野油菜黄单胞菌gum基因簇DNA片段上基因间隔区中的ORF及其功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用RT—PCR的方法,对野油菜黄单胞菌致病变种(Xanthomonas campestris
     pv.campestris)8004(Xcc8004)及其Tn5gusA5转座子插入gum基因的突变体的gum基因操纵子的转录进行了比较分析。结果表明Tn5gusA5的插入具有很强的完全极性效应,并进一步证实gumK,gumL和gumM基因构成了gum基因操纵子中第二个转录本。
     通过TAIL—PCR和测序方法对转座子Tn5gusA5插入突变体TGL243,TGL14,TGL233和TGL40中转座子Tn5gusA5在Xcc8004基因组中的位置进行了定位。并对这四株突变体的一些生物学特性和流变学特性进行了测定和分析,结果表明突变体TGL243色素产量约为Xcc8004色素产量的34%,TGL40约为Xcc8004的130%。TGL233胞外多糖的组分和粘度与Xcc8004不同,其胞外多糖的粘度为Xcc8004的63%。
     用RT—PCR的方法对gum基因族gumA—gumB区段进行了转录分析,认为gumA—gumB基因区段具有两个可转录的区段ORF243和ORF233。为了进一步验证ORF243与色素有关,ORF233与胞外多糖的组分和粘度有关,我们成功的构建了这两个ORF的整合突变体TGL243#和TGL233#。结果表明整合突变TGL243#与插入突变体TGL243的的色素产量相一致,约为Xcc8004色素产量的34%。通过ncbi中的blast搜索,结果表明ORF243编码产物为一种转录调控蛋白,推测ORF243可能与色素的合成有关,而ORF233在ncbi中没有找到与之同源的基因编码产物。整合突变体TGL233#与插入突变体TGL233胞外多糖粘度相一致比Xcc8004低,约为Xcc8004的63%,推测ORF233与胞外多糖的粘度和组分有关。
The transcription of the gum operon in the Xanthomonas campestris pv. campestris 8004(Xcc 8004) and its TnSgusAS transposon insertion mutants of the gum genes was comparatively analyzed by the RT-PCR. These results showed that TnSgusAS insertion has the strong complete polarity. This result also verified that these three gum genes (gumK,gummL,gumM)form the second transcription in the gum gene operon.
    The insertion sites of Tn5gusA5 in four mutants(TGL243,TGL14,TGL233 and TGL40) were located by methods of TAIL-PCR and sequencing. Biological and rheological characters were deterinated and analysised. The results showed the production of pigment in TGL243 were much lower than that in Xrc8004.lt is about 34% of Xcc8004; Production of pigment in TGL40 were much higher than that in Xcc8004.It is about 130% of Xcc8004; The ingredient and viscosity of excellular poysacchride (EPS) were changed in TGL233.The production of viscosity in TGL233 were 63% of Xcc8004.
    The transcription of gap between gumA and gumB has been analysised and two transcriptional units(ORF243 and ORF233) has been found .
    For further study, we constructed tow intergrated mutants of ORF243 and ORF233 successfully, named TGL243# and TGL233#. The pigment production of TGL243# like TGL243 were much lower than that of Xcc8004. The viscosity production of TGL233# were 63%.By the searching of ncbi blast, the results revealed that the deduced product encoded by ORF243 are predicated transcriptional regulators. So, we conclude ORF243 may be relevant to pigment production, ORF243 may be relevant to viscosity production and ingredient of EPS.
引文
1. Williams, EH.Black rot,a continuing threat to world crucifers. Plant Dis,1980, 64:736-742.
    2. Wallis, EM., Rijkenberg,F.H.,Joubert,J.,and Martin,M.U. Trastructural histopathology of cabbage leaves infected with Xanthomonas campestris pv. campestris. Physiological Plant Pathology, 1973,3:371-378.
    3. Alvarez,A.M.,Cho,J.J.,and Hori,T.M.Black rot of cabbage in Hawaii, Hawaii Agric. Exp. Stn.Res.1987,Ser.51-87.
    4. Dianese,J.C.,and Schaad,N.W.Isolation and characterization of inner and outer membranes of Xanthomonas campestris pv. Ampestris Phytopathology, 1982,72:1284-1289.
