链霉菌Streptomyces sp. S27来源的β-1,3-葡聚糖酶和β-甘露糖苷酶的基因克隆与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过对菌种新颖性和产酶能力评估确定了链霉菌S27(Streptomyces sp.S27)为本实验的研究对象。链霉菌是一种资源丰富的拮抗微生物,在工业、农业和环境科学等方面有着广泛的用途。链霉菌S27分离自新疆吐鲁番盆地的火焰山。
     利用生物信息学的方法,对链霉菌来能源的糖苷水解酶16家族的β-1,3-葡聚糖酶序列进行比对设计简并引物,通过简并PCR扩增得到来源于链霉菌S27编码的β-1,3-葡聚糖酶的基因片段,再结合基因组文库筛选和TAIL PCR的方法最终获得基因的全序列并成功地在大肠杆菌BL21(DE3)中得到活性表达。bglS27基因全长1,359bp,编码453个氨基酸,理论分子量42.7kDa。成熟蛋白包含一个糖苷水解酶16家族的催化域,一个短的Gly连接域和一个第13家族的糖基结合域。纯化的重组酶ManS27以内切方式特异性地切割β-1,3-葡聚糖苷键。它在65℃和pH5.5活性最高,热稳定好,其比活和K_m值分别为236.0 Umg~(-1)和1.89 mg ml~(-1)。抑菌试验表明,BglS27可以抑制产毒素真菌(如:Fusarium Graminearum,Fusarium crookwellense,Paecilomyces variotii)和致病真菌(Rhizoctonic solani)的生长。BglS27具有的良好性质使其在食品和饲料保藏、植物保护和其它生物技术领域有潜在的应用前景。
     根据已知的链霉菌S27来源的β-甘露糖苷酶基因片段序列设计引物,通过筛选链霉菌S27基因组文库的方法克隆得到β-甘露糖苷酶基因manS27。该基因全长2,496bp,编码832个氨基酸和一个终止密码子,理论分子量为92.5 kDa。将manS27以正确阅读框架克隆到表达载体pET-22b(+)上,并在大肠杆菌BL21(DE3)中诱导表达。纯化的MartS27酶学性质分析表明,其最适温度为50℃,最适pH值为7.0,比活和K_m值分别为35.3 Umg~(-1)和13.75 mg ml~(-1)。实验结果表明,ManS27具有转糖基作用。
     本研究从链霉菌S27克隆得到β-1,3-葡聚糖酶和β-甘露糖苷酶的基因,通过构建表达载体并转化大肠杆菌获得了表达生物活性产物的重组子,这些重组子的获得为下一步高产商品化菌株的构建及其酶的分子生物学研究奠定了良好的基础,具有一定的应用价值。
Streptomyces is an important resource-rich antagonistic microorganism and is widely used in industry, agriculture and environmental sciences.In this study,Streptomyces sp.S27 was selected as the research objects based on the evaluation of species-novelty and enzyme production capacity.Streptomyces sp.S27 was isolated from the Flaming Mountain in the Turpan Basin of Xinjiang Uygur Autonomous Region, China.
     By using bioinformatical methods,the amino acid sequence of Streptomyces producedβ-1,3-glucanase from glycoside hydrolase(GH) family 16 were aligned and analyzed.A set of degenerate primers were designed based on the conserved motifs.Gene fragments ofβ-1,3-glucanase from Streptomyces was cloned by using degenerated PCR method.The full length gene bglS27 was obtained by combinating with genomic library screening and TAIL PCR,and successfully expressed in Escherichia coli BL21(DE3). The bglS27 gene contains 1,362 bp and encodes a protein of 453 amino acids with a calculated molecular mass of 42.7 kDa.The mature protein comprises a catalytic module of glycosyl hydrolase(GH) family 16, a short glycine linker region,and a family 13 carbohydrate-binding module(CBM).The purified recombinant enzyme showed optimal activity at 65℃and pH 5.5,and preferentially catalyzed the hydrolysis of glucans withβ-1,3-linkage with an endolytic mode of action.Specific activity and Km value of BglS27 for laminarin was 304.2 U mg~(-1) and 1.89 mg ml~(-1),respectively.In antifungal assay,BglS27 had ability to inhibit the growth of some mycotoxin-producing fungi,such as Fusarium Graminearum, Fusarium crookwellense,and Paecilomyces variotii,and phytopathogenic fungus Rhizoctonic solani.These favorable properties make BglS27 a good candidate for use in feed and food preservation,plant protection, and other biotechnological applications.
