环境要素对玄参次生代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物次生代谢物在人类生活中有十分重要的作用,在植物体内含量多少受多个生态因子共同影响。近些年来,植物生理生态研究者逐渐认识到植物次生代谢产物广泛的生物学效应,如化感作用、生物驱虫等,研究这些化合物在植物生命活动以及生态系统中可能扮演的角色成为国内外植物生理与生态学者们的研究热点。
     植物在转变成药用植物的栽培过程中,经历了生态系统的转变,从原来的生态系统转变为农业生态系统。生物多样性变少,人类活动影响的增加,如果忽视药用植物在多种生物和环境作用下形成的特殊代谢途径,改变植物的生长环境,减少药用植物与原来生境的交互作用,长期种植,必定会使原来的与其生境“交流”能力降低,而药用植物次生代谢强度正和植物与生境间的“交流”作用密切相关。
     玄参具有凉血滋阴、泻火解毒之功效,随着中药产业化的快速发展,使用和需求量日益扩大。与其它药用植物相比,可以说玄参次生代谢的影响因素的研究才刚刚起步,探索不同生态因子对玄参次生代谢的影响对玄参的理论研究和生产应用都具有十分重要的作用。因此,借鉴其它药用植物的如红豆杉、丹参、柴胡等研究成果,对我国栽培的玄参通过调查采样、智能气候培养箱培养以及室内分析等研究手段,以植物次生代谢理论和植物生理生态学等学科的研究为基础,详细研究了不同生态因子对玄参次生代谢物含量的影响,主要取得了以下结论:
     (1)全国八个产地:河北安国、陕西杨凌、陕西镇坪、湖北巴东、湖南龙山、重庆南川、浙江东阳和浙江仙居的玄参中主要活性成分,如梓醇、桃叶珊瑚苷、哈巴苷、哈巴俄苷和肉桂酸,含量差异显著。年降水量和七月平均气温对玄参次生代谢物含量影响较大。降雨量通常对植物蒸腾作用和生长发育影响较大,而对光合作用影响较小。在一定范围内,降雨量减少可以为玄参提供了相对较多的碳水化合物用于次生代谢,所以玄参中次生代谢物含量增加。七月是玄参由营养生长向生殖生长转化的时期,较高的温度促使玄参消耗较多的碳水化合物用于生殖生长,进而减少次生代谢的前体物质,所以次生代谢物含量降低。
     (2)对于幼苗期玄参来说,从抗氧化保护酶活性变化过程来看,不同生态型表现出不同的抗旱性,来自于河北安国生态型抗旱性最强,重庆南川的生态型次之,浙江东阳的生态型最弱。水分胁迫对玄参次生代谢物含量有重要影响,轻度水分胁迫可促进哈巴苷和哈巴俄苷的合成,较重的水分胁迫可促进梓醇和桃叶珊瑚苷的积累。水分胁迫不利于肉桂酸的合成和积累。水分胁迫引起次生代谢物含量的变化可能与超氧自由基浓度变化有关。
     (3)对于盛花期玄参来说,由于高温胁迫破坏了叶片的光合系统,造成叶绿素荧光值下降,合成的碳水化合物减少,而玄参生殖生长也需要消耗大量的碳水化合物,所以会引起合成次生代谢物的底物减少,造成次生代谢物含量下降的结果。在五种化合物中,哈巴俄苷含量对高温胁迫最敏感。盛花期玄参能够忍耐短时间的高温胁迫,不同的来源的生态型耐高温胁迫能力不同,来自重庆南川的耐高温胁迫能力最强,浙江东阳的次之,河北安国的最弱,这与它们长期适应当地气候有关。
     (4)茉莉酸甲酯和水杨酸作为两种比较常见的具有生物活性的化合物,其溶液胁迫都能引起玄参叶片超氧阴离子浓度和抗氧化酶活性变化,前者能够使超氧阴离子浓度持续上升和次生代谢产物如梓醇,哈巴苷,桃叶珊瑚苷和哈巴俄苷含量上升,而水杨酸胁迫只能使超氧阴离子浓度短时间上升,而对玄参次生代谢无明显诱导作用。
     (5)茉莉酸甲酯作为植物信息激素的一种,外源添加可以起植物的防御性反应和促进次生代谢活动。利用茉莉酸甲酯溶液短期浸泡玄参鲜根和组织,可显著提高梓醇、哈巴苷、桃叶珊瑚苷和哈巴俄苷的含量。在人工栽培药用植物过程中,合理使用植物信息激素恢复药用植物的次生代谢潜能,必将安全的、有效的和稳定的提高植物药材的质量。
     (6)病源微生物的入侵,通常会引起植物的防御性反应。由经高温灭活的杨树溃疡病菌、棉花枯萎病菌、烟草赤星病菌、南瓜枯萎病菌和白菜黑斑病菌的制成诱导子对玄参无菌苗进行诱导试验,结果表明只有杨树溃疡病菌诱导子具有较强的诱导玄参次生代谢物含量增加的活性。通过进一步试验发现,由灭活的杨树溃疡病菌制成诱导子,可显著提高玄参组织中的次生代谢物,如梓醇、桃叶珊瑚苷、哈巴苷和哈巴俄苷含量。四种化合物含量在诱导处理最合适浓度有所不同,诱导处理后含量变化规律各不相同,它们在玄参体内可能存在相互转化的机制。
Medicinal plant secondary metabolites have an important role in human life, and their contents in plants are affected by multiple ecological factors. In recent years, it is increasingly recognized by plant physiology and ecology researchers that plant secondary metabolites have a wide range of biological effects and may play an important role in the plant life and ecosystems.
     In cultivation process, medicinal plants are transferred from the original ecosystems into agro-ecosystems and programmed loss of biodiversity, and increased human impact. Neglecting that wild medical herbs have formatted a special metabolic pathway in a variety of biological and environmental effect, changing herbs growing environment, reducing the interaction of herbs and their habitats, long-term cultivation will make "intercommunion" capacity of the medical herbs reduce. However, secondary metabolites strength of medical herb is closely related with the "intercommunion" capacity of the plants.
