的研究,中国中药杂志,2011,36(1):11~15
    [36]Sadiye H, Ismail HA, Markus G et al, Shoot proliferation andHPLC-determination of iridoid glycosides in clones of Gentiana cruciata L, PlantCell Tiss Organ Cult, DOI10.1007/s11240-011-9961-3
    [37]李慧娟,朴炫春,费丽坤等,影晌西洋参不定根组培增殖的几种因素及皂苷生产的研究,延边大学农学学报,2011,32(2):77~82
    [38]Park NI, Tuan PA, Li X et al, An efficient protocol for genetic transformation ofPlatycodon grandiflorum with Agrobacterium rhizogenes, Mol Biol Rep, DOI10.1007/s11033-010-0363-0
    [39]Shinde AN, Malpathak N, Fulzele DP et al, Impact of nutrient components onproduction of the phytoestrogens daidzein and genistein by hairy roots ofPsoralea corylifolia, J Nat Med,2010,64:34~353
    [40]Mathur A, Gangwar A, Mathur AK et al, Growth kinetics and ginsenosidesproduction in transformed hairy roots of American ginseng—Panaxquinquefolium L, Biotechnol Lett,2010,32:457~461
    [41]赵寿经,侯艳,贾冬梅等,西洋参发根的诱导及不同外源物质对发根生长和皂苷含量的影响,天然产物研究与开发,2010,22:98~103
    [42]张艳,提高三分三毛状根中托品烷生物碱含量的研究:[硕士学位论文],上海;上海师范大学,2010
    [43]李翠芳,李新仁,王芳等,新疆紫草毛状根总糖及多糖含量分析,西北植物学报,2010,30(1):0180~0183
    [44]贺金华,芦韦华,王芳,高效液相色谱法测定新疆紫草毛状根中乙酰紫草素的含量,中国实验方剂学杂志,2010,16(10):39~43
    [45]卢虹玉,刘义,张海超等,甘草毛状根中甘草总黄酮和甘草酸的检测和分析,药物分析与检验,2010,27(1):43~46
    [46]Zhang HC, Liu JM, Chen HM et al, Up-Regulation of Licochalcone ABiosynthesis and Secretion by Tween80in Hairy Root Cultures of Glycyrrhizauralensis Fisch. Mol Biotechnol, DOI10.1007/s12033-010-9311-4
    [47]Zhang HL, Xue SH, Pu F et al, Establishment of Hairy Root Lines and Analysisof Gentiopicroside in the Medicinal Plant Gentiana macrophylla, Russian Journalof Plant Physiology,2010,57(1):110~117
    [48]冯珂,丹参毛状根培养体系建立及诱导子的作用研究:[硕士学位论文],杨凌;西北农林科技大学,2010
    [49]陈兆伟,张金家,赵淑娟等,茉莉酸甲酯对丹参毛状根中水溶性酚酸类化合物积累的影响,中国中药杂志,2010,45(3):970~974
    [50]Zhou ML, Zhu XM, JR Shao et al, Transcriptional response of the catharanthinebiosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthusroseus hairy root culture, Appl Microbiol Biotechnol,2010,88:737~750
    [51]Wang CT, Liu H, Gao XS e al, Overexpression of G10H and ORCA3in the hairyroots of Catharanthus roseus improves catharanthine production, Plant Cell Rep,2010,29:887~894
    [52]步怀宇,岑举人,王英娟等,滇黄芩毛状根的诱导及其黄芩苷含量测定,基因组学与应用生物学,2010,29(1):179~184
    [53]Latiporn U, Kanokwan J, Hiroyuki T et al, Improved isoflavonoid production inPueraria candollei hairy root cultures using elicitation, Biotechnol Lett,2011,33:369~374
    [54]乔献丽,蒋曙光,吕晓芬等,激素对转基因雪莲毛状根植株再生及类黄酮产生的影响,生物工程学报,2011,27(1):69~75
    [55]赵寿经,侯春喜,徐立新等,抑制齐墩果烷型人参皂苷合成支路对达玛烷型人参皂苷生产能力的影响,吉林大学学报,2011,41(3):865~868
    [56]Kim JA, Kim YS, Choi YE, Triterpenoid production and phenotypic changes inhairy roots of Codonopsis lanceolata and the plants regenerated from them, PlantBiotechnol Rep, DOI10.1007/s11816-011-0180-5
