五个与棉纤维发育相关基因的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维是重要的纺织工业原料,在国民经济和人民生活中占有重要的位置。棉纤维是由棉花胚珠外珠被表皮层的单细胞发育而成,在受精后约16天,棉纤维细胞可延伸至205-300cm。棉纤维发育过程中合成大量的纤维素与非纤维素多糖参与纤维形态的建成,这一发育过程有众多的糖类物质参与,进行了复杂的生化代谢反应,因此棉花纤维发育相关基因的克隆既具有巨大的潜在经济价值,也有助于植物细胞发育以及纤维素合成分子机理的阐明。
     本研究从优质材料7235不同发育时期的棉纤维混合cDNA文库中分离出五个cDNA克隆:(1)陆地棉纤维表达蛋白(cotton fiber expressed protein,GhCFE)(GenBank登录号:DQ073045),该cDNA克隆插入片段长度为1274bp,开放读码框长度为996bp,编码331个氨基酸,Blastx结果表明,该cDNA序列与已报道的3个陆地棉纤维表达蛋白cDNA克隆相似性均很高,与CFE1,CFE2和CFE3分别达到了95%,98%和96%;(2)2,5-二羟苯乙酸1,2-加双氧酶(homogentisate 1,2-dioxygenase,HGD),该cDNA克隆插入片段长度为1697bp,开放读码框长度为1422bp,编码473个氨基酸,Blastx结果表明,该cDNA序列与已报道的番茄(Lycopersicon esculentum)的2,5-二羟苯乙酸1,2-加双氧酶(homogentisate 1,2-dioxygenase)的相似性为84%,与拟南芥(Arabidopsis thaliana)的2,5-二羟苯乙酸1,2-加双氧酶(homogentisate 1,2-dioxygenase)(At5g54080)相似性为81%;(3)两个过氧化物酶(peroxidase,POD),其中一个是利用5’RACE技术得到的长度为1489bp的完整cDNA序列,开放读码框长度为816bp,编码271个氨基酸,Blastx结果表明,该基因最大的ORF编码的氨基酸和拟南芥中一个过氧化物酶基因的氨基酸相似性为70%,我们将其命名为GhPOD1;另一个cDNA克隆插入片段长度为1355bp,开放读码框长度为999bp,编码332个氨基酸,Blastx结果表明,该cDNA序列与已报道的陆地棉纤维过氧化物酶基因(pod8,L08199)相似性很高,达到了99%,并且氨基酸比较也基本相似,将其命名为GhPOD2;(4)果胶裂解酶(pectate lyase,PL),该cDNA克隆插入片段长度为1539bp,开放读码框长度为1236bp,编码411个氨基酸,Blastx比较结果显示,我们克隆的这个cDNA序列与苹果(Malus x domestica)的一个果胶裂解酶相似性最高,达到85%,与辣椒(Capsicum annuum)、草莓(Fragaria x ananassa)、百日菊(Zinnia elegans)、葡萄(Vitis vinifera)等物种的果胶裂解酶也都有一定的相似性。因此,我们将这个基因命名为GhPL,它在棉花中是首次报道(GenBank登录号:DQ073046)。
     我们采用SignalP程序对这五个基因进行了N端信号肽预测,除了GhHGD没有典型的信号肽,其余四个基因都有典型的信号肽,说明这四个基因可能是分泌蛋白。并且对这五个基因进行了保守区域及进化树分析等。
     从表达特征来看,GhCFE在根、茎中都不表达,在叶中微弱表达,在胚珠和纤维细胞中表达,并在开花后5~20天的纤维中持续高效表达,20天后减弱,是一个棉纤维优势表达基因:GhHGD在根、茎、叶、胚珠和纤维细胞中都表达,但是在叶、开花后1天和3天的胚珠中表达较弱,在开花后5天的纤维中表达增强,在17天的纤维中表达又减弱,所以该基因是一个在开花后5天到14天的纤维中优势表达的基因;GhPOD2在根中不表达,在茎、叶、胚珠和纤维细胞中表达,并在开花后14天的纤维中表达开始逐渐减弱;GhPL在根、茎、叶中都不表达,在纤维和胚珠中表达,是一个棉纤维特异表达基因;GhPOD1是组成性表达的基因。
     Southern杂交结果表明这五个基因在陆地棉基因组中都存在两个拷贝,其中A,D亚组中各有一个拷贝。
     我们对GhCFE,GhPL构建了pBI121-35s启动子正义载体及E6启动子正义和反义载体,对GhPOD2构建了pBI121-35s启动子正义和反义载体,并对GhPL构建了RNAi载体,现在正在进行棉花转基因功能验证。
     将GhCFE,GhHGD和GhPL转入酵母表达载体pREP5N,通过电击转化法转化酵母细胞,结果表明GhHGD的导入使酵母细胞在长度及长/宽上有显著差异,GhPL的导入使酵母细胞在宽度及长/宽上有显著差异,而GhCFE的导入对酵母细胞的长度、宽度及长/宽都没有显著变化,说明该基因的表达与细胞的极性生长无关。
     利用本实验室陆地棉遗传标准系TM-1和海岛棉海7124培育的140个BC_1作图群体,将GhCFE和GhPL分别定位在第18号染色体和第3号染色体上。