     A pair of primers were designed based on the gene fragment ofβ-mannosidase from Streptomyces sp. S27 to clone the full length gene,manS27,by screening the genomic library from Streptomyces sp.S27. The gene manS27 contains 2,496 bp and encodes a protein of 832 amino acids with a calculated molecular mass of 92.5 kDa.The gene manS27 was inserted into the expression vector of pET-22b(+) and transformed into Eschetichia coli BL21(DE3) to express the recombinant protein ManS27. Characterization of ManS27 indicated that the optimum temperature and pH were 50℃and pH7.0,and the specific activity and Km value of ManS27 were 304.2 U mg~(-1) and 1.89 mg ml~(-1),respectively.The result of transglycosylatic experiment showed that ManS27 had the activity of transglycosylation.
     In this study,aβ-1,3-glucanase gene and aβ-mannosidase gene were cloned from Streptomyces sp. S27.By constructing and transformating expression vector to Eschetichia coli,we have obtained recombinants which are promising in applications of constructing the commercialized high-yielding strains and molecular biological research on enzymy.
引文
1.Ademark P,Lundqvist J,Tenkanen M,Torto N,Tjeneld F.Hydrolytic properties of a β-mannosidase purified from Aspergillus niger[J]Biotechnol,1999,75:281-289.
    2.Alkhayat,A.H.,S.A.Kraemer,J.R.Leipprandt,M.Macek,W.J.Kleijer,and K.H.Friderici.Human beta-mannosidase cDNA characterization and first identification of a mutation associated with human beta-mannosidosis[J].Hum.Mol.Genet.1998,7:75-83.
    3.B Henrissat,A Bairoch.Characterization of microbial endo-1,3-glucanase immobilized in alginate beads[J].Biochem,1996,316(6):695-696
    4.B.L.Cantarel,P.M.Coutinho,C.Rancurel,T.Bernard,V.Lombard,B.Henrissat,The Carbohydrate-Active EnZymes database(CAZy):an expert resource for glycogenomics,Nucleic Acids Res.2009,37:233-238.
    5.Bauer,M.W.,E.J.Bylina,R.V.Swanson,and R.M.Kelly.Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus,Purification,characterization,gene cloning,and sequence analysis[J].Biol.Chem.1996,271:23749-23755.
    6.Beccari,T.,L.Bibi,S.Stinchi,J.L.Stifling,and A.Orlacchio.Mouse beta-mannosidase:cDNA cloning,expression,and chromosomal localization[J].Biosci.Rep.2001,21:315-323.
    7.Beki E,Nagy I,Vanderleyden J,Jager S,Kiss L,Fulop L,et al.Cloning and heterologous expression of a β-d-mannosidase(EC 3.2.1.25)-encoding gene from Thermobifida fusca TM51[J].Appl Environ Microbiol 2003,69:1944-52.
    8.Bhat MK.Cellulases and related enzymes in biotechnology[J].Biotechnol Adv 2000,18:355-83.
    9.Borriss R,Buetter K,Maentsaelae P.Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans[J].Molicular Biotechnology.1990,43(15):369-410
    10.Bouquelet S,Spik(G,Montreuil J.Properties of a β-d-mannosidase from Aspergillus niger.Biochim Biophys Acta 1978,522:521-30.
    11.Bucciaglia et al.Cloning and characterization of Tagl,a tobacco anther β-1,3-glucanase expressed during the tetrad dissolution[J].Plant mol.Biol.1994(24):903-914.
    12.Bueno A,vazquez C.R.,Synthesis and secretion of a Bacillum circulans WL-12 β-1,3-glucanases in E.coli[J].Bacterial.1990,172:2160-2167.
    13.Cantwell BA,McConnell DJ.Molecular cloning and expression of Bacillus subtilis beta-glucanase gene in Escherichia coli[J].Gene,1983,(23):211219
    14.Chang M M,Culley D E,Hadwiger L A.Nucleotidese sequence of a pea(Pisum sativum L)β-1,3-glucanase gene[J].Plant Physiol,1993,101:1121-1122.