    5. Dos Samtos,R.M.D.B.,and Dinanese,J.C.Comparative memberrance character-rization of Xanthomonas campestris pv. campestris and X.campestris pv. manihots. Phytopathoology. 1985,75:581-587.
    6. Liideritz.O.,Freudenberg,M.A.,Galanos.C,Lehmann,V.,Rietsch,E.T.,and Shaw, D.H. Lipopolysaccharides of Gram-negative bacteria in Current Topics in Membranes and Transport, Academic press, New York. 1982,17:79-151.
    7. Robeson,F.J.,and Cook,D.R. Production of low molecular weight carboxylic acid by Xanthomonas campestris pv.campestris in relation to the amino acidcomposition of the meudium and their possible involement in pathogenesis physiologyical Plant Pathology. 1985,26:219-230.
    8. Hokawat, S.Pathopysiological Characterization of the susceptibale and resistant reaction of soybeans against the pathogen of pustule disease(Xanthomonas campestris pv. glycines Nakano, Dye). Dissertation, Universitat Gottingen. 1988,3:134-137.
    9. Leigh,J.A.,Coplin,D.L. Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol, 1992,46:307.
    10. Whitfield,C.,Valvan,M.A. Biosynthesis and expression of cell-surface polysaccharides in Gram-negative bacterial[J].Adv Microbial Physid, 1993.35:136.
    11. Sutherland,I.W. Noveland established applicationof microbial polysaccharide [J]. Trends/biotechnol, 1998,16:41-43.
    12. Coplin,D.I.,Cook,D.Molecular genetics of extraceullar polusaccharide synthesis in
    
    vagular Bacteria.Mol.Plant-Micnole interact. 1990,3:271-275.
    13.彭珍荣等编著,现代微生物学进展,武昌:武汉大学出版社,1995.
    14.日本发酵学会编,微生物工程的基础和应用,北京:轻工业出版社,1998.
    15.刁虎欣等,黄原胶简介,食品与发酵工业,1987,1:63-71.
    16. Baird,J.,Sandford R,and Cottrell,I. Industrial applications of some new microbial polysaccharides. Bio/Technology 1983,1:778-783.
    17.王玲燕,李元,微生物胞外多糖生物合成研究进展[J],药物生物技术,2002,9(6):369-373.
    18. Kennedy, J.E,and I.J.Bradshaw. Production, properties, and applications of xanthan. Prog.Ind.Microbiol. 1984,19:319-371.
    19. Sutherland,I.W.,J.G.Swings and E.L.Civerolo(ed.), Xanthomonas. Chapman & Hall, London,England.Xanthan, 1993, p.363-338.
    20. Sutherl,I.W.Xanthan.In:Swings,J.G,Civerolo E1(eds) Xanthomonas, Chapman and Hall, London, 1993,363-388.
    21.杜风光,陈伟红,闫振丽.我国黄原胶生产的现状,存在的问题及对策.食品科学,2001,22(10):97-99.
    22. Denny, T.P.Involvent of bacterial polysaccharides in plant pathogenesis. Annu. Rev. 1995, 33:173-197.
    23. Bretschnider, K.E.,Gonella,M.G.,and Robeson,D.J.A comparative light and electron mictoscopical study of compatible and incompatible interactions between xanthomonas campestris pv.Campestris and cabbage(brassicaoleracea).Physiol Mol plant pathol. 1989,34:285-297.
    24. Tang,J.L.,Liu, Y.N.,Barber, C.E.,Dow, J.M.,Wootton,J.C.,and Daniels,M.J. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in xanthomonas campestris pathovar campestris, Mol Gen Genet,1991,226:409-417.
    25. Celina de Piieri,Leila M.Beltramini et al. Overexpression, purification,and biochemical characterization of GumC, an enzyme involved in the biosynthesis of exopolysacharid by Xylella fastidiosa. Protein Expression and Purification.2004,34:223-228.
    26.查冬兴,1996《甘蓝黑腐病菌胞外多糖产生的分子遗传学研究》博士论文,中国武汉.