Cotton fibers are important textile materials that play important role in nationaleconomy and people's lives. Each cotton fiber is a single cell of ovule epidermis thatelongates to 2.5-3.0 cm within approximately 16 days post anthesis (DPA). There are agreat deal of cellulosic and noncellulosic polysacchafide been synthesized during cottonfiber development to participate in the formation of fiber configuration, and thisdevelopmental process consists of myriads of saccharide progressing complicatedbiochemical reactions. So cloning the developmentally regulated genes from cotton fibersmay play an important role not only in improving the quality of cotton fiber, but also instudying plant cell development and cellulose biosynthesis.
     Five cDNA clones were separated from developmentally different cotton fiber pool ofpremium material 7235 library:(1)cotton fiber expressed protein (GhCFE, GenBankAccession numbe:DQ073045), the insert fragment of the cDNA clone was 1274bp,its openreading frame was 996bp, and encoded a polypeptide containing 331 amino acids. Blastxanalysis indicated GhCFE had 95%,98% and 96% homologies with CFE1,CFE2 and CFE3respectively;(2)homogentisate 1,2-dioxygenase (HGD), the insert fragment of the cDNAclone was 1697bp,its open reading frame was 1422bp,and encoded a polypeptidecontaining 473 amino acids. Blastx analysis indicated this gene had a 84% identity withhomogentisate 1,2-dioxygenase of Lycopersicon esculentum and 81% with homogentisate1,2-dioxygenase of Arabidopsis thaliana(At5g54080);(3)two peroxidases (POD), one wasa 1489bp cDNA sequence obtained via 5'RACE technique, its open reading frame was816bp,and encoded a polypeptide containing 271 amino acids. Blastx analysis indicatedthis gene had 70% homologies with a peroxidase of Arabidopsis thaliana, so this gene wasdesignated as GhPOD1; the insert fragment of the other cDNA clone was 1355bp,its openreading frame was 999bp,and encoded a polypeptide containing 332 amino acids. Blastxanalysis indicated this gene had a 99% identity with peroxidase of Gossypium hirsutum Lreported (pod8, L08199) and their protein sequences were almost similar. We designatedthis gene as GhPOD2;(4)pectate lyase (PL), the insert fragment of the eDNA clone was1539bp,its open reading frame was 1236bp,and encoded a polypeptide containing 411 amino acids. Blastx analysis indicated this gene had an 85% identity with pectate lyase ofMalus×doraestica.So this gene was designated as GhPL (GenBank Accession number:DQ073046).
     We predicted their signal peptide via signalP process.They all had typical signalpeptide except GhHGD.We also analyzed their conserved domain and phylogenetic tree.