    15.Chang WT,Chen YC,Jao CL.Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes[J].Bioresour Technol.2007,98:1224-1230
    16.Chen,H.,J.R.Leipprandt,C.E.Traviss,B.L.Sopher,M.Z.Jones,K.T.Cavanagh,and K.H.Friderici.Molecular cloning and characterization of bovine beta-mannosidase[J].Biol.Chem.1995,270:3841-3848
    17.Cheng YM,Hong TY,Liu CC,Meng M Cloning and functional characterization of a complex endo-β-1,3-glucanase from Paenibacillus sp.[J].Appl Mierobiol Biotechno1.2009,81:1051-1061
    18.Cheremisinoff P N,Ferrante L M.Biotechnology Current Progress[J].Lancaster:Technomic publishing Co Inc,1991,23(4):183185
    19.Cohen,Kupiec,Rathel,Broglie,Karen,E.Moleculer.characterization of a novel beta-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum[J].Gene-Amsterdam.1999,226(2):147-154.
    20.Collins-Racie LA,McColgan JM,Grant KL,DiBlasio-Smith EA,McCoy JM,LaVallie ER.Production of Recombinant Bovine Enterokinase Catalytic Subunit in Escherichia coli Using the Novel Secretory Fusion Partner DsbA[J].Biol Tech,1995,13:982-987
    21.D.Crich,W.Li,H.Li.Direct chemical synthesis of the β-mannans:linear and block syntheses of the alternating β-(1/3)-β-(1/4)-marman common to Rhodotorula glutinis,Rhodotorula mucilaginosa,and Leptospira biflexa.[J].Am.Chem.Soc.2004,126:15081-15086.
    22.D.F.Martin,F.G.Pdest,et al.Distribution of β-gluoanase within the genus Bacillus[J].Applied and environmential Mierobiology,1980,1136-1138.
    23.de Vries RP.Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes;relevance for industrial production[J].Appl Microbiol Biotechnol 2003,61:10-20.
    24.Duffaud,G.D.,C.M.McCutchen,P.Leduc,K.N.Parker,and R.M.Kelly.Purification and characterization of extremely thermostable beta-mannanase,beta-mannosidase,and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068[J].Appl.Environ.Microbiol.1997.63:169-177.
    25.EI-Katny MH,Gudelj M,Robra KH,Elnaghy MA,Giibitz GM.Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii.Appl Mierobiol Biotecnol.2001,56:137-143
    26.Elbein AD,Adya S,Lee YC.Purification and properties of a β-mannosidase from Aspergillus niger[J].Biol Chem 1977,252:2026-31.
    27.Elena V.Eneyskaya,Gustav Sundqvist,et al.Transglycosylating and hydrolytic activities of the β-mannosidase from Trichoderma reesei[J].Biochimie 2009,91:632-638
    28.Emese Be'ki,Istva'n Nagy,Jos Vanderleyden,et al Cloning and Heterologous Expression of a β-D-Mannosidase(EC 3.2.1.25)-Encoding Gene from Thermobifida fusca TM51[J].Applied and Environmental Microbiology.2003,1944-1952
    29.F.Percheron,M.J.Foglietti,M.Bernard,B.Ricard,Mammalian β-D-mannosidase and β-mannosidosis[J].Biochimie 1992,74:5-11.
    30.Fujimoto Z,Kuno A,Kaneko S,Yoshida S,Kobayashi H,Kusakabe I,Miztmo H.Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain[J].Mol Biol.2000,300:575-585
    31.Gaffoor I,Trail F.Characterization of Two Polyketide Synthase Genes 323 Involved in Zearalenone Biosynthesis in Gibberella zeae[J].Appl Environ Microbiol.2006,72:1793-1799
    32.Grenier J.et al.Barley pathogenesis-related proteins with fungal cell wall lyric activity inhibit the growth of yeast[J].Plant Physiol.1993(103):1277-1283.
    33.Gubitz GM,Hayn M,Sommerauer M,Steiner W.Mannan-degrading enzymes from Sclerotiurn rolfsii:characterization and synergism of two endo β-mannanases and a β-mannosidase[J].Bioprocess Technol 1996;58:127-35.