    
    
    27. Ramirez,M.E.,Fucikousky, L.,and Garcia-Jimenez,Eet al. Xanthan gum production by altered pathogenicity variants of Xanthomonas campestris. Appl,Microbiol,Biotechnol. 1988,29:5-10.
    28.李有志 1998 《野游菜黄单胞菌野游菜致病型胞外多糖产生有关的—基因族的鉴定和分析》博士论文,中国武汉.
    29. Li You-zhi.Tang Jiliang and Tang Dongjie. Pathogenicity of EPS—deficient mutants (gumB~-,gumD~- and gumE~-)of Xanthomonas campestris pv. Campestris.Progress. In Nature science,2001,11:871-875.
    30.冯永君,宋末.2000《生命的化学》20(1):33-35.
    31. Hirokazu Nankal, Wataru Hashimoto and Hikaru Mikl. Microbial system for polysacchaide depolymerization by Bacillus sp. strain GL1.Applied and Enviromental Microbiology. 1999,6,p2520-2526.
    32. Garcia-Ochoa, F.,Santos,V.E.,Casas,J.A.,and Gomez,E.Xanthan gum:production, recovery and properties. Biotechnology Advances.2000, 18:549-579.
    33. Ansson,P.E.,Kenne,and B.Indberg. Structure of excellular polysac charide from Xanthomonas campestris pv. campestris. Carbohydr.Res. 1975,45:23-25.
    34. Stankowski,J.D.,Muller, B.E.,and Zeller, S.G.Location of a second O-acetyl group in xanthan gumby the reductive-cleavage method.Carbohydr Res, 193,241:321-326.
    35.里景伟.黄原胶理化性质及分子结构[A].微生物多聚糖—黄原胶的生产与应用[C].北京:中国农业出版社.1995.
    36.王金生.《分子植物病理学》中国农业出版社,1999.
    37. Puvanesarjah,V.,EM.Schell,C.Stacey, C.J.Douglas,and E.W.Nester.Role of 2-1inked-beta-D-glucan in the virulence of Agrobactedum tunnefaciens.J.bacterial,1987,169: 173-141.
    38.姜成林,徐丽华.《微生物资源开发利用》中国轻工业出版社,2001,175-181.
    39. Harding,N.E.,J.M.Cleary, and L.Ielpi.Genetics and biochemistry of Xanthan gum production by Xanthomonas campestris. 1998.P.495-514.
    40. Ielpi,L.,R.Couso and M.Dandert.Lipid-linked intermediates in the biosynthesis of Xanthan gum. FEBS Lett. 1981,130:253256.
    41. Ielpi,L.,R.Couso, and M.Dandert.Sequential assembly and polymerization of the polyprenol-linked pentasacchiaride repeating unit of the Xanthan polysaccharide in Xanthomonas campestris. 1993,45:275-282.
    
    
    42. Harding,N.E.,S.Raffo,A.Raimondi,J.M.Cleary, and L.Ielpi. Identifaction,genetic and biochemical analysis of genes involved in synthesis sugar nucleotide precursors of xanthan gum.J Gen. Microbiol, 1993,139:447-457.
    43. Hassler, R.A.,and D.H.Doherty. Genetic engineer of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol, Prog. 199-0,6:182-187.
    44. Koplin,R.Arnold,W.and Puhler, A. Genetics of xanthan production in Xanthomonas campestris:the xanA and xanB gene are involved in UDP-glucose and GDP-mannose biosynthesis.J.Bacteriol. 1992,January, 74(1): 191-199.
    45. Becker, A., Katzen, F.,Puhler, A.,et al. Xanthan gum biosynthesis and appcication:a biochemical genetic perspective. Appl Microbiol Biotechnol,1998,50:145-153.
    46. Capage,M.A.,Doherty, D.H.,Betlach.M.R.and Vanderslice.R.W. Recombinant-DNA mediated production of xanthomon gum.International patent 1998,WO870/5938.
    47. Katzen,F.,A.Becker, A.Zorreguieta, A.Puhler and L.Ielpi. Promoter analysis of the Xanthomonas campestris pv.campestris gum operon directing biosythesis of the xanthan polysaccaride.J.Bacteriol, 1996,178:4313-43.
