两个与棉纤维发育相关基因的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维是重要的纺织工业原料,在国民经济和人民生活中占有重要的位置。棉纤维是由棉花胚珠外珠被表皮层的单细胞发育而成,在受精后约16天,棉纤维细胞可延伸至2.5-3.0cm。棉纤维发育过程中合成大量的纤维素与非纤维素多糖参与纤维形态的建成,这一发育过程有众多的糖类物质参与,进行了复杂的生化代谢反应,因此棉花纤维发育相关基因的克隆既具有巨大的潜在经济价值,也有助于植物细胞发育以及纤维素合成分子机理的阐明。
     本研究从陆地长绒种质系7235不同发育时期的棉纤维混合cDNA文库中分离出两个cDNA克隆:(1)水通道蛋白(aquaporin)我们将其命名为GhAQP。该cDNA克隆插入片段长度为1207bp,最大的ORF为837bp,编码279个氨基酸其理论上的等电点Theoretical pI=9.13,分子量Mw=29.7KD。Blastx结果表明,该cDNA与已报道的多种质膜内在蛋白(plasma membrane intrinsic protein)和水通道蛋白(aquaporin)cDNA克隆相似性均极高。(2)小泡相关膜蛋白(VESICLE-ASSOCIATED MEMBRANE PROTEIN),我们将其命名为GhVAMP。该cDNA克隆插入片段长度为1080bp,开放读码框长度为549bp,编码183个氨基酸,其理论上的等电点Theoretical pI=9.13,分子量Mw=20.4KD。Blastx结果表明,该cDNA序列与若干synptobrevin-related protein相似程度很高;(3)其余5个cDNA克隆经过BLAST比对,与已知的基因同源性很低。
     我们采用signalP程序对这两个基因进行了N端信号肽预测,GhAQP没有典型的信号肽,GhVAMP有典型的信号肽,说明这个基因可能是分泌蛋白。采用NetPhos 2.0程序对这两个基因进行了磷酸化位点预测,GhAQP有12个磷酸化位点,GhVAMP有6个磷酸化位点。采用NetNGlyc1.0预测糖基化位点,都有一个糖基化位点。并且对这两个基因进行了保守区域及进化树分析等。
     从表达特征来看,GhAQP与GhVAMP在根、茎、叶中都表达,在茎中优势表达,在胚珠和纤维细胞中表达,GhAQP在开花后3~14天的纤维中持续高效表达,17天后减弱;GhVAMP在开花后3~11天的纤维中持续高效表达,17天后减弱。
     我们对GhAQP构建了pBI121-35s启动子正义载体和反义载体,对GhVAMP构建了pBI121-35s启动子反义载体,现在正在进行棉花转基因功能验证。
Cotton fibers are important textile materials that play important role in national economy and people's lives. Each cotton fiber is a single cell of ovule epidermis that elongates to 2.5-3.0 cm within approximately 16 days post anthesis (DPA). There are a great deal of cellulosic and noncellulosic polysaccharide been synthesized during cotton fiber development to participate in the formation of fiber configuration, and this developmental process consists of myriads of saccharide progressing complicated biochemical reactions. So cloning the developmentally regulated genes from cotton fibers may play an important role not only in improving the quality of cotton fiber, but also in studying plant cell development and cellulose biosynthesis.
     Two cDNA clones were separated from developmentally different cotton fiber pool of premium material 7235 library:(1) plasma membrane intrinsic protein/aquaqporins.we named it GhAQP.The insert fragment of the cDNA clone was 1207bp,its open reading frame was 837bp,and encoded a polypeptide containing 249 amino acids and the Mw of the deduced amino acid is 29.7kDa, and pI is predicted to be 9.13. Blastx analysis indicated GhAQP had substantive homologies with some reported plasma membrane intrinsic protein/aquaqporins;(2) Vesicle-Associated Membrane Protein, We named it GhVAMP .The insert fragment of the cDNA clone was 1080bp,its open reading frame was 549bp,and encoded a polypeptide containing 183 amino acids ,and the Mw of the deduced amino acid is 20.4kDa, and pI is predicted to be 9.13. Blastx analysis indicated GhVAMP had some identity with some reported VAMP (3)The rest of the seven cDNA clones had little identity with the reported genes.