    34.Gubitz GM,Hayn M,Sommerauer M,Steiner W.Mannan-degrading enzymes from Sclerotium rolfsii:characterization and synergism of two endo β-mannanases and a β-mannosidase[J].Bioprocess Technol 1996;55:127-35.
    35.Guntur Fibriansah,Sumiko Masuda,Naoya Koizumi,et al.The 1.3 A crystal structure of a novel endo-β-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp.strain F96[J].Proteins Structure Note.2007,P638-690
    36.H.J.Gilbert,H.Brumer.How the walls come crumbling down:recent structural biochemistry of plant polysaccharide degradation[J].Curr.Opin.Plant Biol.2008,11:338-348.
    37.Hazes B.The(QxW)_3 domain:a flexible lectin scaffold[J].Protein Sci.1996,5:1490-1501
    38.Herr D,Baumer F,Dellweg H.Purification and properties of an extracellular β-glucosidase from Lenzites trabea[J].Appl Microbiol Biotechnol 1978;5:29-36.
    39.Hofemeister J,Kurtz A,Borris R1.The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis[J].Gene,1986,(49):177-187
    40.Hong TY,Cheng CW,Huang JW,Meng M.Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6carbohydrate-binding module that binds to 1,3-β-giucan[J].Microbiology.2002,148:1151-1159
    41.Hong TY,Hsiao YY,Meng M,Li TT.The 1.5(?) structure of endo-1,3-β-glucanase from Streptotnyces sioyaensis:evolution of the active-site structure for 1,3-β-glucan-binding specificity and hydrolysis[J].Acta Cryst.2008,64:964-970
    42.Hong TY,Meng M.Biochemical characterization and antifungal activity of an endo-1,3-β-glucanase of Paenibacillus sp.Isolated from garden soil[J].Appl Microbiol Biotechnol.2003,61:472-478
    43.J.D.C.Codee,L.H.Hossain,P.H.Seeberger,Efficient installation of β-mannosides using a dehydrative coupling strategy[J].Org.Lett.2005,(7):3251-3254.
    44.Joseph Gomesm,Katherine Terler,Regina Kratzer,et al.Production of thermostable β-mannosidase by a strain of Thermoascus aurantiacus:Isolation,partial purification and characterization of the enzyme [J].Enzyme and Microbial Technology.2007,(40):969-975
    45.Joseph Noozhumutry,Thomas Peter John,Geoffrey Bruce et al.(1/3,1/4)-beta-glucanase of enhanced stability[P].United States:6277615,2001-8-21
    46.KremnickyL,Biely P.β-Mannanolytic system of Aureobasidium pullulans[J].Arch Microbiol 1997,167:350-5.
    47.Kulminskaya AA,Eneiskaya EV,Isaeva-Ivanova LS,Savelev AN,Sidorenko IA,Shabalin KA,et al.Enzymatic activity and β-galactomannan binding property of β-mannosidase from Trichoderm reesei[J].Enzyme Microb Technol 1999;25:372-7.
    48.Kurakake M,Komald T.Production of β-mannanase and β-mannosidase from Aspergillus awamori K4 and their properties[J].Curt Microbio1,2001;42:377-80.
    49.L.E.Tailford,V.A.Money,N.L.Smith,C.Damon,G.J.Davies,H.J.Gilbert,Mannose foraging by Bacteroides thetaiotaomicron:structure and specificityof the β-mannosidase,BtMan2A[J].Biol.Chem.2007,282:11291-11299.
    50.La Cruz J de,JA Pintor-Toro,T Benitez,et al.A novel endo-beta-1,3-glucanase,BGN 13.1,involved in the mycoparasitism of Trichoderma harzianum[J].Bacteriol.1995,177:6937-6945.
    51.Laemmli UK.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227:680-685
    52.LaVallie ER,DiBlasio EA,Kovacic S,Grant KL,Schendel PF,McCoy JM.A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the E.coli[J].Cytoplasm.Bioltechnol,1993,11:187-193
    53.Liu YG.Whiner RF.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragment from PI and YAC clones for chromosome walking[J].Genomics,1995,25:674-681
    54.M.Zhu,K.L.Lovell,J.S.Patterson,T.L.Saunders,E.D.Hughes,K.H.Friderici,β-Mannosidosis mice:a model for the human lysosomal storage disease[J].Hum.Mol.Genet.2006(15):493-500.