     Radix Scrophulariaceae has an important use in cooling blood, detoxification and antimycobacterial. With the rapid development of Chinese medicine industry, Radix Scrophulariaceae is used and demanded more and more. Compared with other medicinal plants, it can be said that the research on ecological factors on the secondary metabolism of Scrophulariaceae just started. So, to explore different ecological factors on secondary metabolism of Scrophularia ningpoensis Hemsl is very important in theoretical and production. Therefore, we can only learn from other medicinal plants such as Taxus chinesis var mairei, Salvia miltiorrhiza, Bupleurum chinense and other researches. By the field investigation, and the intelligent climate incubator development, and the analysis of indoor means to plant secondary metabolism of plant physiological ecology theory and research-based disciplines to study the different ecological factors on the content of secondary metabolites in S. ningpoensis, we mainly made the following conclusions:
     1. From the eight regions S. ningpoensis producted in China, such as Anguo in Hebei Province, Yangling and Zhenping in Shaanxi Province, Bangdong in Hubei Province, Nanchuan in Chongqing City, Longshan in Hunan Province, Xianju and Dongyang in Zhejiang Province, the contents of the main active ingredient of Radix Scrophulariaceae, such as catalpol, aucubin, harpagide, harpagoside and cinnamic acid, were disparities. Annual precipitation and July temperature had more effect on the content of secondary metabolites of Radix Scrophulariaeciae than any other climatic factors. The effect of rainfall on plant transpiration and growth and development is more obvious than that on the photosynthesis. Within a certain range, reduced rainfall could provide a relatively more carbohydrates to S. ningpoensis plants for the secondary metabolism, so S. ningpoensis increased the levels of secondary metabolites. July is the time that S. ningpoensis transformates from vegetative growth to reproductive growth, higher temperatures promote greater consumption of carbohydrates of S. ningpoensis for reproductive growth, thereby reducing the content of secondary metabolites
     2. To S. ningpoensis seedlings, the drought resistances of different sources of S. ningpoensis ecotypes were quite different. The drought resistance of ecotype from Anguo, Hebei Province was the strongest, and that from Nanchuan in Chongqing City was the second, and that from Dongyang in Zhejiang Province was the worst. The mild water stress was conducive to harpagide and harpagoside accumulation, severe water stress was conducive to aucubin and catalpol accumulation, but water stress was not conducive to the accumulation of cinnamic acid. The changes in levels of secondary metabolites by water stress induced may be related to the changes in the concentration of superoxide radical.
     3. To flowering S. ningpoensis plants, high temperature stress damaged their photosynthetic system, and resulted their chlorophyll fluorescence decreased, so the synthesis of carbohydrates decreased. While the S. ningpoensis reproductive growth also consumed a lot of carbohydrates, it will lead to synthesis of secondary metabolites reduced on the substrate material, resulting secondary metabolites decreased. In the five compounds, harpagoside content was the most sensitive to high temperature stress. Flowering S. ningpoensis could tolerate a short period of heat stress. And the high temperature stress resistances of different sources of S. ningpoensis ecotypes were quite different. The high temperature stress resistances of the ecotype from Nanchuan in Chongqing City was the strongest, and followed by that from Dongyang in Zhejiang Province, and that from Anguo in Hebei Province was the weakest. This may relate with their long-term adaptation to local climate.
     4. Methyl jasmonate and salicylic acid stress both could cause superoxide anion and antioxidant enzyme activity in the leaves of S. ningpoensis changed, the former would keep on rising to superoxide anion concentration and increasing secondary metabolites such as catalpol, harpagide, aucubin and harpagoside content, while salicylic acid stress could only make short-term increase in superoxide anion concentration and no significant effect on the secondary metabolism.
     5. As a plant information hormone, methyl jasmonate as an external source could induce the defensive reaction of the plant and promot of secondary metabolite content. If the fresh root and organizations of S. ningpoensis were short-term soaked in methyl jasmonate solution, the catalpol, harpagide, aucubin and harpagoside contents in them could be significantly improved. In the process of the artificial cultivation of medicinal plants, the felicitous use of plant information hormones could recovery the potential of secondary metabolites in medical plants. This will bound to be a safe, effective, stabilite way to improve quality of medicinal plants.
     6. The invasion by pathogenic microorganisms, usually cause plant defense response. The five different sources fungal elicitors were tested in the induction of S. ningpoensis sterile test. We found that only Dothiorella gregaria elicitor can induce secondary metabolites in S. ningpoensis increased. The further experiments showed that the Dothiorella gregaria elicitor could significantly increase secondary metabolite contents in the S. ningpoensis organization, such as catalpol aucubin, harpagide and harpagoside. The content of the four compounds induced by Dothiorella gregaria elicitor changed in different way in the experiment. They may change into each other in S. ningpoensis.
引文
[1] Giner, RM, Villalba, ML, Recio, MC, et al. A new iridoids from Scrophularia auriculata ssp. Pseudoauriculata [J]. J. Nat.Prod., 1998, 61, 1161-1163
    [2] Giner, RM, Villalba, ML, Recio, MC, et al. Anti-inflammatory glycoterpenoids from Scrophularia auriculata [J].Eur. J. Pharmacol. 2000, 389, 243-252
    [3] Kim, SR, Kim, YC, Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana [J].Phytochemistry 2000, 54, 503-509.
    [4] Kim SR, Sung SH, Jang YP, et al. E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate [J].Br. J. Pharmacal. 2002, 135, 1281-1291.
    [5] Luo L, Wang JN, Kong LD, et al. Antidepressant effects of Banxia Houpu decoction, a traditional Chinese medicinalempirical formula[J].Journal of Ethnopharmacology, 2000,73, 277–281.
    [6] Schinella GR, Tournier HA, Prieto JM, et al Antioxidant activity of anti-inflammatory plant extracts.[J].Life Sciences 2002. 70, 1023–1033.
    [7] Grabias B, Kurowska A, Swiatek L. Investigation of chemical composition of Scrophularia nodosa L.seeds[J].Herb pol, 1995, 41: 59-63;
    [8]苏慧敏.玄参佐肉桂治疗高血压病伴失眠[J].中医杂志,2010,51(2):150.
    [9]张道锦.玄参质量控制方法的研究[D].沈阳药科大学硕士学位论文,2000.
    [10]国家药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社,2005.
    [11]中国科学院中国植物志编辑委员会.中国植物志(第六十七卷第二分册)[M].北京:科学出版社,1979,55.
    [12] Taskova RM, Charlotte HG, Jensen SR. Chemotaxonomy of Veroniceae and its allies in the Plantaginaceae [J].Phytochemistry , 2006, 67: 286–301;
    [13] Nass R, Rimpler H. Distribution of iridoids in different populations of physostegia virginiana and some remaks on iridoids from Avicennia officinalis and Scrophularia ningpoensis [J].phytochemistry, 1996, 41(2): 489-498
    [14] Li YM, Jiang SH, Gao WY, et al. Iridoid glycosides from Scrophularia ningpoensis [J]. Phytochemistry, 1999, 50, 101–104.
    [15] Bas E, Carmen M, Manez RS, et al. New insight into the inhibition of the inflammatory response to experimental delayed-type hypersensitivity reactions in mice by scropolioside A [J].Eur. J. Pharmacol. 2006, 555: 199-210
    [16] Bas E, Carmen M. Recio MA, et al. Inhibition of the pro-inflammatory mediators’production and anti-inflammatory effect of the iridoid scrovalentinoside [J].Journal of Ethnopharmacology, 2006, 110: 419–427
    [17] Stavri M,Mathew KT,Gibbons S. Antimicrobial constituents of Scrophularia deserti [J].Phytochemistry, 2006, 67, 530–533
    [18] Qian J, Hunkler D, Rimpler H. Iridoid-related aglycone and its glycosides from Scrophularia ningpoensis. [J].Phytochemistry, 1992, 31, 905–911.
    [19] Li YM, Jiang SH, Gao WY, et al. Phenylpropanoid glycosides from Scrophularia ningpoensis [J]. Phytochemistry, 2000, 54, 923–925.