     We predicted their signal peptide via signalP process.GhVAMP had typical signal peptide but GhAQP had not. We predicted their phosphorylation sites via NetPhos process ,they had 6 and 12 sites each. We predicted their N-glyoosylation sites via NetNGlyc process ,They had one site both.We also analyzed their conserved domain and phylogenetic tree.
     Judging from their expression characters,GhAQP and GhVAMP were expressed in fiber cells and in root, leaf and had a preferential expression in stem, while it could be detected in ovules and fiber cells of different developing period, especially in elongating fibers; GhAQP was preferential expressed in fiber cells from 3DPA to 14DPA,and its expression was decreased after 17DPA in fiber developmental stages, GhVAMP was preferential expressed in fiber cells from 3DPA to 11DPA,and its expression was decreased after 17DPA in fiber developmental stages.
     Sense and antisense expression vector containing 35S promoter e using pBI121 plasmid were constructed for GhAQP; Antisense expression vectors containing 35S promoter using pBI121 plasmid were constructed for GhVAMP.The work of transferring these recombined vectors into Gossypium hirsutum L. by Agrobacterium tumefaciens is ongoing.
引文
1.陈旭升,郭三堆.双价抗虫杂交棉苏杂3号杀虫蛋白的时空表达规律.江苏农业科学,2006,3:44-45
    2.楚鹰.纤维发育相关基因的SNP研究与棉花蔗糖合酶基因片段的克隆及表达分析.南京农业大学,2004,硕士学位论文
    3.邓柳红,罗明武,张春发.巴西橡胶树SBARE蛋白全长cDNA克隆及其序列特征分析.作物学报,2007,33(5):826-830
    4.邓小红,任海芳.PCR技术详解及分析.重庆工商大学学报,2007,24(1):29-37
    5.丁超,李惠民.实时荧光定量PCR应用及试验条件优化.大连医科大学学报,2007,29(4):404-407
    6.杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育.棉花学报,2000,12(4):212-217
    7.房栋.棉纤维初始发育相关基因及转录因子的克隆与鉴定.南京农业大学2005,硕士学位论文
    8.甘德芳,朱苏文,范军,程备久.大白菜几丁质酶基因CHB4的克隆及序列分析.园艺学报,2007,34(1):105-110
    9.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆和分子育种.科学通报,2003,48(5):410-417
    10.郭媖.五个与棉纤维发育相关基因的克隆与鉴定.南京农业大学2005,硕士学位论文
    11.蒋建雄,郭旺珍,张天真.棉花两个β-甘露糖苷酶cDNA的克隆及其特征.植物生理与分子生物学报,2004,30(2):216-220
    12.蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA.棉花学报,2003,15(3):166-167
    13.蒋建雄.四个棉纤维发育相关基因全长序列的克隆及棉纤维伸长发育基因克隆的初步研究.南京农业大学,2003,博士后研究工作报告
    14.李春秀,齐力旺,王建华,张守攻.毛白杨纤维素合成酶基因(PtoCesA1)克隆、序列分析及其植物表达载体的构建.中国生物工程杂志,2006,26(2):49-52
    15.刘海玲,张登学,陆士新.5′-RACE技术在钓取未知基因中的应用.癌症,1999,18(1):106-107
    16.刘娟,朱旭东,黄培堂.锌指蛋白的设计及其应用.生命的化学,2003,23(4):268-270
    17.刘康,胡凤萍,张天真.棉花胚珠与纤维蛋白的两种提取方法比较研究.棉花学报,2005,17(6):323-327.
