甘草细胞放大培养的过程工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘草是中成药及配方制剂中用量最大的一味药,居国药之首,素有“十方九草”之说。甘草的化学成分复杂,具有多种生物学与药理学活性,广泛应用于食品、保健品、化妆品等行业。近年来野生甘草面临严重的资源问题,而栽培品种周期长、品质低。利用细胞培养技术直接生产植物有效成分是解决野生植物资源短缺有效的方法之一。在实际培养过程中,尚存在很多需要解决的问题,本文以胀果甘草为材料,对甘草细胞大规模培养生产有效成分的可行性、关键问题如甘草细胞悬浮培养体系的优化控制及反应器放大培养等方面开展了较为系统的研究,取得了以下的研究成果:
     (1)系统分析了胀果甘草悬浮细胞合成的次生代谢产物。利用HPLC指纹图谱结合相似度评价系统,构建了胀果甘草悬浮细胞提取物的指纹图谱,标定指纹峰22个,与野生甘草提取物的指纹图谱相似度为58.4%;并建立了悬浮细胞中黄酮类化合物的指纹图谱,标定指纹峰16个,与野生甘草中黄酮类化合物指纹图谱相似度为75.2%,采用LC-ESI-MS技术初步确定两个主要黄酮类指纹峰分别为甘草苷与甘草素,同时分别采用HPLC和LC-MS/MS技术检测了悬浮细胞中查尔酮A和甘草酸的合成。
     (2)研究了甘草细胞悬浮体系中酶促褐化反应发生的机理及其有效控制策略。甘草细胞固-液转化后受到液体悬浮环境的渗透胁迫和流体剪切压力,引起细胞膜受伤,导致酚类化合物和多酚氧化酶结合造成酶促褐化的发生。对于甘草细胞来说,比较有潜力的PPO抑制剂是抗坏血酸和L-半胱氨酸,当0.1mM的这两种抑制剂分别被添加到悬浮体系中,褐化现象明显得到控制,细胞活力得到维持。
     (3)分析了甘草细胞悬浮体系的流变学特性。获得不同发酵时间的流变参数,建立流变本构方程,为甘草细胞放大培养过程的优化操作以及相关的反应器设计和改造提供参考。
     (4)建立了甘草细胞在搅拌式生物反应器中的放大培养工艺。并对甘草细胞在反应器中悬浮培养的基本特性进行了研究,评价了反应器特有条件下,细胞活力、生物量积累、过氧化氢产量和甘草黄酮合成的变化情况。分别以单因素实验和正交试验所得数据为样本,运用BP神经网络耦合遗传算法获得反应器中细胞生长的最佳操作参数。经实验验证,这种基于神经网络耦合遗传算法的优化方法与传统的正交试验方法相比,反应器中细胞的生物量积累提高了6.9%。
     (5)建立了根癌由农杆菌介导的胀果甘草悬浮细胞遗传转化体系。并利用该体系,将黄酮类合成途径中的一个关键酶基因-查尔酮异构酶基因,通过构建过表达的pCAMBIA1303-chi重组质粒转化到胀果甘草悬浮细胞中,得到一个稳定的、过表达chi基因,黄酮产量提高的转基因甘草细胞系,甘草黄酮的产量平均提高了0.84倍。
Licorice has been used as a traditional Chinese medicine extensively for over2000years. It is one of the largest consumption kinds of herbs in formulations. The chemicalcomposition of licorice is very complex, so it has a variety of biological andpharmacology activities. It is also widely used in the food, cosmetic industries. In recentyears, the yield of the wild licorice is severely reduced owing to the immoderate andruinous utilization, and cultivated licorice is poor quality and long growth cycle. As analternative approach, cell suspension systems are generally considered as the most suitablemethod for large-scale applications to produce valuable secondary metabolites. But thereare still a lot of problems to solve in the process of culture, the present study mainlyfocused on optimization of licorice cell suspension culture system and large-scale cellculture in bioreactor, etc. The main results were shown as follows:
     (1) The secondary metabolites produced from the G.inflata suspension cell wereanalyzed. The fingerprint with22fingerprint peaks of G.inflata suspension cells extractswas constructed by HPLC fingerprint linking with the similarity evaluation system, andthe similarity is58.4%compared with the fingerprint of wild licorice extracts. Using thesame method, the fingerprint was established with16fingerprint peaks of flavonoidsextracted from G.inflata suspension cells, and the similarity is75.2%compared with thefingerprint of wild licorice flavonoids extracts. The two main fingerprints among commonHPLC peaks were identified as liquiritin and liquiritigenin by LC-ESI-MS technology. Inaddition, the content of licochalcone A in suspension cells of G.inflata was determined byHPLC. Glycyrrhizin extracted from G.inflata suspension cells was also analyzed byLC-MS/MS using purchased Glycyrrhizin as standard sample.