    [20] Kim SR, Kang SY, Lee KY, et al. Anti-amnestic activity of E-p-methoxycinnamic acid fromScrophularia buergeriana [J].Cognitive Brain Research., 2003, 17: 454–461
    [21] D?az AM, Abad MJ, Fernandez L, et al. Phenylpropanoid glycosides from Scrophularia scorodonia: In vitro anti-inflammatory activity [J].Life Sciences, 2004, 74, 2515–2526
    [22] Tasdemir D, Nadide DG, Remo P, et al. Anti-protozoal and plasmodial FabI enzyme inhibiting metabolites of Scrophularia lepidota roots [J].Phytochemistry, 2005, 66: 355–362
    [23] Miyazawa, M O, Yoshiharu D. Volatile components from the roots of Scrophularia ningpoensis Hemsl [J].Flavour and Fragrance Journal, 2003, 18 (5): 398-400
    [24] Nguyen AT, Fontaine J, Malonne H, et al. A sugar ester and an iridoid glycoside from Scrophularia ningpoensis [J].Phytochemistry, 2005, 66: 1186–1191.
    [25] Li Y, Zou CT, Liu HW. Determination of Harpagide and Harpagoside in Scrophularia ningpoensis by capillary Electrophoresis [J].Charomatographia, 1999, 50(9): 358-362
    [26] Tong SQ, Yan JZ,Lou JZ, et al. Preparative isolation and purification of harpagoside from Scrophularid ningpoensis Hemsley by high-speed countercurrent chromatography [J].Phytochemical Analysis, 2006, 17 (6): 406-408;
    [27]国家医药管理局中草药情报中心站.植物药有效成分手册[M ].北京:人民卫生出版社, 1986: 546.
    [28] Lee MK, Choi, OG, Park, JH, et al. Simultaneous determination of four active constituents in the roots of Scrophularia buergerian by HPLC-DAD and LC-ESI-MS [J]. Journal of Separation Science, 2007, 30 (15): 2345-2350
    [29]于静玄参质量标准体系的建立与优化[D].西北农林科技大学硕士论文,2009
    [30]黄璐琦,郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J].中国中药杂志,2007,32(4):277-280.
    [31]陈晓亚.植物次生代谢研究[J].世界科技研究与发展,2006,28(5):1-4.
    [32]阎秀峰.植物次生代谢生态学[J].植物生态学报,2001,25(5):639-641.
    [33]张永清,商庆新.药用植物次生代谢与中药材GAP[J].世界科学技术~中药现代化,2005:7(2):67-63.
    [34]李广臣.人参、西洋参规范化栽培与加工技术[M].中国劳动保障出版社,2002,17
    [35] Tang CS, Cai W F, Kohl K. et al. Plant stress and allelopathy [J].ACS Symp Ser 1995, 582:142.
    [36]何丙辉,钟章成.不同环境胁迫下银杏构件种群药用成分变化的研究[J].西南农业大学学报,2003,25(1):7-10.
    [37]蔡娜,淡荣,陈鹏.水分胁迫对苦荞幼苗黄酮类物质含量的影响[J].西北农业学报,2008(17):91-93.
    [38]杜玮炜,黄宏文.雷公藤次生代谢产物雷公藤红素含量与环境因子相关性分析[J].植物学通报,2008,25(6):707-713.
    [39]石进校,易浪波,田艳英.干旱胁迫下淫羊藿总黄酮与保护酶活性[J].吉首大学学报,2004,25(4):80-83
    [40] Zhu ZB, Liang ZS, Han RL. Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC. Plants [J]. Environ Exp Bot, 2009,66: 326-333.
    [41] Zhu ZB, Liang ZS, Han RL. Growth and Saikosaponins production of medicinal herb Bupleurum chinense DC. Under different levels of nitrogen and phosphorus [J].Industrial Crops and Products, 2009, 29, 96-101.
    [42]康建宏,吴宏亮,杨涓,等.不同施氮水平下枸杞主要次生代谢产物与多糖的关系研究[J].安徽农业科学,36(36):16008-16010.
    [43] Lee KD, Yang MS, Smith D L. Fertilizer effect on the yield and terpene componts from the flowerheads of Chrysanthemum boreale M (Compositae) [J].Agron.Sustain. Dev., 2005, 25, 205-211.
    [44] Wang Y, Shang XH, Yan XF. Effects of N levels on growth and salidroside content in Rhodiola sachalinensis [J].Journal of Plant Physiology and Molecular Biology, 2003, 29: 357-359.
    [45] Yan XF, Wu SX, Wang Y, et al. Soil nutrient factors related to salidroside production of Rhodiola sachalinensis distributed in Chang Bai Mountain.[J].Environmental and Experimental Botany, 2004, 52: 267-276.
    [46]汪吉东,刘兆普,郑青松,等供氮水平对芦荟幼苗生长、硝酸和次生代谢产物含量的影响[J].植物营养与肥料学报,2006,12(6): 864-868
    [47] Liu ZJ, Viator HP, Constantin RJ, et al. Influence of soil fertilization, plant spacing, and coppicing on growth, stomata conductance, abscisic acid, and camptothecin levels in Camptotheca acuminate seedlings [J].Physiologia Plantarum, 1999, 105: 402-408.
    [48] Li X, Yan XF, Liu JF. Effect of nitrogen forms on berberine, jatrorrhizine and palmatine content in cork tree seedlings [J].Acta Ecologica Sin,2005, 25: 2159-2164.
    [49]张檀,白明生.几种矿质元素对杜仲叶次生代谢物的影响初探[J].西北农林科技大学学报,2002,30(1):119-122.
    [50] Yuan YJ, Wei ZJ, Miao ZQ, et al. Acting paths of elicitors on Taxol biosynthesis pathway and their synergistic effect [J].Biochemical Engineering Journal, 2002, 10, 77–83.
    [51] Ge XC, Wu JY.Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor [J].Plant Science, 2005, 168, 487–491
    [52]周立刚,王君健,杨崇仁.植物毛状根的培养及其化学进展——1.植物毛状根的诱导形成与培养[J].天然产物研究与开发,1998,10(3):87-95.
    [53]王中风,应铁进.植物乙烯信号转导研究进展[J].植物生理与分子生物学学报,2004 ,30(6):601-608
    [54]王改玲,郝明德,党廷辉,等.黄土高原旱地长期施用微肥对冬小麦产量及氮磷养分吸收的影响[J].西北植物学报,2003, 23(8): 1402—1405
    [55]范彦英,赵继文,刘素霞,等.硼、钼微肥配施对大豆产量及品质的影响[J].中国种业,2003,10:44.
    [56]董申平,李少华,高三明,等.花生硼、钼、锌微肥配合施用效应的研究[J].湖南农业科学,2003,6:38-39.
    [57]罗连光,黄若玲,贺爱国,等.生物活性稀土微肥对红地球葡萄产量与品质的影响[J].中国稀土学报,2006,24:200-202
    [58]张秀玥,李明荣,张启东等.不同微肥施用量对白芨产量及品质的影响[J].贵州农业科学,2009,37(2): 31-32.