    [57]Park NI, Park JH, Park SU, Overexpression of Cinnamate4-Hydroxylase GeneEnhances Biosynthesis of Decursinol Angelate in Angelica gigas Hairy Roots,Mol Biotechnol, DOI10.1007/s12033-011-9420-8
    [58]Patel S, Gaur R, Verma P et al, Biotransformation of artemisinin using cellsuspension cultures of Catharanthus roseus (L.) G. Don and Lavandula officinalisL, Biotechnol Lett,2010,32:1167~1171
    [59]Piekoszewska A, Ekiert H, Zubek S, Arbutin production in Ruta graveolens L.and Hypericum perforatum L. in vitro cultures, Acta Physiol Plant,2010,32:223~229
    [60]胡艳山,两种植物培养体系生物转化青蒿酸和二氢青蒿酸的研究:[硕士学位论文],广州;暨南大学,2010
    [61]唐煜,朱建华,于荣敏,黄花蒿悬浮培养细胞对二氢青蒿酸的生物转化研究,中草药,2010,41(8):1358~1361
    [62]胡显镜,转基因何首乌毛状根悬浮培养体系对氯代香豆素生物转化研究:[硕士学位论文],广州;暨南大学,2010
    [63]Palmer CD, Keller WA. Plant regeneration from petal explants of Hypericumperforatum L. Plant Cell Tiss Organ Cult, DOI10.1007/s11240-010-9839-9
    [64]Das A, Kesari V, Rangan L. Plant regeneration in Curcuma species andassessment of genetic stability of regenerated plants. BIOLOGIA PLANTARUM,2010,54(3):423-429
    [65]Parveen S, Shahzad A. A micropropagation protocol for Cassia angustifolia Vahl.from root explants. Acta Physiol Plant, DOI10.1007/s11738-010-0603-x
    [66]Demeter Z, Suranyi G, Molnar VA et al. Somatic embryogenesis and regenerationfrom shoot primordia of Crocus heuffelianus. Plant Cell Tiss Organ Cult,2010,100:349–353
    [67]Abbasi BH, Khan MA, Mahmood T et al. Shoot regeneration and free-radicalscavenging activity in Silybum marianum L. Plant Cell Tiss Organ Cult,2010,101:371–376
    [68]Parveen S, Shahzad A. TDZ–induced high frequency shoot regeneration in Cassiasophera Linn. via cotyledonary node explants. Physiol. Mol. Biol. Plants,2010,16(2):201-206
    [69]黄格,张慧英,黄翔.药用植物穿心莲的组织培养.中国农学通报2010,26(4):33-36
    [70]肖颖.铁皮石解组织培养技术及玻璃化防止措施研究:[硕士学位论文].信阳,信阳师范学院,2010
    [71]韩珊珊.防风组培苗的增值及最佳移栽条件的研究:[硕士学位论文].大庆,黑龙江八一农垦大学,2010
    [72]宋鹏飞,唐兴国,周全等.罗汉果叶片离体再生快繁技术.武汉生物工程学院学报,2010,6(1):16-19
    [73]彭晓英,周朴华,张良波等.盾叶薯蓣类原球茎的离体诱导及快繁体系的建立.植物遗传资源学报2010,11(5):629-634
    [74]赵玮,谢志军.半夏胚状体诱导及植株再生的研究.甘肃农业科技.2011,1:25-26
    [75]Song JY, Mattson NS, Jeong BR. Efficiency of shoot regeneration from leaf, stem,petiole and petal explants of six cultivars of Chrysanthemum morifolium. PlantCell Tiss Organ Cult, DOI10.1007/s11240-011-9980-0
    [76]Uchendu EE, Paliyath G, Brown DCW et al. In vitro propagation of NorthAmerican ginseng (Panax quinquefolius L.). In Vitro Cell.Dev.Biol.—Plant, DOI10.1007/s11627-011-9379-y
    [77]王寿芹,赵永钦,刘莉莎等.藏红花愈伤组织的诱导及植株再生.西南农业学报,2011,24(1):369-372
    [78]Xu R, Fazio GC, Matsuda SP, On the origins of triterpenoid skeletal diversity,Phytochemistry,2004,65(3):261~291
    [79]魏来,MeJA诱导人参细胞皂苷生物合成的比较转录组分析:[硕士学位论文],长沙;中南大学,2007
