Mant基因导入棉花基因组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘露糖基转移酶(mannosyl transferase,mant)基因是从拟南芥克隆而来,普遍存在于高等真核生物的基因组中,其编码产物的基本功能是将甘露糖从GDP-甘露糖转移到长醇一磷酸酯上,形成长醇磷酸甘露糖。在内质网泡内,长醇磷酸甘露糖则是N-糖基化途径、糖磷脂酰肌醇膜固定途径以及蛋白质的O-甘露糖基化的甘露糖基的供体。甘露糖也是聚唾液酸和植物外源凝集素(lectin)的成分,而这两种甘露糖蛋白又是植物的细胞壁成份之一,他们都与植物的抗虫和抗病性有关。因此甘露糖代谢的异常,也会导致植物对病原微生物及害虫抗性特征的改变以及植物本身生长发育的异常。本研究利用mant基因的编码序列与花药特异启动子、含增强子四联体的花药特异启动子构建成融合基因和该基因的反义RNA基因,并通过农杆菌介导法将这些融合基因导入棉花基因组中,使其超表达、花药特异表达或抑制棉花同源基因的表达,以期创造出新的抗病、抗虫和转基因雄性不育系。
     本研究取得的实验结果如下:
     1.通过农杆菌介导的遗传转化方法将mant基因的上述三种转化结构成功导入棉花基因组中,共获得转化植株66株。
     2.分别以NPTⅡ和mant基因序列设计引物,对获得的当代转基因植株进行PCR检测。NPTⅡ设计的特异引物筛选阳性率为59.1%,mant设计的特异引物筛选阳性率为50%,两对引物筛选的共阳性率为36.4%。
     3.对转基因PCR阳性植株进行Southern杂交检测,其中NPTⅡ特异探针的杂交结果表明,无论棉花基因组DNA以kpnI或EcoRI酶切,T_0代不同植株间探针杂交阳性片段大小各异,多态性表明外源基因在棉花基因组中整合位点不同,转基因植株的嵌合程度较低。Mant特异探针杂交结果表明,棉花基因组DNA以EcoRI酶切,都可见预期大小的内部片段,并且初步证明棉花基因组存在mant同源序列。这些结果均表明外源基因确已经整合到棉花基因组中。
     4.对转基因当代植株进行生育特性考查,在育性方面并未表现出与对照有明显差别,抗虫、抗病特性以及雄性不育性的转基因植株有待从T1代转基因群体中进行筛选、鉴定。
Mannosyl transferase(mant) is cloned from Arabidopsis Arabidopsis thianala. It is believed that the gene encoding Mannosyl transferase(mant) universally exists in the genomes of all eukaryotic and prokaryotic organisms. Its coding product Mannosyl transferase transfers mannose from GDT-mannose to dolichol monophosphate to form dolichol phosphate mannose (dol-p-man), which serves as a donor of mannosyl residues on the lumenal side of the endoplasmic reticulum leading to N-glycosylation, glycosyl phosphatidylinositol membrane anchoring, and O-mannosylation of proteins. Mannose also is the basic component of saliva acid and plant lectin. These two kinds of glycoproteins are parts of plant cell wall components and highly related to disease and insect resistances of plants. Therefore, abnormalities of mannose metabolisms certainly result in the changes of plant resistibility to virulent microorganisms and pests, and form barriers to plant normal developments. In this study, the coding sequence of the mant gene was applied to fuse with anther-specific promoter, tetravalent enhancer plus anther-specific promoter to build the constructs of fused genes and antisense RNA gene, and with which to transform apex segments of upland cotton via Agrobacterium mediated transformation, and to make them over expression, anther specific expression, or suppress the expression of the homologues counterparts in the cotton genome in the purpose of creating of new disease- and insect- resistant cotton varieties and transgenic male sterile lines.The main results in this study were as follows:1. The above-mentioned three mant constructs were successfully transferred to the cotton genome by Agrobacterium mediated transformation. Total 66 T_0 transgenic plants were obtained.2. The primers were designed according to the sequences of NPTⅡand mant gene and applied to PCR analyses of To transgenic plants. Percentage of the plants with positive signals in nptⅡ primer reaction is 59.1%, that of the plants in mant primer reaction is 50%, and the percentage of the plants showing both positive signals of nptll and mant primer reactions is 36.4%.3. The T_0 transgenic plants displayed positive signals in PCR reaction were further analyzed in Southern blotting. The results showed that whatever the genomic DNAs digested with restriction enzymes of KpnI or EcoRI both had the polymorphisms of restriction fragments while probed with the PCR product of nptll gene. But the size of the fragments only varied 9kb-25kb among the plants, indicating that the foreign genes
    had integrated into the different sites of the host genome, and that the To plants originated from different transformed cells and had a lower degree of chimera.The hybridization results taking the PCR fragment of mant gene as probe showed that digestions of EcoRl presented internal fragments with anticipated sizes.4. Field characterization of TO transgenic plants did not show any significant difference from the check test plants in phenotypes, fertility and pollen grain development. It is possible that the transgenic mutants with desirable traits, such as insect- and disease-resistances and male sterility, could be identified and isolated from the Tl segregating populations.