    [59]于品华硼、锰及稀土微肥在当归栽培中的应用效果[J].中药材,2004,27(3):159-160.
    [60]刘书芬三种柴胡中柴胡皂苷acd动态积累规律的比较研究[D].复旦大学,2006.
    [61] Haegele BF, Rowell-Rahier M. Genetic and environmental-based variability in secondarymetabolite leaf content of Adenostyles alliariae and A. Alpine (Asteraceae) A test of the resource availability hypothesis. [J].Oikos, 1999, 85:234-246.
    [62] Wang Y, Dai SJ, Yan XF. Effects of light intensity on secondary metabolite camptothecin production inleave of Camptotheca acuminate seedlings [J].Acta Ecologica Sinica, 2004, 24: 1118-1122.
    [63] Yan XF, Wang Y, Shang XH, et al. Effects of field light intensity and quality on biomass and salidroside content in roots of Rhodiola sachalinensis [J] Acta Ecologica Sinica, 2004, 24: 674-679.
    [64] Zhao J, Hu Q, Zhu W. Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures [J]. Plant Growth Regulation, 2001, 33: 43-49
    [65]李强,任茜,张永良,等.生境、采收期、贮藏时间等因素对秦岭金银花氯原酸含量的影响[J].中国中药杂志,19(10):594-595
    [66]张治安,徐克章,任跃英等.光照条件对参株碳水化合物和人参皂试含量的影响[J].吉林农业大学学报,1994,16(3):15-17.
    [67]王慧春,李毅,王环,等.光照对水母雪莲愈伤组织合成生物碱的影响[J].西北植物学报,2002, 22 (1) : 69—73
    [68] Xue H J, Yue M. Effects of enhanced UV-B radiation on terrestrial plant secondary metabolite.[J]. Acta Botanica Boreali-occidentalia Sinica, 2004, 24: 1131-1137.
    [69] Bettina E,Deavours R. Metabolic engineer of isoflavonoid biosynthesis in Alfalfal [J].Plant Physiol,2005,138(4):22-45.
    [70]赵德修,李茂寅,邢建军,等.光质、光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响[J].植物生理学报,1999,25(2):127-132.
    [71] Janas K M, Cvikrova M, Palagiewicz A, et al. Constitutive elevated accumulation ofphenylpropanoids in soybean roots at low temperature [J].Plant Science,2002, 163:369-373.
    [72] Pietrini F, Iannelli M A, Massacci A. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis [J].Plant Cell and Environment, 2002, 25: 1250-1260.
    [73]Kinney KK, Lindroth RL, Jung SM, et al. Effects of CO2 on NO3- availability on deciduous trees: phytochemistry and insect performance.[J].Ecology, 1997, 78: 215-230.
    [74] Davey MP, Bryant DN, Cummins I, et al. Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of plantago maritime [J].Phytochemistry, 2004, 65: 2197-2204.
    [75] Lavola A, Julkunen-Tiitto R. The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula penula (Roth) [J].Oecologia, 1994, 99: 315-321.
    [76] Heyworth CJ, Iason GR, Temperton V, et al. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L [J].Oecologia, 1998, 115: 244-350.
    [77] Ali MB, Hahn EJ, Paek KY. CO2 induced total phenolics in suspension cultures of Panax ginseng C. A. Mayer roots: role of antioxidants and enzymes [J].Plant Physiology and Biochemistry, 2005, 43: 449-457.
    [78] Lavola A. Soluble carbohydrated and secondary phytochemicals in Betula as affected by SO2- pollution [J]. Water Air and Soil Pollution, 1998, 107: 25-34.
    [79]朱再标柴胡根系次生代谢物积累对干旱的响应与抗脂质过氧化保护机制[D].中国科学院研究生院博士学位论文,2009.
    [80]阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2562.
    [81] Karban R, Myers J H. Induced plant responses to herbivory [J].Annual Review of Ecology Systematics, 1989, 20: 331 - 348.
    [82] Miller B, Madilao LL, Ralph S, et al. Insect induced conifer defense. White pine weevil and methyljasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in sitka spruce [J].Plant Physiology, 2005, 137: 369 - 382.
    [83] Wink M. Wounding-induced increase of quinolizidine alkaloid accumulation in lupin leaves. [J].Zeitsch Naturforsch, 1983, 38: 905 - 909.
    [84] Inder J. Plant phenolics in allelopathy [J]. Botanical Review, 1996, 62: 186 - 202.
    [85] Langenheim JH. Higher plant terpenoids: A phytocentric overview of their ecological roles [J].Journal of Chemical Ecology, 1994, 20: 1223 - 1280.
    [86] Singh HP, Batish DR, Kohli RK. Autotoxicity: Concept, organisms, and ecological significance [J]. Critical Reviews in Plant Sciences, 1999, 18: 757 - 772.
    [87] Anaya AL, Waller GR, Owuor PO, et al. The role of caffeine in the production decline due to autotoxicity in coffee and tea plantations. In: Reigosa M J, Pedrol Neds. Allelopathy: From Molecules to Ecosystems. NewHamp shire: Science Publishers, 2002. 71 - 91.
    [88]周凯,郭维明,徐迎春.菊科植物化感作用研究进展[J].生态学报, 2004, 24: 1780~1788.
    [89] Amany KI, Sherief K, Ishrak K, et al. Stimulation of oleandrin production by combined Agrobacterium tumefaciens mediated transformation and fungal elicitation in Nerium oleander cell cultures [J].Enzyme and Microbial Technology, 2007,41: 331–336
    [90] Zhao J, Zhu WH, Hu Q. Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture[J].Enzyme and Microbial Technology, 2001, 28, 666–672
    [91] Zhao J, Zhu WH, Hu Q, Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors[J].Enzyme and Microbial Technology, 2001, 28 : 673–681
    [92] Yuan YJ, Li Ch, Hu ZD, et al. Signal transduction pathway for oxidative burst and taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysprum [J]. Enzyme and Microbial Technology, 2001, 29: 372–379
    [93] Zhang CH, Wu JY. Ethylene inhibitors enhance elicitor-induced paclitaxel production in suspension cultures of Taxus spp. Cells [J].Enzyme and Microbial Technology, 2003, 32: 71–77
    [94] Luis FR, Conceico FF, Rui MT, et al. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation [J].Phytochemistry2006, 67: 149–155
    [95] Murch SJ, Haq K, Rupasinghe HPV, et al. Nichel contamination affects growth and secondary metabolites composition of St.John’s wort (Hypericum perforatum L.) [J].Environ. Exp. Bot., 2003, 49, 251-257.
    [96] Zhao J, Davis LC, Verpoorte R. Elictor signal transduction leading to production of plant secondary metabolites [J].Biotechnol. Adv., 2005, 23, 283-333.
    [97] Xu MJ, Dong JF. O2- from elicitor-induced oxidative burst is necessary for triggering phenylalanine ammonia-lyase activation and catharanthine synthesis in Catharanthus roseus cell culture [J].Enzyme Microd. Tech., 2005, 36: 280-284.