    [80]富强,人参鲨烯合成酶基因的克隆与初步表达研究:[硕士学位论文],长春;吉林农业大学,2008
    [81]Tomohisa K, Mevalonate and nonmevalonate pathways for the biosynthesis ofisoprene units, Biosci Biotechnol Biochem,2002,(8):1619~1627
    [82]Jorg B, Gilbert MG, Rodney C, Plant terpenoid synthases: Molecular biology andphylogenetic analysis, Proc Natl Acad Sci USA,1998,(4):4126~4133
    [83]Kim OT, Bang KW, Kim YC et al, Upregulation of ginsenoside and geneexpression related to triterpene biosynthesis in ginseng hairy root cultures elicitedby methyl jasmonate, Plant Cell Tiss Organ Cult,2009,98:25~33
    [84]Parvin S, Kim YJ, Pulla RK et al, Identification and characterization ofspermidine synthase gene from Panax ginseng, Mol Biol Rep,2010,37:923~932
    [85]Lee JH, Kim YJ, Jeong DY et al, Isolation and characterization of a Glutamatedecarboxylase (GAD) gene and their differential expression in response to abioticstresses from Panax ginseng C. A. Meyer, Mol Biol Rep, DOI10.1007/s11033-009-9937-0
    [86]Sun H, Kim MK, Pulla RK et al, Isolation and expression analysis of a novelmajor latex-like protein (MLP151) gene from Panax ginseng, Mol Biol Rep, DOI10.1007/s11033-009-9707-z
    [87]Pulla RK, YJ Kim, Parvin S et al, Isolation of S-adenosyl-L-methioninesynthetase gene from Panax ginseng C.A. meyer and analysis of its response toabiotic stresses, Physiol Mol Biol Plants,2009,15(3):267~275
    [88]Pulla RK, Lee OR, In JG et al, Identification and characterization of class Ichitinase in Panax ginseng C. A. Meyer, Mol Biol Rep, DOI10.1007/s11033-010-0082-6
    [89]Purev M, Kim YJ, Kim MK et al, Isolation of a novel catalase (Cat1) gene fromPanax ginseng and analysis of the response of this gene to various stresses, PlantPhysiology and Biochemistry,2010,48:451~460
    [90]Jung DY, Lee OR, Kim YJ et al, Molecular characterization of a cysteineproteinase inhibitor, PgCPI, from Panax ginseng C. A. Meyer, Acta Physiol Plant,DOI10.1007/s11738-010-0485-y
    [91]Sathiyaraj G, Srinivasan S, Subramanium S et al, Polygalacturonase inhibitingprotein: isolation, developmental regulation and pathogen related expression inPanax ginseng C.A. Meyer, DOI:10.1007/s11033-009-9936-1
    [92]Kim YJ, Shim JS, Krishna PR et al, Isolation and Characterization of aGlutaredoxin Gene from Panax ginseng C. A. Meyer, Plant Mol Biol Rep,2008,26:335~349
    [93]Lee OR, Pulla RK, KimYJ et al, Expression and stress tolerance of PR10genesfrom Panax ginseng C. A. Meyer, Mol Biol Rep, DOI10.1007/s11033-011-0987-8
    [94]Zhong JJ, Bai Y, Wang DJ, Effect of plant growth regulators on cell growth andginsenoside saponin production by suspension cultures of Panax quinquefolium, JBiotechnol,1996,45:227~234