引文
1.马伯军,徐根娣,袁妙葆.高等植物遗传转化的研究进展.浙江师大学报,1994,17(4):61-66
    2.于晓红,朱勇清,陈晓亚,许智宏,周宝良,陈松沈新莲.种子特异表达ipt转基因棉花根和纤维的改变.植物学报,2000,42(1):59-63
    3.于元杰,尹承佾,马骏,沈法富,黄清杰.异科外源DNA导入陆地棉引起性状变异初报.山东农业大学学报,1991,22(4):335-340
    4.方宏筠,王关林.黑核桃体细胞胚状体发生及其基因转化系统.园艺学报,2000,27(6):406-411
    5.王关林,方宏筠.植物基因工程.北京:科学出版社,2002:7-80
    6.王关林.植物基因工程原理与技术[M].北京:科学出版社,1998:161-178.
    7.王景雪,孙毅.农杆菌介导的植物基因转化研究进展.生物技术通报,1999,(1):7-13
    8.王伟,朱祯,高越峰,石春林,陈宛新,郭仲琛,李向辉.双价抗虫基因陆地棉转化植株的获得.植物学报,1999,41(4):384-388
    9.王勇,林忠平,王关林.通过转基因途径获得植物雄性不育.辽宁师范大学学报,2002,25(2):169-173
    10.乐锦华,祝建波,崔百明,朱新霞,王爱英,陈正华,刘桂珍,李国英,简桂良,吴刚.用目的基因转化技术培育抗病新品种.石河子大学学报,2002,6(3):173-178
    11.叶健明,唐克轩,沈大棱.植物转基因方法概述.生命科学,1999,11(2):58-60
    12.刘方,王坤波,宋国力.中国棉花转基因研究与应用,棉花学报,2002,14(4):249-253
    13.刘任重,Qing Liu,王留明,王家宝,杨静,Allan Green.硬脂酰脱氢酶基因gh-SAD1倒位重复构建的棉花遗传转化.棉花学报,2001,13(5):304-308
    14.巩万奎,吴家和,姚长兵,刘方,喻树迅,陈志贤,刘志红,李燕娥.葡萄糖氧化酶基因在棉花中的高效转化—转基因再生棉株的获得.棉花学报,2002,14(2):76-79
    15.巩万奎,喻树迅,陈志贤,吴家和,余学科.葡萄糖氧化酶基因在棉花中的高效转化.棉花学报,1999,11(6):241-246
    16.关正君,杨学举等.基因工程在雄性不育小麦中的应用研究进展.安徽农业科学,2003,31(1):44-46.
    17.任江萍等.植物抗除草剂基因研究进展.山西农业大学学报,2000,21(2):168-172
    18.孙善君,李仕贵,朱生伟,孙敬三,卢亚.分子植物育种,2005,3(2):233-239
    19.向文胜.抗除草剂草甘膦基因作物.东北农业大学学报,1998,29(1):92-98
    20.朱卫民,吴敬音,徐建明,蔡小宁,朱祯,李向辉.棉花茎尖分生组织在微粒轰击法基因转化中的应用.江苏农业学报,1998,14(2):74-79
    21.李付广,郭三堆,刘传亮,李凤莲,崔洪志,周勇,李秀兰.双价基因抗虫棉的转化与筛选研究.棉花学报,1999,11(2):106-112
    22.李付广,崔金杰,刘传亮,武芝霞,李凤莲,周勇,李秀兰.双价基因抗虫棉及抗虫性研究.中国农业科学,2000,33(1):46-52
    23.李胜国.基因工程雄性不育烟草的获得[J].植物学报,1995,37(8):659-660.