     (2) At the beginning of the establishment of G.inflata cell suspension culture system,when the cells was transferred from solid culture medium to liquid medium, osmotic stressand hydrodynamics shear from the liquid culture environment cause cell membrane injury,then phenolic compounds and polyphenol oxidase would react resulting in enzymaticbrowning. For G.inflata cells, more potential PPO inhibitors are ascorbic acid andL-homocysteine, when0.1mM of these two kinds of inhibitors were added to the suspension system, the browning was controlled obviously.
     (3) The rheological characteristics of G.inflata cells suspension culture system wasstudied, the rheological parameters of different fermentation time were obtained andrheological constitutive equation was established, these results provide the reference foroptimized operation and bioreactor design of licorice cells amplifying culture.
     (4) G. inflata cells was cultured in the stirred tank bioreactor successfully, and thebasic characteristics of G. inflata cells cultured in bioreactor were studied (control withculture in Erlenmeyer flasks), including the changes of the cell vitality, biomassaccumulation, hydrogen peroxide production and flavonoids synthetic under the bioreactorcondition. Using single factor and orthogonal test data as samples respectively, the bestoperating conditions was obtained by neural network coupling genetic algorithm. Theresults indicated that the optimization method based on neural network coupling geneticalgorithm improved the accumulation of cells biomass in bioreactor compared with thetraditional orthogonal test method.
     (5) In this study, the transformation protocol for G. inflata suspension cells wassuccessfully developed with A. tumefaciens strain LBA4404harboring the binary vectorpCAMBIA1303by optimizing several important parameters of the transformation system.The chi gene was introduced into G. inflata suspension cells by the transformationprotocol to overexpress the chi gene, which encodes a key regulatory enzyme in theflavonoid synthesis pathway, resulting in a stable, maintainable, flavonoid-yield-increasedtransgenic G. inflata cell line. The study provides an effective approach to efficientlyincrease the end products of secondary metabolic pathways by appropriate geneticengineering strategy.
引文
[1] Kitagawa I, Chen W Z, Taniyama T, et al. Quantitative determination ofconstituents in various licorice roots by means of high performance liquidchromatography[J]. YAKUGAKU ZASSHI-JOURNAL OF THEPHARMACEUTICAL SOCIETY OF JAPAN,1998,118(11):519~528.
    [2] Hatano T, Yoshida T. Bioactive phenolics from licorice: Their radical-scavengingeffects, inhibitory effects on oxidative enzymes and antiviraleffects[M]//TOWARDS NATURAL MEDICINE RESEARCH IN THE21STCENTURY. AMSTERDAM: ELSEVIER SCIENCE BV,1998:261~272.
    [3] Kitagawa I, Chen W Z, Hori K, et al. Chemical studies of Chinese licorice-roots. II.Five new flavonoid constituents from the roots of Glycyrrhiza aspera Pall.collected in Xinjiang[J]. CHEMICAL&PHARMACEUTICAL BULLETIN,1998,46(10):1511~1517.
    [4]董静洲,易自力,蒋建雄.我国药用植物资源研究概况[J].医学研究杂志,2006,35(1):67~69.
    [5] Zhang Q Y, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao(licorice)[J]. JOURNAL OF CHROMATOGRAPHY A,2009,1216(11):1954~1969.
    [6]贾国惠,贾世山.甘草中黄酮的药理作用研究进展[J].中国药学杂志,1998,(9):513.
    [7]惠寿年,董阿玲.国内对甘草化学成分的研究进展[J].中草药,1999,30(4):313.
    [8] Haraguchi H, Tanimoto K, Tamura Y, et al. Mode of antibacterial action ofretrochalcones from Glycyrrhiza inflata[J]. PHYTOCHEMISTRY,1998,48(1):125~129.
    [9] Fukai T, Marumo A, Kaitou K, et al. Anti-Helicobacter pylori flavonoids fromlicorice extract[J]. LIFE SCIENCES,2002,71(12):1449~1463.
    [10] Messier C, Grenier D. Effect of licorice compounds licochalcone A, glabridin andglycyrrhizic acid on growth and virulence properties of Candida albicans[J].MYCOSES,2011,54(6): E801~E806.
    [11] Tolstikov G A, Baltina L A, Shults E E, et al. Glycyrrhizic acid[J].BIOORGANICHESKAYA KHIMIYA,1997,23(9):691~709.
    [12] Chung J G. Inhibitory actions of glycyrrhizic acid on arylamineN-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcerpatients[J]. DRUG AND CHEMICAL TOXICOLOGY,1998,21(3):355~370.
    [13] Kondratenko R M, Baltina L A, Vasil'Eva E V, et al. Synthesis andimmunomodulating activity of new amino acid derivatives of glycyrrhizic acidand its methyl ester[J]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY,2004,30(2):148~153.
    [14] Kao T C, Shyu M H, Yen G C. Glycyrrhizic Acid and18beta-Glycyrrhetinic AcidInhibit Inflammation via PI3K/Akt/GSK3beta Signaling and GlucocorticoidReceptor Activation[J]. JOURNAL OF AGRICULTURAL AND FOODCHEMISTRY,2010,58(15):8623~8629.