    [95]Zhang YH, Zhong JJ, Yu JT, Effect of osmotic pressure on cell growth andproduction of ginseng saponin and polysaccharide in suspension cultures ofPanax notoginseng, Biotechnol Lett,1995,17:1347~1350
    [96]Steward N, Martin R, Engasser JM et al, A new methodology for plant cellviability assessment using intracellular esterase activity, Plant Cell Rep,1999,19:171~176
    [97]Tang W, High-frequency plant regeneration via somatic embryogenesisandorganogenesis and in vitro flowering of regenerated plantlets in Panax ginseng,Plant Cell Reports,2000,19:727~732
    [98]Langhansova L, Konradova H, Vanek T, Polyethylene glycol and abscisic acidimprove maturation and regeneration of Panax ginseng somatic embryos, PlantCell Rep,2004,22:725~730
    [99]Palazón J, Cusidó RM, Bonfill M et al, Elicitation of different Panax ginsengtransformed root phenotypes for an improved ginsenoside production, PlantPhysiology and Biochemistry,2003,41:1019~1025
    [100]蔡洁,丁家宜,华亚男等,人参毛状根生物合成天麻素转化体系的建立,植物资源与环境学报,2005,14(2):29~31
    [101] Paek KY, Murthy HN, Hahn EJ et al, Large Scale Culture of GinsengAdventitious Roots for Production of Ginsenosides, Adv BiochemEngin/Biotechnol,2009,113:151~176
    [102] Kim YS, Hahn EJ, Yeung EC et al, Lateral root development and saponinaccumulation as affected by IBA or NAA in adventitious root cultures of Panaxginseng. C. A. Meyer, In Vitro Cell Dev Biol Plant,2003,39:245~249
    [103] Sivakumar G, Yu KW, Paek KY, Production of biomass and ginsenosides fromadventitious roots of Panax ginseng in bioreactor cultures, Eng Life Sci,2005,5(4):333~342
    [104] Jeong CS, Chakrabarty D, Hahn EJ et al, Effect of oxygen, carbon dioxide andethylene on growth and bioactive compound production in bioreactor culture ofginseng adventitious roots, Biochem Eng J,2006,27:252~263
    [105] Yu KW, Gao W, Hahn EJ et al, Jasmonic acid improves ginsenosideaccumulation in adventitious root culture of Panax ginseng C.A. Meyer,Biochem Eng J,2002,11:211~215
    [106] Ali MB, Hahn EJ, Paek KY, Copper-induced changes in the growth, oxidativemetabolism, and saponin production in suspension culture roots of Panaxginseng in bioreactors, Plant Cell Rep,2006,25:1125~1132
    [107] Kim SJ, Murthy HN, Hahn EJ et al, Parameters affecting the extraction ofginsenosides from the adventitious roots of ginseng (Panax ginseng C.A.Meyer), Sep Purif Technol,2007,56:401~406
    [108] Han JY, In JG, Kwon YS et al, Regulation of ginsenoside and phytosterolbiosynthesis by RNA interferences of squalene epoxidase gene in Panaxginseng, Phytochemistry,2010,71:36~46
    [109] Sivakumar G, Yu KW, Lee JS et al, Tissue cultured mountain ginsengadventitious roots: safety and toxicity evaluation, Eng Life Sci,2006,6:372~383