    18.刘康,张天真,潘家驹.陆地棉纤维初始发育与胚珠过氧化物酶利吲哚乙酸氧化酶的关系的研究.棉花学报,1999,11(6):293-296
    19.刘康,张天真,潘家驹.棉纤维初始发育过程中过氧化物酶和吲哚乙酸氧化酶的活性.植物 生理学通讯,1998,34(3):175-177
    20.刘娜,张锐,罗淑萍,郭三堆.荧光定量PCR技术检测vgb基因在棉花中的表达.新疆农业大学学报,2007,30(3):6-9
    21.陆小平,周文军,小岛峰雄.地高辛标记探针在Southern杂交分析中的技术要点.物学通报.2003,38(1):52-53
    22.罗丽娟,施季森.一种DNA侧翼序列分离技术--TAIL-PCR.南京林业大学学报,2003,27(4):87-90
    23.马国佳.棉花β-1,4-葡糖苷酶基因和内-β-1,3-1,4-葡聚糖酶基因的克隆与鉴定.南京农业大学,2005,硕士学位论文
    24.潘家驹.棉花育种学.中国农业出版社
    25.潘瑞炽,董愚得.植物生理学.北京,高等教育出版社,1995:212-213
    26.任广睦,王英远.实时荧光定量PCR技术的研究进展.临床医药实践杂志,2007,16(4):243-245
    27.佘义斌.棉花中三个激素酶类基因的克隆和鉴定.南京农业大学2005,硕士学位论文
    28.沈新莲,周宝良,顾立美,陈松.棉纤维发育过程中内源激素动态变化的研究.江苏农业学报,1998,14(4):204-206
    29.田芳,陈主初.运用生物信息学方法快速获取与肿瘤基因同源的EST及其新基因克隆的策略.生命科学,2000,12(2):72-75
    30.帖君,房殿春.hPOT1基因正反义真核表达载体的构建及鉴定.胃肠病学和肝病学杂志,2006,15(1):3-6
    31.王彦梅,张正斌,等.植物水通道蛋白研究进展.西北农林科技大学学报,2005,33(11):106-111
    32.王堰婷,陆佩华,盛祖杭.神经递质释放过程中的可溶性NSF附着蛋白受体(SNARE)和相关蛋白.物化学与生物物理进展,2002,29(1):35-38
    33.王颖,麦维军,梁承邺,张明永.高等植物启动子的研究进展.西北植物学报,2003,23(11):2040-2048
    34.吴旺泽,彭晓莉,王晓明,王蒂.马铃薯水通道蛋白基因cDNA克隆、序列分析及表达.农业生物技术学报,2007,15(4):677-683
    35.谢鑫,隋森芳.电子显微镜观察SNARE核心复合体的结构.生物物理学报,2007,23(3):151-156
    36.杨传平,魏志刚,杨文慧.特异性表达基因克隆的策略.东北林业大学学报,2002,30(5):1-4
    37.张玫琦,郝利铭.AQP1:从结构到功能.长春医学,2007,5(1):74-76
    38.张天真,孙敬.陆地棉无絮棉突变体纤维初始发育的体外诱导.棉花学报,1992,4(2):84.
    39.张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12(6):321-326
    40.祝艺懿,彭渊怀,李正国,等.红树林植物木榄水通道基因的克隆和表达.植物生理学通讯.2007,43(3):438-442
    41.周小云,陈信波,向建华.RNAi技术及在植物功能基因组研究中的应用.生物学杂志,2005,22(2):38-40
    42.查笑君.RNA干预的机制与应用.华南热带农业大学学报,2005,11(1):36-39
    43.武耀廷,张恒木,刘进元.棉纤维细胞发育过程中纤维素的生物合成.棉花学报,2003,15(3):174-179
    44.王磊.四个与棉纤维发育相关基因的克隆与鉴定.南京农业大学,2006,硕士学位论文
    45.黎裕,王天宇.植物功能基因组学的发展现状与发展趋势.生物技术通报,2000,4:6-10
    46.方进,翟文学,王文明等.转基因水稻T-DNA侧翼序列的扩增与分析.遗传学报,2001,28(4):345-351
    47.Adams M D,Kelley J M,Gocayne J D,et al.Comp lementary DNA sequencing:Expressed sequence tags and human genome project.Science,1991,251:1651-1656
    48.Anderson M D,Cornish E L,Man S L,et al.Cloning of cDNA for a stylar glycop protein associated with expression of self-incompatibility in N icotiana alata.Nature,1986,321:38-44
    49.Barnes M F,Patchett B J.Cell wall degrading enzymes and the softening of senescent strawberry fruit.J Food Sci,1976,41:1392-1395
    50.Basra A S,Malik C P.Development of the cotton fiber.Int Rev Cytol,1984,89:65-113
    51.Beasley C A,Birnbaum E H,Dugger W M,et al.A quantitative procedure for estimating cotton fiber growth.Stain Technol,1974,49(2):85-92
    52.Beasley C A,Ting I P.The effect of plant growth substances on in vitro fiber development from fertilized cotton ovules.Am J Bot,1973,60(2):130-139
    53.Carney J P,Knight C M,Vanepps S.Ramdom rapid amplification of cDNA ends(RRACE)allows for cloning of multiple novel human cDNA fragments containing(CAG)n repeats.Gene,1995,155:289-292
    54.Chenchik A,Diachenko L,Moqadam F.Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA.Biotechniques,1996,21(3):526-534
    55.Concha D,Keith R,Stacey N J,et al.A pectate lyase from Zinnia elegans is anxin inducible.The Plant Journal,1998,13(1):17-28