     Judging from their expression characters,GhCFE was preferential expressed in fibercells and did not express in root or stem but only had a weak expression in leaf, while itcould be detected in ovules and fiber cells of different developing period, especially inelongating fibers;GhHGD could be detected in every tissue,but in leaf and ovules itsexpression was weak and it was preferential expressed in fiber cells from 5DPA to 14 DPA;GhPOD2 just did not express in root and its expression was decreased after 14DPA in fiberdevelopmental stages;GhPL was specifically expressed in fiber cells, while it could not bedetected in root, stem or leaf;GhPOD1 was constitutive expression and detected in everytissue.
     Southern blotting analysis shows that there are two copies of these five genes in thegenome of upland cotton; sub-genome A and sub-genome D contained each.
     Sense expression vector containing 35S promoter and both sense and antisenseexpression vectors containing E6 promoter using pBI121 plasmid were constructed forGhCFE and GhPL; both sense and antisense expression vectors containing 35S promoterusing pBI121 plasmid were constructed for GhPOD2 and RNAi vector was constructed forGhPL.The work of transferring these recombined vectors into Gossypium hirsutum L. byAgrobactedum tumefaciens is ongoing.
     GhCFE, GhHGD and GhPL were integrated into yeast expression vector (pREP5N),and electro-transformed into fission yeast S. pombe Q-01. The results showed that GhHGDleaded a significant change of length and length/width ratio; GhPL leaded a significantchange of width and length/width ratio; GhCFE had no significant effect on elongatingcells or thickening cell wall in the transformed yeast.
     We have used the BC_1 mapping population derived from the hybridization between theupland cultivar TM-1 and the island cultivar Hai7124, further TM-1 as recurrent parent.GhCFE and GhPL were localized on the chromosome 18 and chromosome 3 respectively.
引文
1.陈长征,杨毅,夏其昌,等.酵母cAMP依赖的蛋白激酶催化亚基基因A的克隆与表达.生物化学与生物物理学报,1994,26(2):197~205
    2.陈凡国,张学勇.大片段DNA插入文库的研究进展.生物技术通报,2002,(2):1~5
    3.陈良兵,李永起.棉花纤维发育的分子研究进展.分子植物育种,2004,2(1):105~111
    4.陈庆山.植物基因分离方法.中国生物工程杂志,2003,23(8):43~46