    55.Maniatis T,Hardison RC,Lacy E,Lauer J,O'Connell C,Quon D,Sire GK,Efstratiadis A.The isolation of structural genes from libraries of eukaryotic DNA[J].Cell,1978,15:687-701
    56.Masip L,Pan JL,Haldar S,Penner-Hahn JE,DeLisa MP,Georgiou G.Bardwell JCA,Collet JF,An Engineered Pathway for the Formation of Protein Disulfide Bonds[J].Science.2004,30:1185-1189
    57.Masuda S,Endo K,Koizumi N,Hayami T,Fukazawa T,Yatsunami R,Fukui T,Nakamura S.Molecular identification of a novel β-1,3-glucanase from alkaliphilic Nocardiopsis sp.strain F96.Extremophiles.2006,10:251-255
    58.Michiels A,Tucker M,Ende WVD and Laere AV.Chromosomal walking of flanking regions from short known sequences in GC-Rich plant genomic DNA[J].Plant Mol Biol,2003,21:295-302
    59.Nenstroev KN,Krylov AS,Firsov LM,Abroskina ON,Khorlin A.Isolation and properties of β-mannosidase from Aspergillus awamori[J].Biokhimiya(Moscow) 1991;56:1406-12.
    60.Okada T,Aisaka M,Aida K,Nikaidou N,Tanaka H,Watanabe T.Structure of the gene encoding β-1,3-glucanase B of Bacillus circulans WL-12[J].Ferment Bioeng.1995,80:229-236
    61.Rasmussen MA,Madsen SM,Stougaard P,Johnsen MG.Flavobacterium sp.strain 4221 and Pedobacter sp.strain 4236 beta-1,3-glucanases that are active at low temperatures[J].Appl Environ Microbiol.2008,74:7070-7072
    62.Rikizo aono,et al.Islation of extracellular 28-and 42-kilodalton β-1,3-glucanase and comparison of threeβ-1,3-glucanases produced by Bacillus circulans IAM1165[J].Applied and environmental Microbiology,1995,122-129.
    63.S M Pitson.Noncelluloytic fungalp-glucanase:their physiology and regulation,Enzyme crob[J].Technol,1993,(15):178-192
    64.S.Kyosaka,S.Murata,Y.Tsuda,M.Tanaka,Isolation and identification of selftransfer products formed by guinea pig liver β-mannosidasc[J].Chem.Pharm.Bull.1986(34):5140-5143.
    65.Sakcllaris H,Pcmberton JM,Manners JM.Genes from Cellvibrio mixtus encoding an β-1,3-cndoglucanasc.Appl Environ Microbiol.1990,56:3204-3208
    66.Sandee D,Tungpradabkul S,Kurokawa Y,Fukui K,Takagi M.Combination of Dsb cocxprcssion and an addition of sorbitol markedly enhanced soluble expression of single chain Fv in Escherichia coli[J].Biotechnol Biocng,2005,91:418-424
    67.Satoru kusama,lsao kusakabe,Kazuo murakami.Purification and some properities of β-1,3-glucanase flrom Streptomyces sp.[J].Agric.Biol.Chcm.1986,50(5),1101-1106.
    68.Sela-Buuriage M.B.,Ponstcin A.S.,Bres-vloemans S.A.et al.Only specific tobacco(Nicotiana tabacum) chitinase and β-1,3-glucanasc exhibit antifungal activity.Plant Physiol.1993,101,857-863
    69.Shallom D,Shoham Y.Microbial hcmicellulases.Curr Opin Microbiol 2003;6:219-28.
    70.Soledad et al.Analysis of the beta-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum[J].Applied and environmential Microbiology.Apr,1998,(8):1442-1446.
    71.Stahrnann,K.P.et al.Degradation of extracellular β-(1,3)-(1,6)-D-glucan by Botrytis cinerea[J].Gen.Microbiol.1992(58):3347-3354.
    72.Stoll D,Stalbrand H,Warren RAJ.Mannan-degrading enzymes from Cellulomonas fimi[J].Appl Environ Microbiol 1999;65:2598-605
    73.Sun L,Gumon JR,Adams BJ,Graves MV,Van Etten JL.Characterization of a β-1,3-glucanase encoded by Chlorella virua PBCV-1[J].Virology 2000;276:27-36.