    [15] Wang C Y, Kao T C, Yen G C. Glycyrrhizic acid and18b-glycyrrhetinic acidmodulate the lipopolysaccharide-induced inflammatory response by thesuppression of NF-kB through phosphatidylinositol3-kinase[J]. ABSTRACTSOF PAPERS OF THE AMERICAN CHEMICAL SOCIETY,2011,242.
    [16] Polyakov N E, Leshina T V, Salakhutdinov N F, et al. Antioxidant and redoxproperties of supramolecular complexes of carotenoids with beta-glycyrrhizicacid[J]. FREE RADICAL BIOLOGY AND MEDICINE,2006,40(10):1804~1809.
    [17] Bravo L, Goya L, Lecumberri E. LC/MS characterization of phenolic constituentsof mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared tocommonly consumed beverages[J]. FOOD RESEARCH INTERNATIONAL,2007,40(3):393~405.
    [18] Badam L. Ammonium salt of glycyrrhizic acid as an antiviral[J]. NATIONALMEDICAL JOURNAL OF INDIA,1997,10(2):98.
    [19] Belanov E F, Volkov G N, Ilicheva T N, et al. Activity of glycyrrhizic acid againstpoxviruses in vitro and in vivo[J]. ANTIVIRAL RESEARCH,2002,53(3SI):A63.
    [20] Lin J C. Mechanism of action of glycyrrhizic acid in inhibition of Epstein-Barrvirus replication in vitro[J]. ANTIVIRAL RESEARCH,2003,59(1):41~47.
    [21] Kondratenko R M, Baltina L A, Mustafina S R, et al. The synthesis and antiviralactivity of glycyrrhizic acid conjugates with alpha-D-glucosamine and someglycosylamines[J]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY,2004,30(3):275~282.
    [22] Hoever G, Baltina L, Kondratenko R, et al. Antiviral activity of Glycyrrhizic Acid(GL) derivatives against SARS-coronavirus (SARS-CoV) and humancytomegalovirus (HCMV)[J]. ANTIVIRAL RESEARCH,2004,62(2): A75.
    [23] Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acidderivatives against SARS-Coronavirus[J]. JOURNAL OF MEDICINALCHEMISTRY,2005,48(4):1256~1259.
    [24] Zhao M X, Ji L N, Mao Z W. beta-Cyclodextrin/Glycyrrhizic Acid FunctionalisedQuantum Dots Selectively Enter Hepatic Cells and Induce Apoptosis[J].CHEMISTRY-A EUROPEAN JOURNAL,2012,18(6):1650~1658.
    [25] Lee C K, Son S H, Park K K, et al. Isoliquiritigenin inhibits tumor growth andprotects the kidney and liver against chemotherapy-induced toxicity in a mousexenograft model of colon carcinoma[J]. JOURNAL OF PHARMACOLOGICALSCIENCES,2008,106(3):444~451.
    [26] Qamar W, Khan R, Khan A Q, et al. Alleviation of lung injury by glycyrrhizic acidin benzo(a)pyrene exposed rats: Probable role of soluble epoxide hydrolase andthioredoxin reductase[J]. TOXICOLOGY,2012,291(1-3):25~31.
    [27] Cherng J M, Lin H J, Hsu Y H, et al. A quantitative bioassay for HIV-1geneexpression based on UV activation: effect of glycyrrhizic acid[J]. ANTIVIRALRESEARCH,2004,62(1):27~36.
    [28] Kondratenko R M, Baltina L A, Baltina L A, et al. Synthesis andimmunomodulating activity of new glycopeptides of glycyrrhizic acid containingresidues of L-glutamic acid[J]. RUSSIAN JOURNAL OF BIOORGANICCHEMISTRY,2006,32(6):595~601.
    [29] Fukai T, Marumo A, Kaitou K, et al. Antimicrobial activity of licorice flavonoidsagainst methicillin-resistant Staphylococcus aureus[J]. FITOTERAPIA,2002,73(6):536~539.
    [30]谢毛成,丁家宜,李刚.光果甘草与乌拉尔甘草清除活性氧能力的比较[J].植物资源与环境学报,2003,12(1):29~31.
    [31] Tanaka Y, Kikuzaki H, Fukuda S, et al. Antibacterial compounds of licoriceagainst upper airway respiratory tract pathogens[J]. JOURNAL OFNUTRITIONAL SCIENCE AND VITAMINOLOGY,2001,47(3):270~273.
    [32] Kanazawa M, Satomi Y, Mizutani Y, et al. Isoliquiritigenin inhibits the growth ofprostate cancer[J]. EUROPEAN UROLOGY,2003,43(5):580~586.
    [33]赵杨景,陈震,李先恩.黄淮海半干燥地区引种甘草的适宜播期[J].中国中药杂志,1999,24(4):208.