    [110] Huang T, Gao WY, Wang J et al, Cultivation and quality assessment of tissuecultures in Panax ginseng C. A. Meyer, Minerva Biotecnologica,2010,22:39~45
    [111] Bourgaud F, Gravot A, Milesi S et al, Production of plant secondarymetabolites: a historical perspective, Plant Sci,2001,161:839~851
    [112]范代娣,李宝璋,西洋参细胞液体培养及动力学研究,生物工程学报,1993,9(4):361~366
    [113]王逸群,周志华,西洋参组织培养及愈伤组织中人参皂苷Rg1和Rg2含量分析,漳州师范学院学报,2005,(4):62~66
    [114]刘本叶,张艳萍,西洋参组织和细胞培养研究进展,中草药,1995,26(11):611~613
    [115]阳建国,西洋参组织培养及其应用前景,湖南农业科学,1999,(1):31~32
    [116] Mathur A, Mathur AK, Sangwan RS et al, Differential morphogeneticresponses, ginsenoside metabolism and RAPD patterns of three Panax species,Genetic Resources and Crop Evolution,2003,(50):245~252
    [117]阎贤伟,陆维新,影响西洋参胚状体发生和试管植株再生条件的研究简报,植物生理学通讯,1987,(1):24~27
    [118]张美萍,王义,孙春玉等,不同培养基及其元素组成对西洋参愈伤组织悬浮培养物生长和皂苷含量的影响,植物资源与环境学报,2003,12(2):14~16
    [119] Liu S, Zhong JJ, Phosphate effect on production of genseng saponin andpolysaccharide by cell suspension cultures of Panax genseng and Panaxquinquefolium L, Process Biochem,1998,33(1):69~74
    [120]张美萍,王义,孙春玉等,西洋参愈伤组织悬浮培养基质中蔗糖和无机元素的消耗状况,植物资源与环境学报,2003,12(3):60~61
    [121]张美萍,王义,孙春玉等,基质pH值和接种量对西洋参愈伤组织悬浮培养物的影响,中药材,2003,26(10):701
    [122]张小兵,闫静辉,李亚璞等,西洋参悬浮细胞发酵工艺研究,生物技术通报,2007,(5):188~193
    [123]宋永波,徐珍霞,金钱星等,西洋参转基因冠瘿组织培养及人参总皂苷含量,中药材,2005,28(3):165~167
    [124]于荣敏,宋永波,李铣等,西洋参冠瘿组织培养条件对其人参皂苷Rb1含量的影响,药物生物技术,2002,9(4):216~21
    [125]于荣敏,宋永波,张辉等,西洋参冠瘿组织培养及其人参皂苷Re和人参皂苷Rg1的产生,生物工程学报,2003,19(3):372~375
    [126]周立刚,王君健,杨崇仁,植物毛状根的培养及其化学进展,植物毛状根的诱导形成与培养,天然产物研究与开发,1998,10(3):287
    [127]丁家宜,王冲之,Ri质粒转化西洋参的研究I,西洋参毛状根培养系统的建立及鉴定,药物生物技术,1999,6(2):80~84
    [128] Ali MB, Yu KW, Hahn EJ et al, Differential responses of anti-oxidantsenzymes, lipoxygenase activity, ascorbate content and the production ofsaponins in tissue cultured root of mountain Panax ginseng C.A. Mayer andPanax quinquefolium L. in bioreactor subjected to methyl jasmonate stress,Plant science,2005,169:83~92
    [129]李慧娟,朴炫春,费丽坤等,影晌西洋参不定根组培增殖的几种因素及皂苷生产的研究,延边大学农学学报,2011,32(2):77~82
    [130] Woo TC, Seo HL, Jong DK, Effect of the extracts from Glycyrrhiza uralensisFisch on the growth characteristics of human cell lines: Anti-tumor and immuneactivation activities, Cytotechnology,2001,37,55~64
    [131] Valeria MDM, Maria JVF, Assays of physical stability and antioxidant activityof a topical formulation added with different plant extracts, J PharmceutBiomed,2005,37,287~295
    [132]赵晶,柳福智,蔺海明,不同外植体对甘草愈伤组织诱导的影响,广东农业科学,2011,19:36~38
    [133]杨世海,刘晓峰,马秀华等,不同理化因子对甘草愈伤组织生长和黄酮类化合物合成的影响,吉林农业大学学报,2008,28(1):47~50
    [134]杨世海,陶静,刘晓峰等,培养基中碳源和氮源对甘草愈伤组织生长和黄酮类化合物合成的影响,中国中药杂志,2006,31(22):1867~1859
    [135]杨会琴,李敬,戴翠萍等,甘草愈伤组织培养及其代谢产物甘草酸的研究,河北师范大学学报,2006,30(3):246~348
    [136]杨世海,刘晓峰,果德安等,培养基及培养条件对甘草愈伤组织生长和黄酮类化合物合成的影响,吉林农业大学学报,2005,27(3):289~292