    24.李晓,王学德.根癌农杆菌转化棉花花粉的研究.棉花学报,2004,16(6):323-327
    25.李祥等.应用基因工程技术创造雄性不育系.中国生物工程杂志,2002,22(6):28-32
    26.李燕娥,朱祯,吴霞,孟晋红,范小平,吴家和,史高川,肖娟丽,张换祥.转基因再生棉花嫁接初报.中国棉花,2000,27(3):25-30
    27.李用芳,周延清.发根农杆菌及其应用.生物学杂志,2000,17(6):29-32
    28.沈革志,王新其等.TA29-barnase基因转化甘蓝产生雄性不育植株.植物生理学报,2001,27(1):43-48
    29.宋国立,崔荣霞,王坤波,郭立平,黎绍惠,王春英,张香娣.改良CTAB法快速提取棉花DNA.棉花学报,1998,10(5):273-275
    30.吴敬音,朱卫民,徐建明,蔡小宁,朱祯,李向辉.陆地棉(Gossypium hirsutum L.)茎尖分生组织培养及其在基因导入上的应用.棉花学报,1994,6(2):89-92
    31.肖国缨.根癌农杆菌介导的植物遗传转化研究现状和前景.作物研究,1998(1):44-48
    32.余淑文.植物生理与分子生物学.北京:科学出版社,1992:63-83
    33.张宝红,丰嵘.棉花生物技术研究现状.生物工程进展,1992,12(5):18-21
    34.张宝红,郭腾龙,丰嵘,王武,李秀兰.棉花抗除草剂基因工程研究进展.安徽农业科学,1995,23(1):94-96
    35.张毅,沈文辉.植物基因工程的新载体——农杆菌Ri质粒.生物工程学报,1989,(5):173-178
    36.张震林,陈松,刘正銮,周宝良,张香桂.转蚕丝芯蛋白基因获得高强纤维棉花植株.江西农业学报 2004,16(1):15-1921
    37.张震林,倪万潮,郭三堆,束春蛾,张保龙,徐英俊.人工合成Bt基因对棉花的遗传转化.江苏农业学报,1998,14(3):145-148
    38.陈布圣.棉花叶面积的速测法.华中农学院学报,1981,3:21-30
    39.陈潜等.花药特异嵌合启动子的构建及雄性不育转基因拟南芥的获得.农业生物技术学报,2001,9(1):62-64.
    40.陈旭升等.转基因棉花育种进展及其产业化前景分析.Chinese Agriculture Science Bulletin,2000,18(2):72-75.
    41.陈志贤,LIEWELLYN D J,范云六,李淑君,郭三堆,焦改丽,赵俊侠.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉株.中国农业科学,1994,27(2):31-37
    42.孟晋红,肖桂芳,李向辉.豇豆胰蛋白酶抑制剂转基因棉花的获得.棉花学报,1998,10(5):237-243
    43.杨广东,朱祯,李燕娥,朱祝军.利用根癌农杆菌和基因枪法转化获得抗虫融合蛋白基因(Bt-CpTI)甘蓝植株.实验生物学报,2002,35(2):117-122
    44.岳建雄,张慧军,张炼辉.以对潮霉素抗性筛选标记的棉花遗传转化.棉花学报,2002,14(4):195-19942.