    [34]刘春朝,王玉春,欧阳藩,等.生物反应器技术应用于植物组织培养的研究进展[J].化工冶金,1999,20(3):329.
    [35] Mayer A M. Polyphenol oxidases in plants and fungi: Going places? A review[J].PHYTOCHEMISTRY,2006,67(21):2318~2331.
    [36] Xue J, Ngadi M. Rheological properties of batter systems formulated usingdifferent flour combinations[J]. JOURNAL OF FOOD ENGINEERING,2006,77(2):334~341.
    [37] Smetanska I. Production of Secondary Metabolites Using Plant CellCultures[M]//FOOD BIOTECHNOLOGY. BERLIN: SPRINGER-VERLAGBERLIN,2008:187~228.
    [38] Vanisree M, Lee C Y, Lo S F, et al. Studies on the production of some importantsecondary metabolites from medicinal plants by plant tissue cultures[J].BOTANICAL BULLETIN OF ACADEMIA SINICA,2004,45(1):1~22.
    [39] Srivastava A K. Bioprocessing engineering considerations in the production ofsecondary metabolites by plant cell suspension cultures[M]//NEW HORIZONSIN BIOTECHNOLOGY. DORDRECHT: SPRINGER,2003:173~191.
    [40] Lamboursain L, Jolicoeur M. In vitro production of secondary metabolites bycultivated plant cells: The crucial role of the cell nutritional status[M]//PLANTBIOTECHNOLOGY2002AND BEYOND. DORDRECHT: SPRINGER,2003:491~495.
    [41] Cai Z Z, Kastell A, Knorr D, et al. Exudation: an expanding technique forcontinuous production and release of secondary metabolites from plant cellsuspension and hairy root cultures[J]. PLANT CELL REPORTS,2012,31(3SI):461~477.
    [42] Sheludko Y V. Recent advances in plant biotechnology and genetic engineering forproduction of secondary metabolites[J]. CYTOLOGY AND GENETICS,2010,44(1):52~60.
    [43] Fumagali E, Goncalves R, Machado M, et al. Production of plant secondarymetabolites In plant cell and tissue culture: The example of Tabernaemontana andAspidosperma genera[J]. REVISTA BRASILEIRA DEFARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY,2008,18(4):627~641.
    [44] Paek K Y, Chakrabarty D, Hahn E J. Application of bioreactor systems for largescale production of horticultural and medicinal plants[J]. PLANT CELL TISSUEAND ORGAN CULTURE,2005,81(3):287~300.
    [45] Huang S Y, Shen Y W, Chan H S. Development of a bioreactor operation strategyfor L-DOPA production using Stizolobium hassjoo suspension culture[J].ENZYME AND MICROBIAL TECHNOLOGY,2002,30(6):779~791.
    [46] Rojas R, Alba J, Magana-Plaza I, et al. Stimulated production of diosgenin inDioscorea galeottiana cell suspension cultures by abiotic and biotic factors[J].BIOTECHNOLOGY LETTERS,1999,21(10):907~911.
    [47] HavkinFrenkel D, Dorn R, Leustek T. Plant tissue culture for production ofsecondary metabolites[J]. FOOD TECHNOLOGY,1997,51(11):56.
    [48] Venkat K, Bringi V, Kadkade P, et al. Large scale production of secondarymetabolites using plant cell cultures: Opportunities, realities and challenges[J].ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY,1997,213(Part1):54.
    [49]邢建民,赵德修,李茂寅,等.水母雪莲悬浮培养细胞生长和黄酮类活性成分合成[J].植物学报,1998,40(9):836.
    [50]邢建民,赵德修,叶和春,等.水母雪莲细胞生物反应器悬浮培养[J].植物学报,2000,42(1):98.
    [51]张丽平,梁玉玲,许恒飞.胀果甘草细胞的悬浮培养[J].河北大学学报(自然科学版),2008,28(6):659~663.
    [52]杨英.甘草细胞培养合成甘草黄酮及其调控研究[D].华中科技大学生物医学工程,2007.
    [53]霍云谦.甘草愈伤组织诱导及体细胞胚的发生[D].河北农业大学作物遗传育种,2005.
    [54]于林清,何茂泰,王照兰,等.甘草组织培养快速繁殖技术研究[J].中国草地,1999,(1):12~14.
    [55]安利佳.豆科植物组织、细胞和原生质体培养的研究[D].东北师范大学,1989.
    [56]杨世海.甘草、决明细胞工程与次级代谢途径调控研究[D].北京医科大学北京大学生药学,1998.
    [57]刘建利,曹君迈,马文平.宁夏乌拉尔甘草内生菌鉴定及甜瓜采后病害病原拮抗菌的筛选[J].干旱地区农业研究,2011,29(1):252~256.
    [58]霍云谦,葛淑俊,孟义江,等.中国甘草的组织培养研究进展[J].中国农学通报,2005,21(9):64~66.