    48. Thomas,J.,Pollock,Linda Thorne,Motohide Yamazaki and Richard W.Armentout. Mechanism of bacitracin rseistance in gram-negbactefia that synthesis exopolysaccharides.American Society for Microbiology. 1994,p.6229-6237.
    49. Miller, H.I, and Nash, H.A. Direct role of the himA gene product in phage lambda integration. Nature, 1981,290:523-526.
    50. Fderico,Katzen,Diego,U.Ferreiro,and Cristian,G.Xanthomonas campestris pv.campestris gum mutants:Effects on Xanthan Biosynthesis and plant virulence. Journal of Bacteriology, 1998,1607-1617.
    51. Vojnov, A.A.,A.Zorreguieta, J.M.Dow, M.J.Daniels,and M.A.Dankert.Evidence for arole for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology. 1998.144:1487-1493.
    52. Coplin,D.L.and Cook,D.Molecular genetics of extracellular polysaccharide synthesis in vascular phytopathogenic bacteria. Mol.Plant-Microbe Interact. 1990,3:586-292.
    53. Katzen,F.D,Diego,U.,Ferriro,and Cristian,G.Xanthomonas campestris pv. Campestris
    
    gum mutants: effects on xanthan biosynhesis and plant virulence.J.Bacteriol, 1998,225: 1607-1617.
    54. Brumbly, S.M.,Carnerey, B.F.,Denny, T.P.,Phenotype conversion in Pseudomonas Solanacearum due to spontaneous inactivation of phcA, a putative LysR transcriptional regulator.J.Bacteriol. 1993,175:5477-5487.
    55. Huang,J.,Dermy, T.P.,and Schell,M.A.,VsrB,a regulator of virulence genes of Pseudom-, onas solanacearum, is homologous to sensor of the two-component regulatory family.J.Bacteriol. 1993.175:6169-6178.
    56. Schell,M.A.,Denny, T.P.,and Huang,J.,VsrA,a second two-component sensor regulating virulence genes of Pseudomonas solanacearum. Mol. Microbiol. 1994.11:189-500.
    57. Schell, M.A.,Denny, T.P.,and Huang,J.,Extracellular virulence factors of Pseudomonas solacearurn: role in disease and regulation of expression. 1994,p,311-324.
    58. Huang,J.,Yindeeyoungyeon, W.,Garg,R.P.et al.Joint transcriptional control of XpsR, the unusual signal integrator of the Ralstonia solanacearum virulence gene regulatory network by a response regulator and a lysR-type transcriptional activator. J. Bacteriol 1995,180:2736-2734.
    59. Tang,J-L.,Gough,C.L.,and Daniels,M.J.Clonging of gene involved in negative regulation of production of extracellular enzymes and polysaccharide of Xanthomonas campestris pathovar campestris. Mol.Gen.Genet. 1990,222:157-160.
    60. Dow, J.M.,Crossman,L.,Findlay,K.,He,Y.Q.,Feng,J.X.,and Tang,J.L.Biofilm dispersal in Xanthomonas campestris is controlled by celll-cell signaling and is required for full virlence tpo plants. Proc Natl Acad Sci U S A.2003,sep 16:100(19):10995-11000.
    61. Slater, H.,Alvarez-Morales,A.,Barber, C.E.,Daniels,M.J.,and Dow, J.M.A tow-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol.2000,Dec,38(5):986-1003.
    62. Marcia Nitschke,Vanessa Rodrigues.Effect of virulence and serial transfers of Xanthomonas campestris on xanthan gum production. Brazilian Journal of Microbiology. 2000, 31:58-60.
    63.刁虎欣,赵大健,袁锡琳等,国产食品添加剂黄原胶的质量检测和质量标准,食品与发酵工业.1990,5:55-57.
    64.刘清泉,关于黄原胶产业化过程中若干问题的探讨,《中国食品添加剂》,2001,3:4-6.
    65.洪厚胜黄原胶工业生产的2种实用新技术,食品与发酵工业,2001,26(3):43-47.
    
    
    66. Ekatcriniadou L.V.,Papoutsopoulou,S.V.,Kyriakidis,D. A High production of xanthan gum by a strain of Xanthomonas campestris conjugated with Lactococcus lactis. Biote chnology-Leters, 1994,16(5):517-522.