    45.洪继仁,方光华,陈如梅,钟维瑾.棉花实验方法.北京:农业出版社,1985:131-133
    46.赵俊侠,郭三堆,石跃进,桑瑜,齐宏立,郭三堆,焦改丽,陈志贤.农杆菌介导外源基因在棉花中的表达.棉花学报,2001,13(3):146-148
    47.赵俊侠,焦改丽,李淑君,陈志贤.不同农杆菌菌株和棉花品种在转基因棉花中的应用研究.棉花学报,1997,9(4):213-216
    48.赵俊侠,焦改丽.棉花外源基因导入及转基因再生植株条件的研究.棉花学报.1998,10(4):189-92
    49.崔百明,祝建波,肖路,王爱英,朱新霞,乐锦华,陈正华.转β-1,3-葡聚糖酶基因和几丁质酶基因棉花.生物技术,2002,12(4):1-2
    50.崔广荣.植物转基因方法及特点和转基因沉默现象.安徽技术师范学院学报,2003,17(1):37-41
    51.崔洪志,郭三堆.我国抗虫转基因棉花研究取得重大进展.中国农业科学,1996,29(1):93-95
    52.郭江平.转导外源总DNA创造棉花新种质.中国棉花,2000,27(1):7-8
    53.郭三堆,崔洪志,夏兰芹,武东亮,倪万潮,张震林,张保龙,徐英俊.双价抗虫转基因棉花研究.中国农业科学,1999,32(3):1-7
    54.郭三堆,崔洪志.中国转基因抗虫棉又取得新进展.中国农业科学,1998,31(6):91-94
    55.郭三堆等.双价抗虫棉转基因棉花研究.中国农业科学,1999,32(2):1-7.
    56.贾士荣.植物遗传转化进展.江苏农业学报.1990,60:44-47
    57.贾士荣.转基因植物概述.1992,():1-90
    58.倪万潮,黄俊麒,郭三堆,束春娥,吴敬音,王武钢,张震林,陈松,毛立群,汪洋,徐英俊.转基因抗虫棉的培育.中国农业科学,1998,31(2):8-13
    59.徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展.生命科学,2002,14(4):223-225
    60.黄骏麒,钱思颖,刘桂玲,翁坚,曾以申,周光宇.外源海岛棉DNA导致陆地棉性状的变异.遗传学报,1981,8(1):56-62
    61.黄骏麟,龚蓁蓁.慈姑蛋白酶抑制剂API基因导入棉花获得转基因植株.江苏农业学报,2001,17(2):65-68
    62.焦改丽,李俊峰,李燕娥,赵俊峡,张换样,刘建卫.利用新的外植体建立棉花高效转化系统的研究.棉花学报,2002,14(1):22-27
    63.焦改丽,郭三堆,李淑君,陈志贤,赵俊侠.棉花遗传转化和植株再生的研究.华北农报,1997,12(2):82-85
    64.董春海,姚敦义.通过根癌农杆菌将植物生长素合成酶基因导入棉花获得再生植株.自 然杂志,1991,14(10):798-799
    65.傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册.北京:中国科学技术出版社,1994:35-39
    66.傅荣昭,孙勇如,贾士荣.植物遗传转化手册[M].北京:中国科学出版社,1995:9-11.
    67.萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯 T.分子克隆实验指南.北京:科学出版社,1992:19-34
    68.谢道昕,倪万潮.苏云金芽孢杆菌(Bt)基因杀虫晶体蛋白基因导入棉花获得转基因植株.中国农业科学,1991,(4):367-373
    69.路铁刚,孙敬三.根癌农杆菌转化单子叶植物研究概况.生物工程进展,1990,10(3):4-8
    70.缪亚梅,崔世友.我国转基因棉的研究现状及展望.江西棉花,2002,24(3):9-10,12
    71.樊龙江,周雪平.转基因作物安全性—争论与事实.北京:中国农业出版社,2001:22-50
    72.戴均贵,朱蔚华.发根培养技术在植物次生代谢物生产中的应用.植物生理学通讯,1999,(35):69-76
    73. Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry J E, Ow D W. Engineering 2, 4-D resistance into cotton. Theor Appl Genet, 1992, 83()0: 645-649
    74. Benedict J H. Behavior, growth, survival and plant injury by Heliothis virescens(F.) on transgenic Bt cottons. J Econ Entomol, 1992, 85(): 489-593
    75. Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Human G. Microprojectile bombardmment of plant tissue increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol, 1992, 18(): 301-313
    76. Birch R G. Plant Transformation: Problems and Strategies for Practical Application. Annu Rev Plant Physiol Ptant Mol Biol, 1997, 48(): 297-326
    77. Caboni E, Lauri P, Tonelli M, Falasca G, Damiano C. Root induction by Agrobacterium rhizogenes in walnut. Plant Science, 1996, 118(): 203-208
    78. Carneira M, VilaineF. Differential expression of the rolA plant oncogene and its effect on tobacco development. Plant J, 1993, 3(): 785-792
    79. Chichiricco G, Costantino P, Span L. Expression of the rolB oncogene from Agrobacterium thizogenes during zygotic embryogenesis in tobacco. Plant Cell Phydiol, 1992, 33(): 827-832
    80. Chlan C A, Lin J, Cary J W, Cleveland T E. A procedure for biolistic transformation an dregeneration of tmnsgenic cotton from meristematic tissue. Plant Mol Biol Rep, 1995, 13(1): 31-37