    [98] Jabs T, Tschüoumlope M, Colling C, et al. Elicitor- stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley [J]. Proc. Natl. Acad. Sci. USA, 1997, 94, 4800-4805.
    [99] Rogers KR, Albert F, Anderson A. Lipid peroxidation is a consequence of elicitor activity [J].PlantPhysiol, 1988, 86: 547-553.
    [100]邱金龙,金巧玲,王钧.活性氧与植物抗病反应[J].植物生理学通讯,1998,34(1):56-63.
    [101]马忠华,叶钟音.植物-病源物互作过程中的活性氧[J].生命科学,1999,11增刊:107-110.
    [102] Yu LJ, Lan WZ, Chen Ch. Glutathione levels control glucose-6-phosphate dehydrogenase activity during elicitor-induced oxidative stress in cell suspension cultures of Taxus chinensis [J].Plant Science, 2004, (167) : 329–335
    [103] Yuan YJ, Li C, Hu ZD, et al. Singnal transduction pathway for oxidative burst and taxol production in suspention culture of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysprum [J]. Enzyme Microb. Tech., 2001, 29: 372-379.
    [104] Yuan YJ, Li JC, Ge ZQ, et al. Superoxide anion burst and taxol production induced by Ce4+ insuspension cultures of Taxus cuspidate [J].J. Mol.Catal. B: Enzym, 2002, 18, 251-260.
    [105] Hu XY, Neill SJ, Fang JY, et al. The mediation of defense responses of ginseng cells to an elicitor from cell walls of Colletotrichem lagerarium by plasma membrane NAD(P)H oxidases [J].Acta Bontanica Sinica, 2003, 45, 32-39.
    [106] Hu XY, Steven JN, Cai WM, et al. Activation of plasma membrane NADPH oxidase and generation of H2O2 mediate the induction of PAL activity and saponin synthesis by endogenous elicitor in suspension-cultured cells of Panax ginseng [J].Acta Botanica, 2003, 45(2), 1434-1441.
    [107]胡向阳,张文青,方建颖,等.脱乙酰壳多糖处理增加人参细胞皂苷的累积和皂苷合成关键基因的转录[J].植物生理与分子生物学学报,2002,28(6):485-490.
    [108]胡向阳,方建颖,蔡明伟,等.丝裂原活化蛋白激酶介导乙酰几丁质诱导的人参细胞氧迸发与皂苷合成[J].中国科学(C辑:生命科学),2004,34(1):31-40.
    [109] Zhao J, Hu Q, Guo Y Q, et al. Elicitor-induced indole alkaloid biosynthesis in Catharnthus roseus cell culture is related to Ca2+ influx and the oxidative burst [J].Plant Sci., 2001, 161, 423-431.
    [110]赵昕,阎秀峰.丛枝菌根真菌对植物次生代谢的影响[J].植物生态学报,2006,30: 514~521.
    [111] Boddu J, Svabek C, Sekhon R, et al. Expression of a putative flavonoid 3’- hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins [J].Physiological andMolecular Plant Pathology, 2004, 65: 101- 113.
    [112] Grayer RJ, Harborne JB. A survey of antifungal compounds from higher plants 1982- 1993 [J]. Phytochemistry, 1994, 37: 19 - 42.
    [113]徐茂军,董菊芳,朱睦元. NO通过水杨酸(SA)或者茉莉酸(JA)信号介导真菌诱导子对粉葛悬浮细胞中葛根素生物合成的促进作用[J].中国科学(C辑:生命科学),2006,36(1):66-75.
    [114] Chong TM,Abdullah MA,Lai OM. Effective elicitation factors in Morinda elliptica cell suspension culture [J].Process biochemistry, 2005, 40: 3397–3405
    [115] Qin WM, Lan WZ. Fungal elicitor-induced cell death in Taxus chinensis suspension cells is mediated by ethylene and polyamines [J].Plant Science 2004, 166: 989–995
    [116] Norbert O, Boldizsar I, Zoltan S, et al. Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures [J].Dyes and Pigments 2007, 1-9
    [117] Dicke M, Ludeking D, Posthumus M A, et al. Jasmonic acid and herbivory differentially induce carnivore-attracting p lant volatiles in lima bean plants [J].Journal of Chemical Ecology, 1999, 25: 1907 - 1922.
    [118] Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima beanleaves [J].Nature, 2000, 406: 512 - 515.
    [119] Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science, 2001, 291: 2141-2144.
    [120]苗志奇,未作君,元英进.水杨酸在紫杉醇生物合成中诱导作用的研究[J].生物工程学报,2000,16(4):509-514.
    [121]杨英,郑辉,李赟,等.茉莉酸甲酯与二氢茉莉酮酸甲酯对悬浮培养的甘草细胞生长和黄酮积累的影响[J].植物生理通讯,2008,44(5):903-906.
    [122]杨莜静水杨酸在植物逆境胁迫中的作用综述[J].安徽农学通报,2009,15(17):47-51.
    [123]薛仁镐,金圣爱.茉莉酸甲酯:一种重要的植物信号转导分子[J].生物技术通讯,2006,17(6):985-988.
    [124]苏文华,张光飞,李秀华,等.植物药材次生代谢产物的积累与环境的关系[J].中草药,2005,36(9):1415-1418.
    [125] Kong CH, Xu T, Hu F, et al. Allelopathy under environmental stress and its induced mechanism [J].Acta Ecol Sin, 2000, 20(5): 849-854.
    [126]刘立新,梁鸣早.用化肥开启植物次生代谢途径的原理和方法[J].中国土壤与肥料,2010,1:88,92.
    [127]朱再标,梁宗锁,卫新荣,等.柴胡氮、磷和有机肥施肥效应分析[J].植物营养与肥料学报,2007,13(1):167-170.
    [128] Kim YS, Cho JH, Ahn J, et al. Upregulation of isoprenoid pathway genes during enhanced saikosaponin biosynthesis in the hairy roots of Bupleurum Falcatum [J].Mol. Cell, 2006, 22, 269-274.
    [129]刘大会.矿质营养对药用菊花次生代谢和品质的影响及其作用机理研究[D].华中农业大学,2007
    [130]曹庸,张敏,于华忠,等.气象因子和矿质元素对虎杖根茎白藜芦醇含量的影响[J].应用生态学报,2004,15(7):1143-1147.
    [131]魏胜利.乌拉尔甘草地理变异与种源选择[D].东北林业大学,2003.
    [132] Deniz T, Nadide DG , Remo P, et al. Anti-protozoal and plasmodial FabI enzyme inhibiting metabolites of Scrophularia lepidota roots[J].Phytochemistry 2005 (66), 355-362;
    [133] Wang SS, Zheng ZG, Weng YQ, et al. Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts [J].Life Sciences, 2004, 74: 2467-2478.
    [134] Xu Ch, Luo L, Tan RX. Antidepressant effect of three traditional Chinese medicines in thelearned helplessness model[J].Journal of Ethnopharmacology, 2004, 91: 345-349.