    [59]郑辉.甘草细胞放大培养调控研究[D].华中科技大学生物化学与分子生物学,2008.
    [60]廖凯.甘草细胞生物反应器连续培养的研究[D].吉林农业大学中药学,2008.
    [61]刘颖,李冬杰,魏景芳.药用植物细胞生物反应器技术的研究进展[J].中国生物工程杂志,2005:67~70.
    [62]邢建民,查丽杭,李佐虎,等.植物细胞大规模培养生物反应器研制概况[J].生物工程进展,1997,(5):49~53.
    [63] Hayashi Hiroaki, Yamada Keiko, Fukui Hiroshi,等. Metabolism of exogenous18尾-glycyrrhetinic acid in cultured cells of Glycyrrhiza glabra[J]. Phytochemistry,1992,31(8):2724~2733.
    [64] Sakai T, Shinahara K, Torimaru A, et al. Sensitive detection of glycyrrhizin andevaluation of the affinity constants by a surface plasmon resonance-basedimmunosensor[J]. ANALYTICAL SCIENCES,2004,20(2):279~283.
    [65] Cui S F, Fu B Q, Lee F, et al. Application of microemulsion thin layerchromatography for the fingerprinting of licorice (Glycyrrhiza spp.)[J].JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIESIN THE BIOMEDICAL AND LIFE SCIENCES,2005,828(1-2):33~40.
    [66] Jin X F, Lu Y H, Wei D Z, et al. Chemical fingerprint and quantitative analysis ofSalvia plebeia R.Br. by high-performance liquid chromatography[J]. JOURNALOF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS,2008,48(1):100~104.
    [67]丛景香,高丽娟,林炳昌.甘草黄酮类化合物研究进展[J].精细化工,2004:121~124.
    [68]邢国秀,李楠,王童,等.甘草中黄酮类化学成分的研究进展[J].中国中药杂志,2003,(7):10~14.
    [69] Cui Y M, Ao M Z, Li W, et al. Anti-inflammatory activity of licochalcone aisolated from Glycyrrhiza inflata[J]. ZEITSCHRIFT FURNATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES,2008,63(5-6):361~365.
    [70] Mukhopadhyay M, Panja P. A novel process for extraction of natural sweetenerfrom licorice (Glycyrrhiza glabra) roots[J]. SEPARATION ANDPURIFICATION TECHNOLOGY,2008,63(3):539~545.
    [71] Ayabe S, Takano H, Fujita T, et al. Triterpenoid biosynthesis in tissue cultures of<i>Glycyrrhiza glabra</i> var.<i>glandulifera</i>[Z].Springer Berlin/Heidelberg,1990:9,181~184.
    [72] Segall S D, Artz W E, Raslan D S, et al. Analysis of triacylglycerol isomers inMalaysian cocoa butter using HPLC-mass spectrometry[J]. FOOD RESEARCHINTERNATIONAL,2005,38(2):167~174.
    [73] Aoki F, Nakagawa K, Tanaka A, et al. Determination of glabridin in human plasmaby solid-phase extraction and LC-MS/MS[J]. JOURNAL OFCHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THEBIOMEDICAL AND LIFE SCIENCES,2005,828(1-2):70~74.
    [74] Mousa N, Siaguru P, Wiryowidagdo S, et al. Establishment of regenerative callusand cell suspension system of licorice (Glycyrrhiza glabra) for the production ofthe sweetener glycyrrhizinin vitro[Z]. Springer India,2007:9,72~82.
    [75] Shams-Ardakani M, Mohagheghzadeh A, Ghannadi A, et al. Formation ofglycyrrhizin by in vitro cultures of Glycyrrhiza glabra[J]. CHEMISTRY OFNATURAL COMPOUNDS,2007,43(3):353~354.
    [76]杨英,何峰,余龙江,等.胀果甘草悬浮培养细胞合成甘草总黄酮(英文)[J].云南植物研究,2007,(4):444~446.
    [77]杨英,郑辉,李赟,等.茉莉酸甲酯与二氢茉莉酮酸甲酯对悬浮培养的甘草细胞生长和黄酮积累的影响[J].植物生理学通讯,2008,(5):903~906.
    [78] Hennell J R, Lee S, Khoo C S, et al. The determination of glycyrrhizic acid inGlycyrrhiza uralensis Fisch ex DC.(Zhi Gan Cao) root and the dried aqueousextract by LC-DAD[J]. JOURNAL OF PHARMACEUTICAL ANDBIOMEDICAL ANALYSIS,2008,47(3):494~500.
    [79]周燕,王明奎,廖循,等.甘草化学成分的高效液相色谱-串联质谱分析[J].分析化学,2004,(2):174~178.
    [80]伍蔚萍,孙文基,王斌.甘草黄酮类化合物指纹图谱研究[J].药物分析杂志,2005,(12):1440~1442.
    [81] Li W, Koike K, Asada Y, et al. Flavonoids from Glycyrrhiza pallidiflora hairy rootcultures[J]. PHYTOCHEMISTRY,2002,60(4):351~355.
