细菌纤维素高产菌株超高压诱变选育及冻干保藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成纤维素不是植物所特有的功能,某些动物以及少数微生物也可以合成纤维素。通常将由微生物合成的纤维素称为“细菌纤维素(bacterial cellulose)”。细菌纤维素是一种新型生物材料,它是已知天然纤维中最细、性能最好的纤维素,其微纤维直径约为10-100nm,但弹性模数却是普通纤维的数十倍。还由于其纯度高,结晶度高和重合度高,又有很强的亲水性和优良的生物可降解性,因此倍受国内外研究者的关注。
     为了提高细菌纤维素的产量,并降低其生产成本,本研究从实验室长有丰厚凝胶状膜的荞麦醋中分离筛选出了一株性能优良的产细菌纤维素菌株J2,对其进行超高压处理后,获得了一株高产诱变菌株M438,并对其发酵工艺参数进行了优化研究,为工业化生产奠定了基础;同时对菌株M438的冷冻干燥保藏工艺,以及其代谢产物—细菌纤维素的性质、表观形态和超微结构进行了研究,为其进一步研究和应用提供了理论指导。本研究得到的主要结论如下:
     (1)从荞麦醋中分离筛选出了一株性能优良的产细菌纤维素菌株J2,对菌株形态及生理生化特征进行研究后,初步确定菌株J2属于氧化葡糖杆菌。
     (2)对菌株J2进行超高压处理,经过初筛和复筛,获得了一株诱变株M438,其产纤维素能力比J2有了很大提高且遗传性能稳定。静态培养7d后,诱变株M438的细菌纤维素产量达到15.7457g/100ml,是原菌株J2(10.76 g/100ml)的1.485倍。
     (3)确立了适合诱变株M438静态条件下生产细菌纤维素的发酵培养基及发酵条件,发酵培养基配方为:碳源5%(葡萄糖/蔗糖=4:1),酵母浸出汁1.25%,CaCl20.15%,ZnS040.2%,K2HPO40.2%,MgSO40.93%,富马酸0.3%,无水乙醇0.5%,最适发酵条件为:种龄24h,接种量9%,发酵时间7d。在此培养条件下,获得的纤维素的产量为28.9878 g/100ml,是优化前基础发酵培养基的1.841倍,是原菌株J2产量的2.694倍。
     (4)确定了最佳的冻干工艺条件:保护剂组成为12%脱脂牛奶+5%葡萄糖/蔗糖(1:2)、预冻温度为-80℃、预冻时间为3h、冻干时间为4d,在此条件下,冻干菌的存活率达到70%以上。通过与其它保藏方法比较得知,冷冻干燥是最佳的保藏方法,可使菌种存活2年左右。
     (5)对诱变株M438代谢的细菌纤维素膜的主要成分进行了测定,并对其表观形态和超微结构进行了研究。研究结果表明,细菌纤维素湿膜的含水量为98.77%,干膜的复水率为80.53%,干膜中纤维素含量为89.24%,蛋白质含量为7.9586%,脂肪含量为1.63%;采用不同方式处理的纤维素膜的表观形态有所不同;利用扫描电镜观察不同干燥条件处理的细菌纤维素膜的超微结构,结果表明,与临界点干燥方法相比,真空冷冻干燥和热风干燥两种方法都会使纤维素结构发生一定的改变。
It’s not only plants that can synthesize cellulose, but some animals and micro-organisms also have this ability. The cellulose produced by micro-organisms is called“bacterial cellulose (BC)”. It was a new bio-material which has many characteristics, such as pure, high crystal degree and so on. BC is the thinnest cellulose in the world. Besides, owing to its high coincident degree, high hydrophilic property and better adaptive responses to environmental factors, BC has attracted most reaearchers’attention both at home and abroad.
     In order to improve the yield of BC and reduce its cost, a strain (J2) with high yield of BC was initially selected from buckwheat vinegar on whose surface grew much thicker membrane and the characteristics of the strain J2 was researched, and then the high-yield mutant M438 was breeded by the techniques of high-pressure, finally the parameters of fermentation technology were optimized which established the basis for industry. The property of the cellulose membrane was studied and its apparent structure and ultra-micro-structure were observed which gave some direction to its application. The results of this research were as follows:
     (1) A strain(J2) with ability to produce high yield of BC was selected from buckwheat vinegar. After the configuration and physiological and biochemical property were studied, the strain was primarily ascertained to belong to Gluconobacter.
     (2) Taking strain J2 as the original strain, through the ultra-high pressure treatment mutagenesis, primary screening and the second screening, mutation strain M438 with high-yield property was selected. And the genetic stability of M438 was better than the original strain J2. After 7d cultivation, BC yield improved up to 15.7457g/100ml, which was as 1.485 times as that of pre-mutagenic strain (10.76 g/100ml).