    67. Hassler, R.A.,and Doherty, D.H. Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol Prong. 1990,May-Jun:6(3): 182-187.
    68.胡德亮,李柏林,陈有容,黄原胶生物合成的研究进展,上海水产大学学报,2000,9(1):59-64.
    69. Sutherland, I.W., Xanthan. In:Swings JG, Civerolo E1(eds)Xanthomonas, Chapman and Hall, London, 1993,PP363-388.
    70. Andrewes,A.G..,S.Hertzberg.,S.L.Hense,and M.P.Starr.Xanthomonas pigments.2. The Xanthomonas "Carotenoids"-non-carotenoid brominated ary-polyene esters.Aea Chem. Stand. 1973,27:2383-2395.
    71. Andrewes,A.G..,C.L.Henkins,M.P.Starr, H.Shepherd,and H.Hope.Styucture of xanthomnadinI,a novel dibrominatrd ary-polyene pigment produced by the bacterium xanthom onas hulandis. Terahedran Lett. 1976,45:4023-4024.
    72. Poplawsky, A.R.,M,D.Kawalek, and N.W.Schaad..A xanthomonadin-encoding gene cluster for the identification ofpathovars of Xanthomonas campestris.Mol.Plant-Mierobe Interact. 1993,6:545-552.
    73. Poplawsky, A.R.,and W.Chun.Strains of Xanthomonas campestris pv. campestris with atypical pigmentation isolated from commercial crucifer seeds.Plant Dis. 1995,79:1021-1024.
    74. Rajagopal,L.,C.S.Sundari,D.Balasubramanian,and R.V.Sonti.The bacterial pigment xanthomonadin offers protection against photodamage.FEBS Lett. 1997,415:125-128.
    75. Jenkins,CL.,and.Starr M.P.The brominated ary1-polyene (xanthomonadin) pigments of Xanthomonas juglandis protect against photobiological damage. Curr. Microbiol,1982, 17:323-326.
    76. Starr, M.P.,Jenkins,L.C,Bussey, L.B,and Andrewes, A.G. Chemotaxonomic significance of the xanthomonadins, novel brominated arylpolyene pigments produced by bacteria of the genus Xanthomonas. Arch. Microbiol. 1977,113:1-9.
    
    
    77. Vauterin, L.,J.Swings,K.Kerts,M.Gillis,T.W.Mew,M.N.Schroth,N.J.Palleroni,D.C.Hildeb rand, D.E.Stead, E.L.Civerolo,and J.F.Bradbury.Towards an improved taxonomy of Xanthomonas.Int.J.Syst.Bacteriol. 1990,40:312-316.
    78. Rajagopal,L., Sundari,D.Balasubramanian,and R.V.Sonti. The bacterial pigment xanthomonadin offers protection against photodamage.FEBS Lett. 1997,415:125-128.
    79. Ajay Kumar Goel,Lakshmi Rajagopal,Narayana Nagesh, and ramesh V.Sonti.Genetic encoding functions involved in biosynthesis and outer membrane localization of Xanthomonadin in Xanthomonas oryzae pv. oryzae..Journal of Bacteriology,2002,7,3539-3548.
    80. Andrewes,A.G.,C.L.Jenkins,M.P.Starr,J.Shepherd,and H.Hope. Structure of xanthomoonadin, a novel dibrominated ary-polyene pigment produced by the bacterium Xanthomonas juglandis.Tetrahedron Lett. 1976,45:4023-4024.
    81. Poplawsky, A.R. Chun W. pigB determines a diffusible factor needed for extracecellular polysaccharide slime and canthomonadin production in Xanthomonas campestris pv.campestris. J.Bacterial, 1997,179:439-444.
    82. Poplawsky, A.R.Urban,S.C and.Chun.W Biological role of Xanthomonadin igments in Xanthomonas campestris pv.campestris.Plant pathology, Division department of plant soil and entomological sciences university of Idaho Moscow, idzho 2000,2334-2339.
    83. Poplawsky, A.R.,M.D.Kawalek,and N.W.Schadd.A xanthomonadin-encoding gene cluster for the identification of pathovars of Xanthomonas campestris. Mool. Plant-Microbe Interact. 1993,6:545-552.