    [82]木其尔,刘有平,王允,等.甘草酸单铵盐中有关物质的LC-MSn研究[J].中国医药工业杂志,2009,40(11):844~847.
    [83] Sun C, Xie Y C, Tian Q L, et al. Analysis of glycyrrhizic acid and liquiritin inliquorice root with microwave-assisted micellar extraction andpre-concentration[J]. PHYTOCHEMICAL ANALYSIS,2008,19(2):160~163.
    [84] Ding L, Huang X, Yang J, et al. Determination of glycyrrhetic acid in humanplasma by LC-ESI-MS[J]. JOURNAL OF PHARMACEUTICAL ANDBIOMEDICAL ANALYSIS,2006,40(3):758~762.
    [85] Jong T T, Lee M R, Chiang Y C, et al. Using LC/MS/MS to determine matrine,oxymatrine, ferulic acid, mangiferin, and glycyrrhizin in the Chinese medicinalpreparations Shiau-feng-saan and Dang-guei-nian-tong-tang[J]. JOURNAL OFPHARMACEUTICAL AND BIOMEDICAL ANALYSIS,2006,40(2):472~477.
    [86] Zou Q G, Wei P, Li J, et al. Simultaneous determination of18alpha-and18beta-glycyrrhetic acid in human plasma by LC-ESI-MS and its application topharmacokinetics[J]. BIOMEDICAL CHROMATOGRAPHY,2009,23(1):54~62.
    [87] Altunkaya A, Gokmen V. Effect of various inhibitors on enzymatic browning,antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa)G-5478-2011[J]. FOOD CHEMISTRY,2008,107(3):1173~1179.
    [88] Queiroz C, Da Silva A, Lopes M, et al. Polyphenol oxidase activity, phenolic acidcomposition and browning in cashew apple (Anacardium occidentale, L.) afterprocessing[J]. FOOD CHEMISTRY,2011,125(1):128~132.
    [89] Yoruk R, Marshall M R. Physicochemical properties and function of plantpolyphenol oxidase: A review[J]. JOURNAL OF FOOD BIOCHEMISTRY,2003,27(5):361~422.
    [90] Yu Y C, Tang T, Qian Q, et al. Independent Losses of Function in a PolyphenolOxidase in Rice: Differentiation in Grain Discoloration between Subspecies andthe Role of Positive Selection under Domestication[J]. PLANT CELL,2008,20(11):2946~2959.
    [91] Dornenburg H, Knorr D. Evaluation of elicitor-and high-pressure-inducedenzymatic browning utilizing potato (Solanum tuberosum) suspension cultures asa model system for plant tissues[J]. JOURNAL OF AGRICULTURAL ANDFOOD CHEMISTRY,1997,45(10):4173~4177.
    [92] He Y, Guo X L, Lu R, et al. Changes in morphology and biochemical indices inbrowning callus derived from Jatropha curcas hypocotyls[J]. PLANT CELLTISSUE AND ORGAN CULTURE,2009,98(1):11~17.
    [93] Yang Y, He F, Yu L J. Dynamics analyses of nutrients consumption and flavonoidsaccumulation in cell suspension culture of Glycyrrhiza inflata[J]. BIOLOGIAPLANTARUM,2008,52(4):732~734.
    [94] Xu Q M, Cheng J S, Ge Z Q, et al. Effects of organic solvents on membrane ofTaxus cuspidata cells in two-liquid-phase cultures[J]. PLANT CELL TISSUEAND ORGAN CULTURE,2004,79(1):63~69.
    [95] Segovia-Bravo K A, Jaren-Galan M, Garcia-Garcia P, et al. Browning reactions inolives: Mechanism and polyphenols involved[J]. FOOD CHEMISTRY,2009,114(4):1380~1385.
    [96] Segovia-Bravo K A, Jaren-Galan M, Garcia-Garcia P, et al. Treatments to inhibitthe browning reactions in model solutions of olive fruit extracts[J]. FOODCHEMISTRY,2010,123(3):741~746.
    [97] Wu J Y, Lin L D. Ultrasound-induced stress responses of Panax ginseng cells:Enzymatic browning and phenolics production[J]. BIOTECHNOLOGYPROGRESS,2002,18(4):862~866.
    [98] Lopez J, Uribe E, Vega-Galvez A, et al. Effect of Air Temperature on DryingKinetics, Vitamin C, Antioxidant Activity, Total Phenolic Content,Non-enzymatic Browning and Firmness of Blueberries Variety OA ' Neil[J].FOOD AND BIOPROCESS TECHNOLOGY,2010,3(5):772~777.
    [99] Nguyen H L, Vo C T, Doan H, et al. Accumulation of Sesquiterpenes andPolysaccharides in Cells of Zedoary (Curcuma zedoaria Roscoe) Cultured in a10L Bioreactor[J]. BIOTECHNOLOGY AND BIOPROCESS ENGINEERING,2009,14(5):619~624.