    74.Tang-Yao Hong,Chun-Wei Cheng,Jenn-Wen Huang,et al.Isolation and biochemical characterization of an endo-1,3-p-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to β-1,3-glucan[J].Microbiology.2002,148:1151-1159.
    75.Valois D,Fayad K,Barasubiye T,Garon M,Dery C,Brzezinski R,Beaulieu C.Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var.rubi,the causal agent of raspberry root rot[J].Appl Environ Microbiol.1996,62:1630-1635
    76.Watanabe.T.,et al.Three N-terminal domains of β-1,3-glucanase A1 are involved in binding to insoluble β-1,3-glucan[J].J.Bacteriol.1992(174):186-190.
    77.Wong KKY,Saddler JN.Applications of hemicellulases in the food,feed,and pulp and paper industries.In:Coughlan MP,Hazlewood GP,editors.Hemicellulose and hemicellulases.London:Portland Press;1993.127-43.
    78.Wood TM,Bhat KM.Methods for measuring cellulose activities[J].Methods Enzymol.1988,160:87-112
    79.Wulfing C,Rappuoli R.Efficient production of heat labile endotoxin mutant proteins by overexpression of dabA in a DegP deficient Escherichia coli strain[J].Arch Microbiol,1997,167:280-283
    80.Y.Uchino,T.Fukushige,S.Yotsumoto,T.Hashiguchi,H.Taguchi,N.Suzuki,I.Konohana,T. Kanzaki,Morphological and biochemical studies of human β-mannosidosis:identification of a novel β-mannosidase genc mutation,Br.[J].Dermatol.2003,149:23-29.
    81.Yang PL,Shi PJ,Yao B,et al.Cloning and ovcrexpression of a Paenibacillus β-glucanase in Pichia pastoris:purification and characterization of the recombinant enzyme[J].Microbiol Biotechnol,2007,17:58-66.
    82.Zverlov V.V,I.Y.Volkov,T.V.Velikodvorskay,et al.Highly thermostable endo-β-1,3-glucanase LamA fom Thermotoga neapolitana:nuclcotide sequence of the gene and characterization of the recombinant gene product[J].Microbiology.1997,143:1701-1708.
    83.曹雅男.微生物来源36家族α-半乳糖苷酶的基因克隆与性质研究.中国农业科学院,博士论文,2008
    84.陈静,倪坚,陈江野.简并PCR法用于白色念珠菌MAPK新基因的筛选[J].生物化学与生物物理学报,2000,32:305-311
    85.洪义国,孙谧,郑家声,等.黄海黄杆菌YS-9412-130低温碱性蛋白酶的基因克隆和序列测定[J].海洋水产研究,2000,21(4):46-53.
    86.蓝海燕,田颖川.烟草β-1-3.葡聚糖酶cDNA克隆、大肠杆菌表达及植物表达载体的构建[J].生物工程学报.1998,14(4):412-418.
    87.李永仙,顾国贤,俞中.耐高温β-葡聚糖酶在啤酒糖化中的应用研究[J].酿酒,2002,29(2):81-83
    88.史兆兴,王恒樑,苏国富,黄留玉.简并PCR及其应用[J].生物技术通讯,2004,15:172-175.
    89.王云川.β-1,3-葡聚糖酶的研究和应用[J].微生物学通报,1997,25(2):7476
    90.许梓荣,钱利纯,孙建义.高麦鼓饲粮中添加β-葡聚糖酶、木聚糖酶和纤维素酶对肉鸡作用效果的研究闭[J].动物营养学报,2000,(1):61-63
    91.杨先芹,孙丹,杨文博.地衣芽孢杆菌NK-27菌株β-甘露糖苷酶的产酶条件及粗酶性质[J].南开大学学报 2002,35(2):117-120
    92.于旭华.β-葡聚糖酶与木聚糖酶在猪饲料中的应用[J].中国畜牧兽医,2002,(3):17-20
    93.张红莲,姚斌,范云六等.链霉菌Streptomyces olivaceoviridis A1木聚糖酶基因xynA在大肠杆菌及毕赤酵母中的高效表达[J].生物工程学报,2003,19(1):41-45.
    94.张小霞,外源蛋白质表达系统类型的研究进展[J].国外医学卫生学分册,2004,31:203-208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700