    [137]杨世海,刘晓峰,果德安等,不同附加物对甘草愈伤组织培养中黄酮类化合物形成的影响,中国药学杂志,2006,41(2):96~99
    [138]王彦芹,焦培培,张莉等,利用组织培养技术提取甘草黄酮,基因组学与应用生物学,2010,29(6):1111~1117
    [139]管延英,滕忠才,梁玉玲,胀果甘草组织培养物的有效成分分析,河北农业大学,2003,26(4):34~37
    [140]苟克俭,任茜,甘草花丝的胚性愈伤组织诱导及其体细胞胚的发生,西北农业大学学报,1993,21(3):107~109
    [141]苟克俭,任茜,甘草花药培养中愈伤组织诱导和芽再生植株,西北农业大学学报,1993,21(4):32~35
    [142]葛淑俊,李广敏,马峙英等,甘草离体培养物中总黄酮提取工艺的优化,中国农学通报,2007,23(9):107~110
    [143] Mehrotra S, Khwaja O, Kukreja AK et al, ISSR and RAPD Based Evaluation ofGenetic Stability of Encapsulated Micro Shoots of Glycyrrhiza glabraFollowing6Months of Storage, Mol Biotechnol, DOI10.1007/s12033-011-9491-6
    [144]王磊,甘草细胞培养生产甘草黄酮的条件优化及黄酮含量分析研究:[硕士学位论文],武汉;华中科技大学,2007
    [145]包金龙,甘草细胞悬浮培养系的建立与悬浮细胞中活性成分分析:[硕士学位论文],包头;内蒙古科技大学,2010
    [146]杨英,甘草细胞培养合成甘草黄酮及其调控研究:[博士学位论文],武汉;华中科技大学,2007
    [147]陈士云,杨茂忠,侯篙生等,内循环气升式生物反应器培养甘草细胞,武汉植物学研究,1994,12(4):380~384
    [148]廖凯,甘草细胞生物反应器连续培养的研究:[硕士学位论文],长春;吉林农业大学,2008
    [149]赵延博,发根农杆菌Ri质粒转化甘草的研究:[硕士学位论文],长春;吉林农业大学,2008
    [150]杨世海,刘晓峰,沈昕等,甘草Ri质粒转化及不同理化因子对甘草毛状根生长的影响,中国中药杂志,2006,31(11):875~878
    [151] Zhang HC, Liu JM, Lu HY et al, Enhanced flavonoid production in hairy rootcultures of Glycyrrhiza uralensis Fisch by combining the over-expression ofchalcone isomerase gene with the elicitation treatment, Plant Cell Rep,2009,28:1205~1213
    [152] Zhang HC, Liu JM, Chen HM et al, Up-Regulation of Licochalcone ABiosynthesis and Secretion by Tween80in Hairy Root Cultures of Glycyrrhizauralensis Fisch, Mol Biotechnol,2011,47:50~56
    [153]汤钦,用cDNA-AFLP指纹技术分离MeJA诱导的人参皂苷生物合成相关基因:[硕士学位论文],长沙;中南大学,2008
    [154]王寅秀,赵岩,陈文学等,人参多糖的抗氧化活性研究,吉林农业,2010,12,84~85
    [155] Choi SM, Son SH, Yun SR et al, Pilot-scale culture of adventitious roots ofginseng in a bioreactor system, Plant Cell Tissue and Organ Culture,2000,62:187~193
    [156] Zhang ZY, Zhong JJ, Scale-Up of Centrifugal Impeller Bioreactor forHyperproduction of Ginseng Saponin and Polysaccharide by High-DensityCultivation of Panax notoginseng Cells, Biotechnol Prog,2004,20:1076~1081
    [157]陈禧莹,以植物细胞培养生产二次代谢产物L-DOPA之培养条件及生物反应器操作策略探讨:[博士学位论文],台湾;国立台湾大学,1998
    [158] Kim DS, Kim SY, Jeong IY et al, Improvement of ginsenoside production byPanax ginseng adventitious roots induced by γ-irradiation, BIOLOGIAPLANTARUM,2009,53(3):408~414
    [159] Bonfill M, Cusidó RM, Palazón J et al, Influence of auxins on organogenesisand ginsenoside production in Panax ginseng calluses, Plant Cell, Tissue andOrgan Culture,2002,68:73~78
    [160] Han JY, Jung SJ, Kim SW et al, Induction of Adventitious Roots and Analysisof Ginsenoside Content and the Genes Involved in Triterpene Biosynthesis inPanax ginseng, Journal of Plant Biology,2006,49(1):26~33