    84. Poplawsky, A.R.,and W.Chun. Xanthomonas campestris pv.campestris requires a function pigB for epiphytic survival and host infedtion.Mol.Flant-Microbve Interact. 1998,11:466-475.
    85. Chun,W.,J.Cui,and A.Poplawsky.Purification,characterization,and biological roleof a pheromone produced by Xanthomonas campestris pv.campestris.Physiol.Mol.Plant Pathol. 1997,51:172-178.
    86. Chou,F.L.,Chou,H.C.,Lin,Y.S.The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem Biophys Res Commun, 1997,233(1):265-269.
    87. Sandmann,G.,S.Kuhn,and P.Boger.Evaluation of different carotenoids in Escherichia
    
    coil transformants as protectants against UV-B radiation. Appl. Environ. Microbiol. 1998,64: 1972-1974.
    88. Poplawsky, A.R.,and W.Chun. The Xanthomonas campestris pv.campestris DF pheromone and additional regulatory function of the pig gene cluster.Phytopathology 1999,89:S61.
    89. Zhang,L.,Murphy, A.Kerr, and Tate,M.E.Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones.Nature. 1993 Apr1; 362(6419):446-8.
    90. Barber, C.E, Tang J.L, Feng, J.X.,and Pan.A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule.Mol Microbiol. 1997,May;24(3):555-66.
    91. Tang,J.L.,Feng,J.X.,Li,Q.Q.,Wen,H.X.,Zhou,D.L.,Wilsion,T.J.,Dow,J.M.,Ma,Q.S.,and Daniels,M.J.Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv.oryzae:involvement in exopolysaccharide production and virulence to rice.Mol.Plant Microbe Interact. 1996,9:664-666.
    92. Sharma, S.B.,and E.R.Signer.Temporal and spatial regulation of the symbiotic genes of Rhiz obium meliloti in planta revealed by transposon Tn5-gusA5.Genes & Development.Cold Spring Harbor Laboratory Press. 1990,4:344-356.
    93. Neuwald,A.F.,Krishnan,B.R.,Ahrweiler, P.M.,Frieden,C.and Berg,D.E.Conditional dihydrofolater reductase deficiency due to transposon Tn5tacl insertion downstream of folA gene in Escherichia coli, Gene, 1993,125:69-73.
    94. Goryshin,I.Y.and Reznikoff, W.S.Tn5 in Vitro Transposition J.Bio.Chem, 1998,273: 7367-7374.
    95.朱乾浩,转座子在植物基因分离中的应用研究进展.植物工程进展,1996,16:22-25.
    96.唐江涛,2003,《细菌转座子Tn5gusA5野油菜黄单胞菌8004中转座规律分析及生物学验证》硕士论文,中国南宁.
    97. Li You-zhi. Pathogenicity of EPS—deficient mutants (gumB~-,gumD~- and gumE~-)of Xanthomonas campestris pv.campestris.Progress. In Nature science, 2001,11:871-875.
    98. Berg,D.E, Weiss,A. Crossland L. Polarity of Tn5 insertion mutantions in Escherichia coli. J.Bacteriology, 1980,5,142(2):439-446.
    
    
    99. Pilacinski,W.,Mosharaafa,E.,Edmundson,R.,Zissler, J.,Fiandt,M.,Szybalski,W. Isertion sequence IS2 associated with in-constitutive mutants of bacteriophage lamda. Gene, 1997,2:61-74.
    100. Saedler, H,Reif, H.J,Davidson N.a genetic element for turn-off and turn-on of gene activity in E.coli. Mol Genet,1972,132:265-289.
    101. Heffron,F.,Rubens,C.,Falkow, S.Translocation of a plasmid DNA sequence which mediates ampicillin resistance: molecular nature and specificity of insertion. Prod Natl Acad Sci. U.S.A. 1975,73:3623-3627.
    102. Federico Katzen, Anke Becker, M.Veronica Ielmini,Cristian, G. Oddo,and Luipi.New mobilizable vectors suitable for gene replacement in Gram-Negative bacteria and their use in mapping of the 3'end of the Xanthomonas campestris pv.campestris gum operon. Applied and Environmental.Microbiology. 1999,7,278—283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700