    81. Costantino P, Capone I, Cardarelli M, De Poalis A, Mauro M L, Trovato M. Bacterial plant oncogenes: the rol genes' saga. Genetica, 1994, 94(): 203-211
    82. Damiano C, Archilletti T, Caboni E, Lauri P, Falasca G, Mariotti D, Ferraiolo G. Agrobacterium-mediated transformation of almond: in vitro rooting through localised infection of A. rhizogenes w.t.. Acta Horticulturae, 1995, 392(): 161-169
    83. Daniell H. Genetic engineering of cotton to increase fiber strength water absorption and dye binding. Procedings bell wide Cotton: Conference, 1998,():595-S98
    84. Denis M,DeIourme R, Gourrent J P et al. Expression of engineered nuclear male sterility in Brassica napus. Plant Physio, 1993, 101(): 1295-1304.
    85. Filippini F, Lo Schiavo F, Terzi M, Constantino P, Trovato M. The plant oncogene rolB alters binding of auxin to plant membranes. Plant Cell Physiol, 1994, 35(): 767-771
    86. Frugis G, Caretto S, Santini L, Mariotti D. Agrobacterium rhizogenes rol genes induce productivity-related phenotypical modifications in 'creeping-rooted' alfafa types, Plant Cell Rep, 1995, 14(): 488-492
    87. Gould J H, Banister S, Hasegawa O, Fahima M, Smith R H. Regeneration of Gossypium hirsutum and G barbadense from shoot-apex tissues for transformation. Plant Cell Rep, 1991, 100: 35-38
    88. Gould J H, Devey M, Ulian E C, Hasegawa O, Peterson G, Smith R H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot-apex. Plant Physiol, 1991, 95(): 426-434
    89. Gould J H, Banister S, Fahima M, Hasegawa O, Smith R H. Regeneration of Gossypium hirsutum and G barbadense from the shoot apex transformation. Plant Cell Rep, 1991, 10(): 12-16
    90. Gould J H, Magallanes-Cedeno M. Adaptation of Shoot Apex Agrobacterium Inoculation & Culture to Cotton Transformation. Plant Mol Biol Rep, 1998, 16 (3): 284-289
    91. Hird D L,Worrall D.Hodge R,et al. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana a6 gene display similarity to beta-1, 3-glucanase. Plant J. 1993, 4(): 1023-1033.
    92. James C. Global review of commercialized transgenic crops: 1999. ISAAA Brief, 1999, 12(): 56-70
    93. James C. Global review of commercialized transgenic crops: 2000. ISAAA Briefs, 2000,. 23(): 88-92
    94. John M E, Crow L J. Gene express in cotton fiber: cloning of the mRNAs. Proc Nail Acad Sci. USA, 1992,():5769-5773
    95. John M E, Keller G Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA, 1996, 93: 12768-12773
    96. Keller G, Spatola L, McCable D, Martinell B, Swain W, John M E. Transgenic cotton resistant to herbicide bialaphos. Transgen Res, 1997, 6: 385-392
    97. Lyon B R, Consins Y L, Llewellyn D J, Demmis E S. Cotton plants transformed with a bacterial
    ??degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid. Transgenic Research, 1993, 2: 162-169
    98. Marc Goetz, et al Inductiong of male sterility in plants by metabolic engineering of the carbohydrate supply. PNAS, 2001, 98(11): 6522-6527.
    99. MacRae S, Van Staden J. Agrobacterium rhizogenes-mediated transformation to improve rooting ability of eucalypts. Tree Physiology, 1993, 12:411-418
    100. Mariani C. A Chimaeric ribonucleasein hibitort genel restore fertility to male sterile plants [J]. Nature, 1992,357:384-387.