    [161] Matsingou TC, Petrakis N, Kapsokefalou M et al, Antioxidant activity oforganic extracts from aqueous infusions of sage, J Agric Food Chem,2003,51:6696~6701
    [162] Velioglu YS, Mazza G, Gao L et al, Antioxidant activity and total phenolics inselected fruits, vegetables, and grain products, J. Agric. Food Chem,1998,46:4113~4117
    [163]张志良,瞿伟菁,植物生理学试验指导(第三版),北京:高等教育出版社,2003.127~131
    [164]陈军辉,谢明勇,聂少平等,西洋参多糖含量测定,食品与生物技术学报,2005,24(5):72~76
    [165]郝再彬,植物生理试验,哈尔滨:哈尔滨工业大学出版社,2004.35~37
    [166]王学奎,植物生理学实验原理和技术,北京:高等教育出版社,2006.199~201
    [167]卞爱华,高文远,王娟,不同诱导子对甘草悬浮培养细胞中甘草酸积累的影响,中国药学杂志,,2008,43(22):1690~1693
    [168] Mizukami H, Tabira Y, Ellis BE, Methyl jasmonate-induced rosmarinic acidbiosynthesis in Lithospermum erythrorhizon cell suspension cultures, Plant CellRep,1993,12:706~709
    [169] William A, John G, Hendel J, Reversed-phase high-performance liquidchromatographic determination of ginsenosides of Panax quinquefolium, J.Chromatogr,1996,775:11~17
    [170] Kim YS, Hahn EJ, Murthy HN et al, Adventitious root growth and ginsenosideaccumulation in Panax ginseng cultures as affected by methyl jasmonate,Biotechnol Lett,2004,26:1619~1622
    [171] Schlatmann JE, Moreno PRH, Selles M et al, Two-stage batch process for theproduction of ajmalicine by Catharanthus roseus: the link between growth andproduction stage, Biotechnol. Bioeng,1995,47:53~59
    [172]魏明,霍山石斛类原球茎悬浮培养细胞生长和多糖合成的动力学研究,合肥工业大学学报,2006,12:37
    [173] Kanabus J, Bressan ARA, Carpita NC, Carbon assimilation in carrot cells inliquid culture, Plant Physiol,1986,82:363~368
    [174] Daie J, Chin CK, Pitcher L, Differential rates of sucrose and hexose transportby asparagus cell cultures, Plant Sci,1987,53:101~107
    [175] Shin KS, Chakrabarty D, Ko JY et al, Sucrose utilization and mineral nutrientuptake during hairy root growth of red beet (Beta vulgaris L.) in liquid culture,Plant Growth Regul,2002,39:187~193
    [176] Dantas AK, Majada JP, Fernandez B et al, Mineral nutrition in carnation tissuecultures under different ventilation conditions, Plant Growth Regul,2001,33:237~243
    [177] Morard P, Fulcheri C, Henry M, Kinetics of mineral nutrient uptake bySaponaria officinalis L. suspension cell cultures in different media, Plant CellRep,1998,18:260~265
    [178] Bae KH, Choi YE, Shin CG et al, Enhanced ginsenoside productivity bycombination of ethephon and methyl jasmonate in ginseng (Panax ginseng C.A.Meyer) adventitious root cultures, Biotechnol Lett,2006,28:1163~1166
    [179] Zhang ZY, Zhong JJ, Scale-Up of Centrifugal Impeller Bioreactor forHyperproduction of Ginseng Saponin and Polysaccharide by High-DensityCultivation of Panax notoginseng Cells, Biotechnol Prog,2004,20:1076~1081

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700