    [100] Ding C K, Chachin K, Ueda Y, et al. Inhibition of loquat enzymatic browning bysulfhydryl compounds[J]. FOOD CHEMISTRY,2002,76(2):213~218.
    [101] Ko W H, Su C C, Chen C L, et al. Control of lethal browning of tissue cultureplantlets of Cavendish banana cv. Formosana with ascorbic acid[J]. PLANTCELL TISSUE AND ORGAN CULTURE,2009,96(2):137~141.
    [102] Chisti Y, Jauregui-Haza U J. Oxygen transfer and mixing in mechanicallyagitated airlift bioreactors[J]. BIOCHEMICAL ENGINEERING JOURNAL,2002,10(2):143~153.
    [103] Yu L, Wang H, Wang L, et al. Rheological property of self-flocculating yeastsuspension[J]. BIOCHEMICAL ENGINEERING JOURNAL,2010,52(1):50~54.
    [104] Mancini M, Moresi M. Rheological behaviour of baker's yeast suspensions[J].JOURNAL OF FOOD ENGINEERING,2000,44(4):225~231.
    [105]俞路,白凤武.絮凝颗粒酵母悬浮液流变特性比较分析[J].化学工程,2010,(6):71~74.
    [106] Pan Z W, Wang H Q, Zhong J J. Scale-up study on suspension cultures of Taxuschinensis cells for production of taxane diterpene[J]. ENZYME ANDMICROBIAL TECHNOLOGY,2000,27(9):714~723.
    [107] Gong Y W, Li S Y, Han R B, et al. Age-related responses of suspension culturedTaxus cuspidata to hydrodynamic shear stress[J]. BIOCHEMICALENGINEERING JOURNAL,2006,32(2):113~118.
    [108] Kelly W, Gigas B. Using CFD to predict the behavior of power law fluids nearaxial-flow impellers operating in the transitional flow regime[J]. CHEMICALENGINEERING SCIENCE,2003,58(10):2141~2152.
    [109] Nagata Y, Chu K H. Optimization of a fermentation medium using neuralnetworks and genetic algorithms[J]. BIOTECHNOLOGY LETTERS,2003,25(21):1837~1842.
    [110]罗建平,罗凯,陈晓燕,等.用神经网络和遗传算法优化怀槐悬浮细胞合成异黄酮[J].生物工程学报,2004,20(5):759~763.
    [111] Chong T M, Abdullah M A, Fadzillah N M, et al. Jasmonic acid elicitation ofanthraquinones with some associated enzymic and non-enzymic antioxidantresponses in Morinda elliptica[J]. ENZYME AND MICROBIALTECHNOLOGY,2005,36(4):469~477.
    [112] Trejo-Tapia G, Cerda-Garcia-Rojas C M, Rodriguez-Monroy M, et al.Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) DCcell suspension cultures in a stirred tank bioreactor[J]. BIOTECHNOLOGYPROGRESS,2005,21(3):786~792.
    [113] Luna-Palencia G R, Cerda-Garcia-Rojas C M, Rodriguez-Monroy M, et al.Influence of auxins and sucrose in monoterpenoid oxindole alkaloid productionby Uncaria tomentosa cell suspension cultures[J]. BIOTECHNOLOGYPROGRESS,2005,21(1):198~204.
    [114] Mur L, Kenton P, Draper J. In planta measurements of oxidative bursts elicited byavirulent and virulent bacterial pathogens suggests that H2O2is insufficient toelicit cell death in tobacco[J]. PLANT CELL AND ENVIRONMENT,2005,28(4):548~561.
    [115] Han R B, Yuan Y J. Oxidative burst in suspension culture of Taxus cuspidatainduced by a laminar shear stress in short-term[J]. BIOTECHNOLOGYPROGRESS,2004,20(2):507~513.
    [116] Zhao J, Fujita K, Sakai K. Oxidative stress in plant cell culture: A role inproduction of beta-thujaplicin by Cupresssus lusitanica suspension culture[J].BIOTECHNOLOGY AND BIOENGINEERING,2005,90(5):621~631.
    [117] Chen S Y, Huang S Y. Shear stress effects on cell growth and L-DOPAproduction by suspension culture of Stizolobium hassjoo cells in an agitatedbioreactor[J]. BIOPROCESS ENGINEERING,2000,22(1):5~12.
    [118] Alvarez M E, Pennell R I, Meijer P J, et al. Reactive oxygen intermediatesmediate a systemic signal network in the establishment of plant immunity[J].CELL,1998,92(6):773~784.
    [119] Zhang H C, Liu J M, Lu H Y, et al. Enhanced flavonoid production in hairy rootcultures of Glycyrrhiza uralensis Fisch by combining the over-expression ofchalcone isomerase gene with the elicitation treatment[J]. PLANT CELLREPORTS,2009,28(8):1205~1213.