    [135]黄才国,李医明,贺祥,等.玄参中苯丙素苷对大鼠肝损伤细胞凋亡的影响[J].中西医结合肝病杂志,2004,14(3):160-161.
    [136]李医明,曾华武,贺祥,等.玄参中环烯醚萜甙和苯丙素甙对LTB4产生及血小板聚集的影响[J].第二军医大学学报,1999,20(5):301-303.
    [137]尚雁君,李医明,蒋山好,等.玄参中苯丙素苷Acteoside对小鼠高尿酸血症的影响[J].解放军药学学报,2006,22(1):30-32.
    [138]谢文光,邵宁生,马晓昌,等.玄参治疗大鼠内毒素血症的血清蛋白质组变化的初步研究[J].中国中药杂志,2004,29(9):877-882.
    [139] Park S.U.,Chae Y.A.,Facchini P.J. Genetic transformation of the figwort, Scrophularia buergeriana Miq., an oriental medicinal plant[J].Plant Cell Rep, 2003, 21:1194-1198.
    [140]邹宗成,杨晓舰,向开栋,等.打顶对玄参产量和质量的影响[J].中国现代中药,2009,11(12):13-15.
    [141]陈斌龙,潘兰兰.玄参规范化生产技术标准规程[J].中国现代中药,2008,10(10):18-20.
    [142]汪世军,王敬才,高智谋,等.玄参斑枯病的药剂防治研究[J].现代农业科学,2009,16(6):150-152
    [143]赵志新,梁宗锁,姜在民,等.玄参ISSR2PCR反应体系的建立与优化[J].药物生物技术,2007,14 (5) : 318~323
    [144]薛媛菲,梁宗锁,姜再民,等.玄参种子的吸水特性及发芽条件研究[J].西北农业学报,2008 ,17 (2) :151-154
    [145]冯晓丽不同土壤水分对玄参生长发育及有效成分积累的影响[D].西北农林科技大学硕士论文,2008.
    [146]薛媛菲玄参的生物学特性研究[D].西北农林科技大学硕士论文,2008.
    [147]纪薇,梁宗锁,姜在民,等.玄参高产栽培优化配方施肥技术研究[J].西北农林科技大学学报(自然科学版),2008,36(2):170-175.
    [148]郭晓恒,马匀桐,严铸云,等.植物内生菌次生代谢稳定性探讨[J].华西药学杂志,25(2):228-231.
    [149]郭兰萍,黄璐琦,蒋有绪,等.影响仓术挥发油组分的气候主导因子及气候适宜性区划研究[J].中国中药杂志,2007,32(10):888-893.
    [150]王振月,王宗权,左月明,等.毛脉酸模次生代谢产物动态特征及其环境因子的相关性分析[J].中国中药杂志,2006,31(9):773-776.
    [151]吴庆生,朱仁斌,宛志沪,等.西洋参有效成分与气候生态因子的关系[J].生态学报,2002,22(5):779-782.
    [152]张晓煜,刘静,袁海燕,等.枸杞多糖与土壤养分、气象条件的量化关系研究[J].干旱地区农业研究,2003,21(3):43-47.
    [153]冯旭芹,崔秀明,陈中坚,等.三七有效成分与气候生态因子的相关性分析[J].中国农业气象,2006,27(1):888-893.
    [154]陈立松,刘星辉.水分胁迫对荔枝叶片呼吸代谢有关酶活性的影响[J].林业科学,2003,39(2):39-43.
    [155] Elster E F. Oxygen activation and oxygen toxicity [J].Ann Plant Physicol., 1998, 33: 73-96.
    [156]山仑,陈培元.旱地农业生理生态基础[M].北京:科学技术出版社,1998.
    [157]邹琦,李德全.作物栽培生理研究[M].北京:中国农业科学技术出版社,1998.
    [158]康绍忠,梁银丽,蔡焕杰.旱区水-土-作物关系及其最优调控原理[M].北京:中国农业出版社,1998,43-44.
    [159]谭勇水分亏缺对黄芪、菘蓝生长发育和有效成分的影响研究[D].中国科学院研究生院博士论文,2006.
    [160] Jaleel CA, Manivannan P, Sankar B, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. [J].Colloid. Sur. B: Biointerf., 2007, 60: 201-206.
    [161] Tan Y, Liang ZS., Shao HB, et al. Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at seeding stage.[J].Colloid. Sur. B: Biointerf., 2006, 49: 60-65.
    [162]张爱良,苗果园,王建平.作物根系与水分的关系[J].作物研究,1997,(2):426.
    [163] Thomas S, Li C.土壤水分对西洋参生长的研究[J].特产研究,2000,(4):60-62.
    [164] Van den Berg L., Zeng YJ. Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000 [J].S. Afr. J. Bot., 2006,72: 284-286.
    [165]高俊风.植物生理学试验指导[M].北京:高等教育出版社,2005.
    [166] Koca H, Bor M, Ozdemir F, et al. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars [J].Environ. Exp. Bot., 2007, 60: 3 44-351;
    [167] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts [J].Plant Cell Physiol, 1981, (22), 867–880;
    [168] Zhao L., He X., Wang XM, et al. Nitric oxide protects againsst polythyethylene glycol-induced of reed suspension cultures [J].J. Plant Physiol. 2008, 165: 182-191;
    [169] Shao HB, Chu, LY., Wu G. et al Changes of some anti-oxidative physiological indices unde soil water dedicits among 10 wheat (Triticum Aestivum L) genotypes at tillering stage[J].Colloid.surf.B:Biointerf, 2007, 54: 143-149;
    [170] Beligni MV. Lamattina L. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species [J].Plant cell Environ, 2002, 25: 734-44;
    [171] Costa JH., Jolivet Y. et al. Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance [J].J.Plant Physiol., 2007, 164: 718-727; [1722] Shao HB., Liang ZS, Shao MA, et al. Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits [J].Colloid. surf. B: Biointerf, 2005, (42): 187-195.
    [173] Quartacci MF, Navarri-Izzo F. Water stress and free radical mesiated changes in sunflower seedling [J].J.Plant Physiol. 1992,139: 621-625;
    [174] Badiani M, Biasi MG, Colognola M, et al. Catalase, peroxidase and superoxide dismutase activities in seedlings submitted to increasing water deficit [J].Agrochimica, 1990 (34): 90–102.
    [175] Renu K C, Selote D S. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than–susceptible wheat cultivar under field conditions [J].Environ. Exp. Bot, 60 (2007): 276-283;
    [176] Duan JJ, Li J, Guo SJ, et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance[J].J.Plant Physiol., 2008, 165: 1620-1635;
    [177] Mercado JA, Matas AJ, Heredia A, et al. Changes in the water binding characteristics of the cell walls from transgenic Nicotiana tabacum leaves with enhanced levels of peroxidase activity [J].Physiol. Plant, 2004, (122): 504-512;
    [178] Yazici I, Turkan I. Sekmen AH, et al. Salinity tolerance of purslane (Portulaca oleracea L) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation [J]. Environ. Exp. Bot., 2007, 61: 49-57.