    5.楚鹰.纤维发育相关基因的SNP研究与棉花蔗糖合酶基因片段的克隆及表达分析.南京农业大学,2004,硕士学位论文
    6.丁宝莲,谈宏鹤,朱素琴.胁迫与植物细胞壁关系研究进展.广西科学院学报,2001,17(2):87~90
    7.杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育.棉花学报,2000,12(4):212~217
    8.方进,翟文学,王文明等.转基因水稻T-DNA侧翼序列的扩增与分析.遗传学报,2001,28(4):345~351
    9.勾玲,张旺锋,李少昆,等.新疆棉花纤维发育过程中可溶性糖和纤维素含量的变化及与气象因子的关系.中国农业科学,2002,35(7):878~882
    10.郭惠明.陆地棉纤维发育相关基因Ghkob的克隆及功能分析.中国农业科学院,2005,硕士学位论文
    11.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆和分子育种.科学通报,2003,48(5):410~417
    12.郭香墨,刘正德,罗云佳.我国面向21世纪棉花纤维品质改良对策.棉花学报,1999,11(6):321~325
    13.韩志勇,沈革志.基于PCR的染色体步行技术.高技术通讯,2000,11:102~106
    14.郝柏林,张淑誉.生物信息学手册.2000,上海科学技术出版社
    15.郝建华.细胞壁与细胞的发育.生物学通报,2004,39(2):22~23
    16.贺新强,胡玉熹,林金星.细胞壁木质化过程的细胞生物学研究进展.李承森主编,植物科学进展(第二卷),1999:高等教育出版社,23~34
    17.江树业,陈启锋,方宣钧.等.植物基因分离方法及其评述.福建农业大学学报,2000,29(3):261~268
    18.蒋建雄,郭旺珍,张天真.棉花两个β-甘露糖苷酶cDNA的克隆及其特征.植物生理与分子生物学报,2004,30(2):216~220
    19.蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA.棉花学报,2003,15(3):166~167
    20.蒋建雄.四个棉纤维发育相关基因全长序列的克隆及棉纤维伸长发育基因克隆的初步研究.南京农业大学,2003,博士后研究工作报告
    21.黎裕,王天宇.植物功能基因组学的发展现状与发展趋势.生物技术通报,2000,4:6~10
    22.李成云.植物基因的克隆与转化(1)植物基因克隆的方法简介.云南农业科技,2000,4:43~45
    23.李利红,王海云,李彦.棉花微丝结合蛋白基因GhPFN1的表达及功能研究.自然科学进展,2002,12(11):1213~1215
    24.李连朝,王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系.植物生理学通讯,1998,34(3):161~167
    25.李雄彪,吴奇.植物细胞壁.北京:北京大学出版社.1993
    26.李艳军.棉花启动子prom6下游序列克隆及纤维特异基因GhF1的功能研究.石河子大学,2005,硕士学位论文
    27.李子银,陈受宜.植物的功能基因组学研究进展.遗传,2000,22(1):57~60
    28.林燕燕,陈爱萍,刘超.RNA干扰作用原理及其应用.中华医药杂志,2005,5(3):212~213
    29.刘海玲,张登学,陆士新.5’-RACE技术在钓取未知基因中的应用.癌症,1999,18(1):106~107
    30.刘继华,杨洪博,曹鸿鸣.棉纤维生长发育(3)棉花纤维的伸长发育.中国棉花.环球棉讯,1995,22(4):38~39
    31.刘进元,赵广荣,李骥.棉花纤维品质改良的分子工程.植物学报,2000,42(10):991~995
    32.刘康,胡凤萍,张天真.棉花胚珠与纤维蛋白的两种提取方法比较研究.棉花学报,2005,17(6):323~327.
    33.刘康,张天真,潘家驹.棉纤维初始发育过程中过氧化物酶和吲哚乙酸氧化酶的活性.植物生理学通讯,1998,34(3):175~177
    34.刘康,张天真,潘家驹.陆地棉纤维初始发育与胚珠过氧化物酶和吲哚乙酸氧化酶的关系的研究.棉花学报,1999,11(6):293~296
    35.卢迎春.棉花纤维发育相关基因的大规模克隆与功能研究.北京大学,2002,博士论文
    36.马国佳.棉花β-1,4-葡糖苷酶基因和内-β-1,3-1,4-葡聚糖酶基因的克隆与鉴定.南京农业大学,2005,硕士学位论文
    37.潘家驹.棉花育种学.中国农业出版社
    38.彭玮欣,刘国庆,马峙英.用于染色体步行的PCR技术.河北农业大学学报,2002,24,3:86~89
    39.孙杰,李艳甲,李园莉,等.棉花纤维特异表达基因GhFl的分离及鉴定.棉花学报,2005,17(5):259~263.