    [120] Ding Z S, Zhao M, Jing Y X, et al. Efficient Agrobacterium-mediatedtransformation of rice by phosphomannose isomerase/mannose selection[J].PLANT MOLECULAR BIOLOGY REPORTER,2006,24(3-4):295~303.
    [121] Mehrotra M, Sanyal I, Amla D V. High-efficiency Agrobacterium-mediatedtransformation of chickpea (Cicer arietinum L.) and regeneration ofinsect-resistant transgenic plants[J]. PLANT CELL REPORTS,2011,30(9):1603~1616.
    [122] Wu S J, Wang H H, Li F F, et al. Enhanced Agrobacterium-mediatedTransformation of Embryogenic Calli of Upland Cotton via Efficient Selectionand Timely Subculture of Somatic Embryos[J]. PLANT MOLECULARBIOLOGY REPORTER,2008,26(3):174~185.
    [123] Li W, Asada Y, Yoshikawa T. Flavonoid constituents from Glycyrrhiza glabrahairy root cultures[J]. PHYTOCHEMISTRY,2000,55(5):447~456.
    [124] Li W, Asada Y, Koike K, et al. Flavonoids from Glycyrrhiza pallidiflora hairyroot cultures[J]. PHYTOCHEMISTRY,2001,58(4):595~598.
    [125] Shin K S, Chakrabarty D, Ko J Y, et al. Sucrose utilization and mineral nutrientuptake during hairy root growth of red beet (Beta vulgaris L.) in liquid culture[J].PLANT GROWTH REGULATION,2003,39(2):187~193.
    [126] Nakamura T, Ishikawa M. Transformation of suspension cultures of bromegrass(Bromus inermis) by Agrobacterium tumefaciens[J]. PLANT CELL TISSUEAND ORGAN CULTURE,2006,84(3):293~299.
    [127] Zhang P, Liu T T, Zhou P P, et al. Agrobacterium tumefaciens-mediatedTransformation of A Taxol-Producing Endophytic Fungus, Cladosporiumcladosporioides MD2[J]. CURRENT MICROBIOLOGY,2011,62(4):1315~1320.
    [128] Jez J M, Noel J P. Reaction mechanism of chalcone isomerase-pH dependence,diffusion control, and product binding differences[J]. JOURNAL OFBIOLOGICAL CHEMISTRY,2002,277(2):1361~1369.
    [129] Park N I, Xu H, Li X H, et al. Enhancement of flavone levels throughoverexpression of chalcone isomerase in hairy root cultures of Scutellariabaicalensis[J]. FUNCTIONAL&INTEGRATIVE GENOMICS,2011,11(3):491~496.
    [130] Li F X, Jin Z P, Zhao D X, et al. Overexpression of the Saussurea medusachalcone isomerase gene in Saussurea involucrata hairy root cultures enhancestheir biosynthesis of apigenin[J]. PHYTOCHEMISTRY,2006,67(6):553~560.
    [131] Ainsley P J, Collins G G, Sedgley M. Factors affecting Agrobacterium-mediatedgene transfer and the selection of transgenic calli in paper shell almond (Prunusdulcis Mill.)[J]. JOURNAL OF HORTICULTURAL SCIENCE&BIOTECHNOLOGY,2001,76(5):522~528.
    [132] Mohri T, Mukai Y, Shinohara K. Agrobacterium tumefaciens-mediatedtransformation of Japanese white birch (Betula platyphylla var. japonica)[J].PLANT SCIENCE,1997,127(1):53~60.
    [133] Pandey V, Misra P, Chaturvedi P, et al. Agrobacterium tumefaciens-mediatedtransformation of Withania somnifera (L.) Dunal: an important medicinal plant[J].PLANT CELL REPORTS,2010,29(2):133~141.
    [134] Mourgues F, Chevreau E. Efficient Agrobacterium-mediated transformation andrecovery of transgenic plants from pear[M]//HORTICULTURALBIOTECHNOLOGY IN VITRO CULTURE AND BREEDING. LEUVEN1:INTERNATIONAL SOCIETY HORTICULTURAL SCIENCE,1997:355~359.
    [135] Ketchum R, Wherland L, Croteau R B. Stable transformation and long-termmaintenance of transgenic Taxus cell suspension cultures[J]. PLANT CELLREPORTS,2007,26(7):1025~1033
    [136] Xu H, Park N I, Li X H, et al. Molecular cloning and characterization ofphenylalanine ammonia-lyase, cinnamate4-hydroxylase and genes involved inflavone biosynthesis in Scutellaria baicalensis[J]. BIORESOURCETECHNOLOGY,2010,101(24):9715~9722.
    [137] Zhang P, Li S T, Liu T T, et al. Overexpression of a10-deacetylbaccatin III-10beta-O-acetyltransferase gene leads to increased taxol yield in cells of Taxuschinensis[J]. PLANT CELL TISSUE AND ORGAN CULTURE,2011,106(1):63~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700