     (3) The stationary fermentation medium and fermentation conditions were confirmed which were apt to yield BC for Mutant M438. The components of medium were as follows: carbon source5 %( glucose: sucrose =4:1), yeast juice 1.25%, CaCl2 0.15%, ZnS04 0.2%, K2HPO4 0.2%, MgSO4 0.93%, fumaric acid 0.3%, ethanol 0.5%. The parameters of fermentation conditions were as follows: seed age 24h, inoculums amount 9%, fermentation time 7d. Under this fermentation medium, the yield of BC was 28.9878 g/100ml which was as 1.841 times as that under initial fermentation medium and 2.694 times as that of the unmutant strain J2.
     (4) The optimal Freeze-drying conditions were as follows: protectant consisting of 12% skim milk and 5% glucose / sucrose (1:2), pre-freezing temperature of -80℃, pre-freezing time for 3h, freeze-drying time for 4d. Under these conditions, the survival rate of freeze-dried bacteria added up to more than 70%, and through comparison with other preservation methods, freeze-drying was the best method of preservation which could make the bacteria to survive about 2 years.
     (5) The main components of the cellulose membrane produced by mutant M438 was mensurated, and the apparent structure and ultra-micro-structure were observed. The water content in wet membrane was 98.77%; the water content in dry membrane after absorbed water was 80.53%; cellulose content in dry membrane was 89.24%, protein content was 7.9586%, and fat content was 1.63%. The apparent structure of both wet and dry membrane were different under different disposing methods; the results of ultra-micro-structure observed with SEM was that vacuum freeze-drying way and air drying way could change the ultra-micro-structure of membrane.
引文
[1]贾士儒.细菌纤维素的生物合成及其应用[J].化工科技市场, 2001, (2): 21~23.
    [2] D.Klemm, S. Chumann, U.Udhardt et al. Bacterial synthesized cellulose-artificial blood vessels for microsurgery [J]. Prog. Plolym. Sci, 2001, (26):1561~1603.
    [3] Brown A J.on acetic ferment forms cellulose.J Chem soc, 1886, 49:432~439.
    [4]张纪忠.微生物分类学[M].上海:复旦大学出版社, 1990:20~41.
    [5] D.Amikam,M.Benziman.Cyclic Diguanylic Acid and Cellulose Synthesis in Agrobacterium tumefaciens [J]. Journal of Bacteriology, 1989, 171:6649~6665.
    [6] A.G.Matthysse, K.V.Holmes, R.H.Gurlitz.Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells [J]. J. Bacteriol., 1981, 145:583~595.
    [7] J.L.Robertson, T.Holiday, A.G.Matthysse.Mapping of Agrobacterium tumefaciens Chromosomal Genes Affecting Cellulose Synthesis and Bacterial Attachment to Host Cells [J]. J.Bacteriol., 1998, 170:1408~1411.
    [8] C.Napoli,F.Dazzo, D.Hubbell,Production of Cellulose Microfibrils by Rhizobium[J]. Applied Microbiology, 1975, 30(1):123~131.
    [9] E.Canale,R.S.Wolfe.Studies on sarcina ventriculiⅢ.Localization of cellulose[J].J.Bacteriol,1961, 81:311~318.
    [10]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,1999:135~137.
    [11]谢念铭,王鲁平,郎淑慧,等.椰毒假单胞菌的电镜观察[J],微生物学报,1990,30(6):450~454.
    [12]施巧琴,吴松刚.工业微生物育种学(第二版)[M].北京:科学出版社,2003:102~105.
    [13]余晓斌,全文海,卞玉荣.细菌纤维素的商业化用途[J].纤维素科学与技术.1999,7(3):42~46.
    [14] Owen M A, Elisabeth C, Athene M, et al. Structure of Acetobacter cellulose composites in the hydrated state [J].International Journal of Biological Macromolecules, 2001, 39(3): 193~202.
    [15]赫常明,罗伟.细菌纤维素—种新兴的生物材料.纤维素科学与技术[J].2002, 10 (2):56~61.
    [16] D.P.Delmer.Biosynthesis of cellulose.Adv.Carbohydr.Chem.Biochem[J].1983, 41:105~153.
    [17]贾士儒,欧竤宇,傅强.新型生物材料一一细菌纤维素食品与发酵工业[J].2000, 27 (1):54~58.
    [18]郭蔼光.基础生物化学[M].北京:高等教育出版社,2000,12:132~163.