    56.Cosgrove D J.Loosening of plant cell walls by expansins.Nature,2000,407:321-326
    57.Delmer D P,Pear J R,Andrawis A.Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers.Mol Gen Genet,1995, 248:43-51
    58. Feng J X,Ji S J,Shi Y H,et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber.Acta Biochim Biophys Sin,2004,36:51-56
    59. Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell,2000,12:393-404
    60. Gietz R D,Woods R A.Genetic transformation of yeast.Biotechniques,2001,30:816-831
    61. Gupta J D,Liq S,Thomson A B, et al.Characterization of cDNA encoding a novel plant poly(A) polymerase.Plant Molecular Biology,1998,37:729-734
    62. Hagen, G, Guilfoyle, T. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol,2002,49:373-385
    63. Han Z G, Guo W Z, Song X L, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton. Mol Genet Genomics, 2004, 272(3): 308-327.
    64. Harmer S E,Orford S J,Timmis J N.Characterisation of six α -expansin genes in Gossypium hirsutum (upland cotton).Mol Genet Genomics,2002,268:1-9
    65. Henrissat B,Claeyssens M,Tomme P,et al.Cellulase families revealed by hydrophobic cluster analysis.Gene, 1989,81:83-95
    66. Im K H,Cosgrove D J,Jones A M. Subcellular localization of expansin mRNA in xylem cells. Plant Physiol,2000,123:463-470
    67. Ji S J,Lu Y C,Feng J X,et al.Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array.Nucleic Acids Res,2003,31:2534-2543
    68. Ji S J,Lu Y C,Li J,el al.A β -tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast.Biochemical and Biophysical Research Communications,2002,296:1245-1250
    69. John M E,Crow L J.Gene expression in cotton (Gossypium hirsutum L.) fibers: Cloning of the mRNAs.Proc Natl Acad Sci USA,1992,89:5769-5773
    70. John M E,Keller GCharacterization of mRNA for a proline-rich protein of cotton fiber.Plant Physiol,1995,108:669-676
    71. John M E.Characterization of a cotton (Gossypium hirsutum L.) fiber RNA Fb-E6.Plant Physiol, 1995,107:1477-1478
    72. Kim H J,Triplett B A.Cotton fiber germin-like protein.I.Molecular cloning and gene expression.Planta,2004,218:516-524
    73. Kim H J,Triplett B A.Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis.Plant Physiol ,2001,127 :1361-1366
    74. Liang X E,Suo J F,Xue Y B.Development and application of a transformation-competent artificial chromosome(TAC) genomic DNA library in allotetrapolid Cotton(Gossupium hirsutum L).Cotton Science,2002,14(suppl):52
    75. Liu H C,Creech R G, Jenkins J N,et al. Cloning and promoter analysis of the cotton lipid transfer protein genes Ltp3(1).Biochim Biophys Acta,2000,1487:106-111
    76. Liu Yaoguang ,Robert F Whitter. Thermal asymmetric interlaced PCR :automatable amplification and sequencing of insert end fragmentfrom P1 and YAC clones for chromosome walking[J]. Genomics ,1995 ,25 :674- 681.
    77. Lucas W J,Ding B,vander Schoot C. Plasmodesmata and the supracellular nature of plants.New Phytol, 1993,125:435 - 476.