    [179] Shao HB, Chu LY, Shao MA, et al. Higher plant antioxidants and redox signaling under environmental stresses [J].C R Biologies, 2008, 331: 433-441.
    [180] Bartosz G. Reactive oxygen species: Destroyers or messengers? [J].Biochem Pharmacol, 2009, 77: 1303-1315.
    [181] Grassmann J, Hippeli S. Elstner EF. Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoide in avoiding oxygen stress [J].Plant Physiol.biochem., 2002, 40: 471-478.
    [182] Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis [J].MutatRes-Gen Tox En, 2009, 674: 36-44.
    [183] Kong C H, Xu T, Hu F, et al. Allelopathy under environmental stress and its induced mechanism [J].Acta Ecol Sin, 2000, 20(5): 849-854.
    [184] Jin L, Xue HY, Jin LJ, et al. Antioxidant and pancreas-protective effect of aucubin on rats with streptozocin-induced diabetes [J].Eur J Pharmacol, 2008, 582: 162-167.
    [185] Mao YR, Jiang L, Duan YL, et al. Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain. [J].Environ Toxicol Phar 2007, 23: 314-318.
    [186] Zhang XL, Jiang B, Li ZB, et al. Catalpol ameliorates cognition deficts and attenuates oxidative damage in the brain of senescent mice induced by D-galactose.[J].Pharmacol Biochem Be 2007, 88: 64-72.
    [187] Jeong EJ, Lee KY, Kim SH, et al. Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice.[J].Eur J Pharmacol, 2008, 588: 78-84.
    [188]金松恒,徐礼根,李雪芹,等.长期高温胁迫对高羊茅光合特性和抗氧化酶活性的影响[J].林业科学,2009,45(3):155-159.
    [189]郑建初,盛婧,汤日圣,等.南京和安庆地区高温发生规律及高温对水稻结实率的影响[J].江苏农业学报,2007,23(1):1-4.
    [190]商侃侃,张德顺,王钺.高温胁迫下植物抗性生理研究进展[J].园林科技,2008,107(1):1-6.
    [191] Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, et al. Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress [J].J. Plant Physiol., 2008, 165, 514-121.
    [192]李敏,王维华,王然,等.高温胁迫对菠菜叶片保护酶活性和膜透性的影响[J].园艺学报,2004,31(1):99-100.
    [193]张桂莲,陈立云,张顺堂,等高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J].作物学报,2006,32(9):1306-1310
    [194] Tewan AK, Tripathy BC. Temperature-stress-induced impaired of chlorophyll biosynthetic reaction in cucumber and wheat [J].Plant Physiol, 1998, 117:851-858.
    [195]杨华庚,陈慧娟.高温胁迫对蝴蝶兰幼苗叶片形态和生理特性的影响[J].中国农学通报,2009,25(11),123-127。
    [196]李衍素,高俊杰,陈民生,等.高温胁迫对豇豆幼苗叶片膜伤害与保护性物质的影响[J].山东农业大学学报(自然科学版),2007, 38(3): 378-382
    [197]吴国胜,曹婉虹,王永健,等.细胞膜热稳定性及保护酶和大白菜耐热性的关系[J].园艺学报, 1995, 22(4): 353-358
    [198]许桂芳,张朝阳.高温胁迫对4种珍珠菜属植物抗性生理生化指标的影响[J].中国生态农业学报,2009, 17(3): 565-569.
    [199]李木英,石庆华,许锦彪,等.不同早稻品种灌浆期高温胁迫后根系生理差异研究[J].中国生态农业学报, 2006,14(3): 105-107
    [200]梁建萍,刘咏梅,牛远,等.高温和CO2浓度倍增对华北落叶松幼苗抗氧化酶及脂质过氧化的影响[J].中国生态农业学报, 2007, 15(3): 100-103
    [201]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报, 2000, 42(2): 148-152
    [202]徐小万,曹必好,陈国菊,等.高温高湿对辣椒抗氧化系统的影响及不同品种抗氧化性差异研究[J].中国生态农业学报, 2008, 23(1): 81-86
    [203] Sembdner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates [J]. Annual Review of Plant Physiology and Molecular Biology, 1993, 44: 567-571.
    [204] Chung IM, Park MR, Chun JC, et al. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants [J].Plant Science, 2003, 164: 101-105.
    [205] Swiatek A, van Dongen W, Esmans EL, et al. Metabolic fate of jasmontes in tobacco bright yellow-2 cells [J].Plant physiol, 2004, 135(1): 161.
    [206]徐亮胜,薛晓峰,付春祥,等.茉莉酸甲酯与水杨酸对肉苁蓉悬浮细胞中苯乙醇甙合成的影响[J].生物工程学报,2005,21(3):402-406
    [207] Szabo E, Thelen A, Petersen M, et al. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension culture of Coleus blumei [J].Plant Cell Reports, 1999, 18: 484-489.
    [208]闫芝芬,周燮,马春红,等.冠菌素和茉莉酸甲酯对诱导小麦、黑麦和高羊茅草颖花开放的效应[J].中国农业科学, 2001, 34(3): 334-337
    [209]宋平,夏凯,吴传万,等.雄性不育和可育水稻开颖对茉莉酸甲酯响应的差异[J].植物学报, 2001 , 43 (5) :480-485
    [210] Ketchum REB, Gibson DM, Croteau RB, et al. The kinetics of taxoid accumulation in cell suspension culture of Taxus following elicitation with methyl jasmonate [J].Biotechnol Bioeng, 1999, 62 (1): 97-105
    [211].王保军,张秀清,孙立伟,等.茉莉酸甲酯对贯叶连翘悬浮细胞生长和贯叶金丝桃素产量的影响[J].植物生理学通讯,2008,44(4):669-672.
    [212]张进杰,徐茂军. NO和茉莉酸甲酯对黄芩悬浮细胞生长及黄芩苷的合成的影响[J].植物学同胞,2006,23(4):374-379.
    [213]薛建平,王兴,张爱民,等.水杨酸对高温胁迫下半夏抗氧化系统的影响[J].中国中药杂志,2008,33(23):2847-2849
    [214]王伟英,林江波,邹辉,等.水杨酸处理对水仙株型及抗氧化酶活性的影响[J].中国农学通报,2009,25(14):157-160.
    [215]赵会杰,薛延丰.外源水杨酸对光抑制条件下小麦叶片光合作用的影响[J].植物生理学通讯,2005,41(5):612-615
    [216]孙艳,王鹏.水杨酸对黄瓜幼苗抗高温胁迫能力的影响[J].西北植物学报,2003,23(11):2009-2013
    [217] Senaratna T, Touchell D, Bunn E, et al. Acetylsalicylic acid and salicylic acid induce multiple stress tolerance in bean and tomato plants [J]. Plant Growth Regul, 2000, 30: 154-159.
    [218]何亚丽,刘友良,陈权,等水杨酸和热锻炼诱导的高羊毛幼苗的耐热性与抗氧化的关系[J].植物生理与分子生物学报,2002,28(2):87-91.
    [219] Kang SM, Jung HY, Kang YM, et al. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora.[J].Plant science, 2004, 166: 745-751.