    [19] Shin Kawano,Kenji Tajima,Yukako Uemori,et.al.Cloning of Cellulose Synthesis Related Genes from Acetobacter Xylinum ATCC23769 and ATCC53582:comparison of cellulose synthetia ability between strains[J].DNA research,2002,9(5):149~156.
    [20] K.Zaar.Visualization of pores (exportsites) correlated with cellulose production in the envelop of the gram-negative bacterium Acetobacterx ylinum [J]. Cell Biology,1979, 80: 773~777.
    [21]余晓斌,卞玉荣,全文海.细菌纤维素的商业化用途[J].纤维素科学与技术,1999,7(3):42~46.
    [22]马承铸,顾真荣.细菌纤维素生物理化特性和商业用途(综述)[J].上海农业学报,2001,17 (4) :93~98.
    [23]修慧娟,王志杰,等.细菌纤维素对纸张性能的影响[J].中国造纸,2005,24(3):14~17
    [24]马承铸.生物有机纳米材料-细菌纤维素[J].精细与专用化学品,2001,(18):14~17.
    [25]杨礼富.细菌纤维素研究新进展[J].微生物学通报,2003,30(4):95~98.
    [26]孙东平,徐军.醋酸杆菌发酵生产细菌纤维素的研究进展[J].生物学杂志,2004,21(1):12~15.
    [27]马承铸,顾真荣.细菌纤维素生物理化特性和商业用途[J].上海农业学报,2001,17(4):93~98.
    [28] M.Matsuoka,T.Tsuchida,K. Matsushita,et.al.A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp[J].sucrofermentans, Biosci.Biotech. Biochem.,1996,60(4):575~579.
    [29]余晓斌,卞玉荣,全文海.Acetobacter xylinum生产纤维素的最适培养基成分[J].生物技术,1999,9(3):27~30.
    [30] T.Oikawa,T.Ohtori,and M.Ameyama.Production of Cellulose from D-mannitol by Acetobacter xylinum KU-1[J].Biosci.Biotech. Biochem,1995, 59 (2):331~332.
    [31] Ramana K.V.,A.Tomar,and L.Singh.Effect of Various Carbon and Nitrogen Sources on Cellulose Synthesis by Acetobacter xylinum [J].Microbiol.Biotech,2000, 16:245~248.
    [32]刘四新,李枚秋,方仲根.椰子纳塔发酵条件研究[J].食品与发酵工业,1999,25(1):36~39.
    [33] Maanobu Matsuoka,Takayasu Tsuchida, Kazunobu Matsushita,et a1.A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp.Sucrofermentans[J].Biosci.Biotech. Biochem, 1996,60(4):575~579.
    [34]王国强,葛向阳,邵伟.巴氏醋杆菌培养条件优化研究[J].现代食品科技,2006,22(3):48~50.
    [35]齐香君,张美云.细菌纤维素发酵条件的优化[J].西北轻工业学院学报,2002,20(5) :69~71.
    [36] Naritomi,T.,T.Kouda,H.Yano,et a1.Effect of lactate on Bacterial Cellulose Production from Fructose in Continuous Culture [J].Fermentation and Bioengineering,1998,85(1):89~95.
    [37]欧竤宇,贾士儒,马霞.细菌纤维素发酵培养基的优化[J].食品与发酵工业,2004,29(1) :18~22.
    [38]齐香君,苟金霞,辛俊亮,等.细菌纤维素合成菌株发酵条件的考察[J].食品与发酵工业,2004,30(7):90~92.
    [39] A.Hirai, M.Tsuji,and F. Horii,Culture Conditions Producing Structure Entities Composed of Cellulose I and II in Bacterial Cellulose[J].Cellulose,1997,4:239~245.
    [40] T.Kouda,T.Naritomi,H.Yano,et al.Effects of Oxygen and Carbon Dioxide P ressures on Bacterial Cellulose Production by Acetobacter in Aerated and Agitated Culture[J].Fermentation and Bioengineering,1997,84 (2):124~127.
    [41] A.Budhiono,B.Rosidi,H.Taker,et al.Kinetic Aspects of Bacterial Cellulose Formation in nata-de coco Culture System[J].Carbohydrate Polymers,1999,40:137~143.
    [42] Takaaki Naritomi,Tohm Kouda,Hisato Yanget a1.Effect of Ethanol on Bacterial Cellulose Production from Fructose in Continuous culture[J].J.of Fermentation and Bioengineering,1998,85(6):598~603.
    [43] R.Standal,T.G.Iversen,D.H.Coucheron,et al.A New Gene Required for Cellulose Production and a Gene Encoding Celluloytic Activity in Acetobacter xylinum are colocalized with the bcs Pperon[J].Bacteriology,1994,176,(3):665~672.