    78. Ma D P, Tan H, Si Y, Creech R G, Jenkins J N. Differential expression of a lipid transfer protein gene in cotton fiber. Biochim Biophys Acta, 1995,1257: 81-84
    79. Martin C, Bhatt K,Baumann K,et al.Shaping in plant cells.Curr Opin Plant Biol,2001,4:540-549
    80. Martin T,Frommer W B,Salanoubat M,et al.Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J,1993,4:367-378
    81. Meinert M C,Delmer D P.Changes in biochemical composition of the cell wall of cotton fiber during development.Plant Physiol,1977,59:1088-1097
    82. Nasr F,Bertauche N,Dufour M E,et al.Heterospecific cloning of Arabidipsis thaliana cDNAs by direct complementation of pyrimidine auxothrophic mutants of Saccaromyces cerevisiae.I Cloning and sequence analysis of two cDNAs catalyzing the second, fifth and sixth steps of the denovo pyrimidine biosynthesis pathway.Mol Gen Genet,1994,244:23-32
    83. Orford S J,Timmis J N.Abundant mRNAs specific to the developing cotton fiber.Theor Appl Genet,1997,94:909-918
    84. Paterson A H,Brubaker C L,Wendel J F.A rapid method for extraction of cotton (Gossypium ssp.) genomic DNA suitable for RFLP or PCR analysis.Plant Mol Biol Rep,1993(11):122-127.
    85. Preuss M L,Delmer D P,Liu B.The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers.Plant Physiol,2003,132:154-160
    86. Richmond T A,Somerville C R.The cellulose synthase superfamily.Plant Physiol,2000, 124:495-498
    87. Rinehant J A,Petersen M W,John M E.Tissue-specific and developmental regulation of cotton gene FbL2A.Plant Physiol, 1996,112:1331-1341
    88. Ruan Y L,Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds.Plant Physiol,1998,118:399-406
    89. Ruan Y L,Llewellyn D J,Furbank R T.The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin.Plant Cell,2001,13:47-63
    90. Sabelnikov A G, Cym(?)alyuk E S, Gongadze G,et al. Escherichia coli membranes during electrotransformation: an electron microscopy study.Biochim Biophys Acta,1991,1066:21-28
    91. Sambrook J,Russell D W.Molecular Cloning:A Laboratory Manual.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York.2001
    92. Schena M,Shalon D, Davis R W,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science,1995,270(5235):467-470
    93. Shin H,Brown R M.GTPase activity and biochemical characterization of a recombinant cotton fiber annexin.Plant Physiol,1999,3:925-934
    94. Snustad D P.Plant tubulin genes:structure and differential expression during development.Dev Genet,1987,8:435-460
    95. Song P, Allen R.D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochim Biophy Acta, 1997,1351(3): 305-312.
    96. Tan H,Creech R G, Jenkins J N,et al.Cloning and expression analysis of two cotton (Gossypium hirsutum L.) genes encoding cell wall proline-rich proteins.DNA Seq,2001,12:367-380
    97. Terauchi R , Kahl G.Rapid isolation of promoter sequences by TAIL2PCR : the 5' 2 flanking regions of Pal and Pgi genes from Yams(Dioscorea) [J] . Mol Gen Genet ,2000,263 :554-560.
    98. Velculescu V E,Zhan G L,Vogelstein B,et al.Serial analysis of gene expression.Science,1995, 270:484-487
    99. Wan C.Y., Wilkins T.A. Isolation of multiple cDNA encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.). Plant Physiol, 1994, 106:393-394.
    100. Waterhouse P M,Wang M B,Finnegan E J.Role of short RNAs in gene silencing.Trends Plant Sci,2001,6:297-301
    101. Wesley S V,Helliwell C A,Smith N A,et al.Construct design for efficient,effective and high-throughput gene silencing in plants.The Plant Journal,2001,27(6):581--590
    102. Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci Sinica, 2000, 12: 267-269.
    103. Zhao G R,Liu J Y,Du X M.Molecular cloning and characterization of cotton cDNAs expressed in developing fiber cells. Biosci Biotechnol Biochem,2001,65(12):2789-2793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700