    101. Marrone P. Genetic engineering: A classy delivery system. Cotton Int, 1991(1): 84-85
    102. McAfee B J, White E E, Pelcher L E. Lapp M S. Root induction in pine (Pinus) and Larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell, Tissue and Organ Culture, 1993, 34: 53-62
    103. McCabe D E, Martinell B J. Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology, 1993, 11: 596-598.
    104. Michael T, Spena A. The plant oncogene rolA、 B and C from Agrobacterium rhizogenes. Effects on morphology, development and hormone metabolism. Methods Mol Bol, 1995,44: 207-222
    105. MiChael R, Roberts, Elaine B,Rod J S. An investigation of the anther tapetum during micmspore development using genetic cell ablation. Sex Plant Reprot,1995, 8: 299-307.
    106. Murray M G, Pitas J W. Plant DNA from alcfollowing Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol, 1996,32: 1135-1148
    107. Potrykus L. Gene transfers to plants: Assessment of published approches and results. Annu Rev Plant Physiol Ptant Mol Biol, 1991,42:205-225
    108. Proter J R. Host range and implication of plant infection by Agrobacterium tumefaciens. Crit Rev Plant Sci, 1991, 10:387-421
    109. Rajasekaran K, Grula J W, Hudspeth R L, Pofelis S, Anderson D M. Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed, 1996, (2): 307-319
    110. Rajasekaran K, Hudspeth R L, Cary J W, Anderson D M, Cleveland T E. High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep, 2000, 19: 539-545
    111. Rashid, Yokoi H S, Toriyama K, Hinata K. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Reports, 1996, 15: 727-730
    112. Rugini E, Pellgrineschi A, Mencuccini M, Mariotti M. Increase of rooting ability in the woody species kiwi (Actenidia deliciosa A.Chev.) by transformation with Agrobacterium thizogenes rol genes. Plant Cell Rep, 1991,10: 291-295
    113. Scorza R, Zimmernan T W, Cordts T W, Footen K J. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium thizogenes. J Amer Soc Hort Sci, 1994:
     1091-1098
    114. Smith R H, Zapata C, Park S H, Wilson T, El-Zik K, Thaxton P. Transformation of Texas cultivars. Proc Beltwide Cotton Prod Conf, 1997: 457-468
    115. Souq F, Auger R, Coutos-Thevenot P, Boulay M P. Rol C-induced morphogenetic Changes in rose plants. In: Vassarotti A, Kalbe-Boumonvillev L, Baselga de Elorz and De Taxis du Poet PH(Eds). Biotechnology Research for Innovation, Development and Grow thin Europe. Vol. Ⅱ: Final report. Luxembourg, 1995: 733
    116. Srivastava D K, Kolganova T A, Mett V A. Genetic transformation of Gossypium birstum L. CV.108-F. Acta Horticultural 1991, 229: 263-264
    117. Sunikumar G, Rathore K S. Transgenic cotton: factors influencing Agrobacterium- mediated transformation and regeneration. Mol Breed, 2001,8: 35-52
    118. Sutter E G, Luza J. Developmental anatomy of roots induced by Agrobacterium rhizogenes in Malus pumila 'M26' shoots grown in vitro. International Journal of Plant Science, 1993, 154: 59-67
    119. Thomas J C, Adams D G, Keppenne V D, Wasmann C C, Brown JK, Kanpst MR, Bohnert HJ. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep, 1995, 14: 758-762
    120. Van Alvorst A C, Bino R J, Van Dijk A J, Lamers A M J, Lindhout W H, Van der Mark F, Dons HJM. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci, 1992, 83(): 77-85
    121. Van der Meer IM.Stam ME. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility . Piant Cell, 1992, 4(3): 253-262.
    122. Van der Salm, TPM, Van der Toom, CJG, Hanischten cate CH, Dons, HJM. Introduction rol genes transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol Breed, 1997,3:39-47
    123. Wang W, Zhu Z, Deng C Y. Obtaining of resistant cotton by transforming mediated Agrobacterium. New Frontiers in Cotton Research, Word Cotton Rearch Conference-2. A-thens, Greece, 1998, 119
    124. Wilson F D, Flint H M, Deaton W R. Cotton lines containing a Bacillusthruingiensis toxin to pink bollworm(Lepidoptera: Gelechiidae)and other insects. J Econ Entomol, 1992, 85: 1516-1521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700