    [44]范丽霞,王锡彬.细菌纤维素生物理化特性及其应用[J].海南医学院学报,2004,10(4):279~281.
    [45]谭玉静,洪枫,邵志宇.细菌纤维素在食品中的应用[J].中国生物工程杂志,2007,27(4):126~131.
    [46]邓毛程,王瑶,阳元娥.蔗糖二步发酵法提高细菌纤维素产量的研究[J].甘蔗糖业,2004(2):30~32.
    [47]宋海农,张远秋.细菌纤维素在造纸工业中的应用和展望[J].广西大学学报自然科学版,2004,29(1):73~76.
    [48] Robert E.M icrobiology[M].1991, 435~477.
    [49] Fumihiro Yoshinaga,Biosci.Biotech and Biochem[M].1997,61(2),219~224.
    [50] Kathryn E.Cook.Current microbiology[M].1980,3:203~205.
    [51]王岁楼,吴晓宗,郝莉花,等.(超)高压对微生物的影响及其诱变效应探讨[J].微生物学报,2005,45 (6):970~973.
    [52] Hamada S,Andou M,Naito N1Direct induction of tetraploids or homogezygous diploids in the industry yeast saccharomyces cerevisiae by hydrostatic pressure[J].Current Opinion in Genetics &Development,1992,(22):371~376.
    [53]柯为.嗜极生物中的嗜高压生物[J].生物工程学报,2002,(4):51~53.
    [54]李桂双,白成科.静水高压处理对水稻植株生理特性的影响[J]高压物理学报,2003,17(2):122~127.
    [55]柯为.嗜极生物中的嗜高压生物[J].生物工程学报,2002,18 (4):51~53.
    [56]高翔,李炯,阮康成.高压力诱变的耐压大肠杆菌[J].生物化学与生物物理学报,2001,33(1) :77 -81.
    [57] Silva J L ,Luan P,Glaser M, et al.Effects of hydrostatic pressure on a membrane enveloped virus[J].High immunogenic of the pressure-indicated virus. J Virol,1992,66:2111~2117.
    [58]李桂双,白成科,段俊等.静水高压处理对水稻植株生理特性的影响[J].高压物理学报,2003,17(2):122~128.
    [59]王岁楼,李国富,王琼波,吴晓宗,段旭昌.紫外和超高压诱导漆酶产生菌变异的对比研究[J].郑州轻工业学院学报(自然科学版),2005,20 (3):39~42.
    [60]韩辉.开菲尔粒发酵条件优化及冷冻干燥工艺的研究[D].北京:中国农业大学,2006.
    [61] Rurta.s.Freezing of isolated thylakiod membranes in comp1ex media.Cryobiology,1996,33: 118~126.
    [62] T.C.brahan.The efect of cryopreservation on membrane inleglity membrane transport and protein[J].Synthesis in rat bepatocytes.Cryobiolog. l990,27,143~152.
    [63] A.C.biondl.Permeability of lipid membranes revised in relation to freeze-thraw plocesses[J] Cryobiofogy,1997,29,323~331.
    [64] G.S.taa.Freeze-drying of composition and glass transition temperature of the protectant[J]. Cryobiofogy,1995,32,60~67.
    [65] Peter Ross,Raphael Mayer,Moshe Benziman.Cellulose biosynthesis and function in bacteria[J]. Microbiological Reviews,1991,55(1):35~58.
    [66]王国强,葛向阳,邵伟.巴氏醋杆菌培养条件优化研究[J].现代食品科技,2006,22(3):48~50.
    [67]程丽娟,薛泉宏.微生物学实验技术[M].世界图书出版,2000:24~30.
    [68]郝林.食品微生物学实验技术[M].中国农业出版社,2001:15~18.
    [69] Inder M.Saxena,R.Malcolm Brown.Cellulose Biosynthesis:Current Views and Evolving Concepts[J]. Annals of Bontany, 2005,96:9~21.
    [70] Luis Glaster.The synthesis of cellulose in cell-free extracts of Acetobacter xylinum[J].Journal of Biological Chemistry, 1957,12:627~636.
    [71] M.C.Mccann,B.Wells,K.Roberts.Direct visualization of cross-links in the primary plant cell wall[J]. Journal of Cell Science,1990,96:323~334.
    [72]马承铸.生物有机纳米材料—细菌纤维素[J].精细与专用化学品,2001(18):14~16.
    [73] Luis Glaster. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum[J].Journal of Biological Chemistry,1957,12:627~636.