    [220]刘伟,艾希珍,梁文娟,等.低温弱光下水杨酸对黄瓜幼苗光合作用及抗氧化活性的影响[J].应用生态学报,2009,20(2):441-445.
    [221] Wang YD, Yuan YJ, Wu JC, et al. Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension culture of Taxis chinenisis var. mairei. [J].Biochemical Engineering Journal, 2004, 19: 259-256.
    [222] Cheong JJ, Choi YD. Methyl jasmonate as a vital substance in plants [J].Trands Geneties, 2003, 19(7): 407-410.
    [223] Anderson MD, Chen Z, Klessig DF. Possible involvement of lipid peroxidation in salicylic acid–mediated induction of PR-1 gene expression [J].Phytochemistry, 1998, 47: 555-566.
    [224] Metwally A, Finkemeier I, Georgi M, et al. Salicylic acid alleviates the cadmium toxicity in barley seedlings [J].Plant Physiology, 2003, 132: 272- 281
    [225] Janda T, Szalai G, Tari I, et al. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants [J].Planta, 1999, 208: 175- 180
    [226] Larkindale J, Knight MR. Protection against heat stress induced oxidative damage in arabidopsis involves calcium, ethylene and salicylic acid [J].Plant Physiology, 2002, 128: 682- 695
    [227] Stevens J, Senaratna T, Sivasithampara K. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilization [J].Journal of Plant Growth Regulation, 2006, 49: 77- 83
    [228] Kang HM, Saltve ME. Chilling tolerance of maize cucumber and rice seeding leaves and roots are differentally affected by salicylic acid [J].Physiologia plantaum, 2002, 115: 571-576.
    [229]罗建平,夏宁,沈国栋.茉莉酸甲酯﹑水杨酸和一氧化氮诱导怀槐悬浮细胞合成异黄酮及细胞结构变化[J].分子细胞生物学报, 2006,39 (5): 438-444
    [230]曲均革,虞星炬,张卫.前体饲喂﹑诱导子和光照联合使用对葡萄细胞培养合成花青素的影响[J].生物工程学报,2006,22 (2): 299-305
    [231] Sirvent T, Gibson D. Induction of hypericins and hyperforin in Hypericum peforatum L. in response to biotic and chemical elicitors [J].Physiol Mol Plant Pathol, 2002, 60: 311~320
    [232] Conceicao LFR, Ferreres F, Tavares RM, et al. Induction of phenolic compounds in Hypericum peforatum L. cell by Colletotrichum gloeosporioides elicitation [J].Phytochemistry, 2006, 67: 149~155
    [233] Srivastava S, Dwivedi UN. Plant regeneration from callus of Cuscuta reflexa an angiospermic parasite and modulation of catalase and peroxidase activity by salicylic and naphthalene acetic acid [J]. Plant Physiol Biochem , 2001 (39) : 526-531.
    [234]苏湘鄂,梅兴国,龚伟,等.茉莉酸甲酯与真菌诱导物、水杨酸组合对红豆杉细胞中紫杉醇含量的影响[J].生物技术,2001,(1) :10~13.
    [235] Gundlach H, MullerM J, Kutchan TM, et al. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures [J].Proc Natl Acad Sci USA, 1992, 89: 2387-2310.
    [236] MuellerM J, BrodschelmW, Spannagl E, et al. Signaling in the elicitation process ismediated through the octadecanoid pathway leading to jasmonic acid[J].Proc NatlAcad SciUSA, 1993, 90: 7490-7492.
    [237]王学勇,崔光红,黄璐琦,等.茉莉酸甲酯对丹参毛状根中丹参酮的类成分积累和释放的影响[J].中国中药杂志,2007,32(1):300-302
    [238] Tamogami S, Rakwal R, Kodama O. Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L. ) is under the control of cytokinins and ascorbic acid [J]. FEBS Lett, 1997, 412: 60-64
    [239]李明,冯世阳.茉莉酸甲酯对丹参茎叶丹酚酸和丹酚酸B含量的影响[J].时珍国医国药,2009,20(8):1921-1923.
    [240]张艳峰,谢映平,薛皎亮,等.茉莉酸甲酯和日本龟蜡蚧诱导柿树挥发物对红点唇瓢虫的吸引[J].林业科学,2009,45(1):90-96.
    [241]胡榜文,薛江涛,李国锋.玄参脱毒种和常规种比较试验[J].中国现代中药,2008,10(11):11-12.
    [242]胡榜文,薛江涛,李国锋,等.玄参脱毒种苗生产标准操作规程[J].现代中药研究与实践,2008, 22(6):17-19
    [243]陆锦池,陈荣山,刘长辉,等.浅述植物萜类物质的生物合成途径[J].农业科技通讯,2009,3:78-85.
    [244]张荫麟,朱敏,赵保华.蜜环菌诱导子对延胡索培养物的生物碱积累的影响[J].植物学报,1992,34(9):658-661.
    [245]郭文娟,郭顺星,陈晓梅,等.真菌诱导子对药用植物细胞培养产生次生代谢产物的影响的研究[J].中国药学杂志,2007,42(5):321-324.
    [246] Sudha G, Rav ishankar GA. Elicitation of anthocyanin production in callus cultures of Daucus carota and involvement of calcium channel modulators [J].Current Sci, 2003, 84(6): 775-779.
    [247]罗焕亮,郭勇,崔堂兵,等.真菌诱导子对胡桐悬浮培养细胞产生红厚壳素的影响[J].药学学报,2004,39(4):305-308.
    [248]张莲莲,谈锋.真菌诱导子在药用植物细胞培养中的作用机制和应用进展[J].中草药,2006,37(9):1426-1430.
    [249]宴琼,元英进,胡宗定.果糖补料与真菌诱导对红豆杉细胞悬浮培养体系的协同效应[J].化学工程,2003,31(5):46-49.
    [250]李家儒,刘曼西.桔青霉诱导子对红豆杉培养细胞中紫杉醇生物合成的影响[J].植物研究,1998,18(1):18-83.
    [251] Wang C, Wu J, Mei X. Enhancement of Taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal [J].Appl Microbiol Biotechnol, 2001, 55 (4): 404-410.
    [252]刘长军,侯嵩生.真菌诱导子对悬浮培养西洋参细胞的生理效应[J].武汉植物研究,1998,14(3):240-246.
    [253]刘长军,侯嵩生.真菌诱导子对新疆紫草悬浮培养细胞的生长和紫草素合成的影响[J].植物生理学报,1996,24(1):6-10.
    [254]张长平,李春,元英进.真菌诱导子对悬浮培养南方红豆杉细胞次生代谢的影响[J].化工学报,2002,53(5):498-502.
    [255]宋经元,任春玲、祁建军.生物诱导子在植物细胞培养生产次生产物中的应用[J].天然产物研究与开发,1999,12(4):101-104.
    [256]刘长军,侯嵩生真菌激发子对人参悬浮培养细胞生长和人参皂甙生物合成的影响[J].实验生物学报,1999,32(2):169-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700