    [74] A. Krystynowicz,W.Czaja,A.Wiktorowska-Jezierska,et al. Factors affecting the yield and properties of bacterial cellulose[J].Journal of Industrial microbiology & Biotechnology,2002,29:189~195.
    [75] Ann G.Matthysse,Darby L.Thomas, Alan R.White.Mechanism of Cellulose Synthesis in Agrobacterium tumefaciens[J]. Journal of Bacteriology,1995,177(4):1076~1081.
    [76]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法[M].科学出版社,1978:135~193.
    [77] R.E布坎南,N.E.吉本斯等编,中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译,伯杰细菌鉴定手册(第八版).北京科学出版社,1984,12:362~366.
    [78]杨礼福.细菌纤维素研究进展[J].微生物学通报,2003,30(4):95~98.
    [79] H.Toyosaki,T.Naritomi,A.Seto,et al.Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture [J].Biosci.Biotechnol.Biochem,1995,59(8):1498~1502.
    [80] Kiyoshi Toda,Tomoko Asakura,Masahiro Fukaya, et a1.Cellulose Production by Acetic Acid-Resistant Acetobacter xylinum[J].Journal of Fermentation and Bioengineering,1997,84(3):228~231.
    [81]熊强,细菌纤维素生产菌的筛选及其产物性质研究[D].南京:南京农业大学,2001.
    [82]余晓斌,卞玉荣,全文海.生产细菌纤维素的最适培养基成分[J].生物技术,1999,9(3):27~30.
    [83]周媛,熊泽,巴氏醋杆菌纤维素微生物合成研究[J].中国酿造,2002,1:19~22.
    [84]马承铸,顾真荣.醋菌纤维素高产菌株筛选和菌物鉴定[J].上海农业学报,2000,16(3):78~82.
    [85] Adinarayana K, Ellaiah P. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp[J].Journal of Pharmacy and Pharmaceutical Science,2002,5(3): 272~278.
    [86]蒋红军.醋酸高产菌株的选育及代谢控制发酵的研究[J].中国酿造,2005,1:25~27.
    [87]樊妙姬.细菌纤维素产生菌的筛选、培养基的优化及GDH基因缺失体的研究[D].广西:广西大学,2005.
    [88]陈希.产双酶假单胞杆菌的诱变选育及发酵条件的优化[D].湖南:中南林业科技大学,2006.
    [89]赵琼.木醋杆菌C5紫外诱变育种及其培养基优化[D].黑龙江:哈尔滨工业大学,2005.
    [90]林祥木.醋酸菌纤维素高产菌株的诱变选育及其发酵特性研究[D].福建:福建农林大学,2004.
    [91] S.J.Kalil, F.maugeri, M.I.Rodrigues. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochemistry, 2000,35 (6):539~550.
    [92]大连轻工学院,郑州轻工学院.食品分析[M].北京:中国轻工业出版社,1994,100~110.
    [93]杨革.微生物学试验教程[M].北京:科学出版社,2004,5:159~170.
    [94] D.D.THOMPSON.Response surface experimentation[J].Food Processing and Preservation,1982, 6(3):155~188.
    [95]邵伟,乐超银,唐明,等.醋酸菌对甲醇的净化及细菌纤维素合成研究[J].生物技术,2002,12(6):18~20.
    [96]邵伟,唐明,熊泽,等.醋酸菌对乙醛的降解及细菌纤维素合成作用的研究,中国酿造,2004(5):13~15.
    [97]孙智敏,张文齐,邵威平等.醋酸菌菌种保藏方法的改进及保藏期限的研究[J].中国酿造,2005(12):30~32.
    [98]邵伟,乐超银,唐明,等.醋酸菌菌种保藏条件改进[J].中国酿造,2002(4):12~14.
    [99]张文齐,魏甲乾,孙智敏,等.不同保藏条件对醋酸菌菌种生长及产酸能力的影响[J].甘肃科学学报,2006(2):22~24.
    [100]尹光琳,战立克,赵根楠主编.发酵工业全书[M].北京:中国医药科技出版社,1992.77~79.
    [101]李忠庆编.微生物菌种保藏技术[M].北京:科技出版社,1989.19~28.
    [102]邵伟,熊泽,唐明等.醋酸菌菌种的冷冻干燥保藏研究[J].中国酿造,2005(11):7~8.
    [103] Yamanaka Shigeru,Ishihara Masaru,Sugiyama Junji.Structural modification of bacterial cellulose[J]. Cellulose,2000,7(3):213~225.
    [104]陕西师范大学分析化学教研室,陕西农林科学院分析室,农业化学常用分析方法[M].西安:陕西科学技术出版社,1979:373~375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700