    40.唐克轩,开国银,张磊,等.RACE的研究及其在植物基因克隆上的应用.复旦学报(自然科学版),2002,41(6):704~709
    41.唐巧玲.陆地棉纤维发育相关基因GhBOTERO和GhCOBRA的克隆及功能研究.中国农业科学院,2005,硕士学位论文
    42.王金胜.植物基础生物化学.中国林业出版社.1999
    43.王磊.四个与棉纤维发育相关基因的克隆与鉴定.南京农业大学,2006,硕士学位论文
    44.王希成.生物化学.北京.清华大学出版社.2001
    45.王秀珍,崔素娟,王英.植物的细胞壁.生物学杂志,1994,58(2):33~35
    46.王雪景,孙毅.植物功能基因组学研究进展.生物技术通报,2004,1:18~22
    47.吴朝霞,郑文岭,马文丽.裂殖酵母作为外源基因表达系统.生命科学研究,2004,8(2):110~115
    48.吴乃虎.基因工程原理.第二版.科学出版社,1998
    49.武耀廷,张恒木,刘进元.棉纤维细胞发育过程中非纤维素的生物合成.棉花学报,2004,16(3):189~193
    50.武耀廷,张恒木,刘进元.棉纤维细胞发育过程中纤维素的生物合成.棉花学报,2003,15(3):174~179
    51.徐亚浓.棉纤维细胞分化和发育功能基因的研究.浙江大学,硕士学位论文,2002
    52.许玉章.温度对棉纤维发育的影响.西北农业学报,1993,2(4):19~23
    53.颜季琼.高等植物细胞壁的结构和功能(二).生物学通报,1999,34(2):8~10
    54.杨齐衡,李林.酵母双杂交技术及其在蛋白质研究中的应用.生物化学与生物物理学报,1999,31(3):221~225
    55.杨谦,赵惠贤.RNA干扰技术及其应用研究进展.西北农业学报,2005,14(2):13~17
    56.应革,武威,何朝族.TAIL-PCR方法快速分离XCC致病相关基因序列.生物工程学报,2002,18(2):182~186
    57.于晓红.棉纤维发育与改良的初步研究.中国科学院上海植物生理研究所,1999,博士研究生学位论文
    58.岳强,周惠.粟酒裂殖酵母——一种良好的真核模式生物(Ⅰ).韶关学院学报(自然科学版),2002,23(12):120~125
    59.岳强,周惠.粟酒裂殖酵母——一种良好的真核模式生物(Ⅱ).韶关学院学报(自然科学版),2003,24(3):99~102
    60.查笑君.RNA干预的机制与应用.华南热带农业大学学报,2005,11(1):36~39
    61.张成岗,贺福初.生物信息学方法与实践.科学出版社
    62.张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12(6):321~326
    63.赵广荣,刘进元.棉纤维形态建成研究的新进展.棉花学报,2002,14(2):121~125
    64.周小云,陈信波,向建华.RNAi技术及在植物功能基因组研究中的应用.生物学杂 志,2005,22(2):38~40
    65.左开井,孙济中,张金发.世界棉花分子生物学研究进展.棉花学报,1998,10(1):1~5
    66. Adams M D,Kelley J M,Gocayne J D,et al.Comp lementary DNA sequencing:Expressed sequence tags and human genome project.Science,1991,251:1651~1656
    67. Anderson M D, Cornish E L,Man S L,et al.Cloning of cDNA for a stylar glycop protein associated with expression of self-incompatibility in N icotiana alata.Nature,1986,321:38—44
    68. Baker D B, Ray P M. Relations between effects of auxin on cell wall synthesis and cell elongation.Plant Physiol,1965,40:360-368
    69. Barnes M F, Patchett B J.Cell wall degrading enzymes and the softening of senescent strawberry fruit.J Food Sci,1976,41:1392-1395
    70. Basra AS.Malik C P. Development of the cotton fiber.Int Rev Cytol,1984,89:65-113
    71. Baum B, Li W,Perrimon N. A cyclase-associated protein regulates actin and cell polarity during Drosophila cogenesis and in yeast.Curr Biol,2000,10(16):964-973
    72. Beasley C A,Birnbaum E H,Dugger W M,et alA quantitative procedure for estimating cotton fiber growth.Stain Technol,1974,49(2):85-92
    73. Beasley C A,Ting I P.The effect of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot,1973,60(2):130-139
    74. Bernard H,Susan E H,Marilyn D,et al.Functional Implications of Structure-Based Sequence Alignment of Proteins in the Extracellular Pectate Lyase Superfamily.Plant Physiol.1995,107: 963-976
    75. Bret-Harte S M,Baskin T I,Green P BAuxin stimulates both deposition and breakdown of material in the pea outer epidermal cell wall, as measured interferometrically.Planta,1991,185:462-471
    76. Carney J P.Knight C M,Vanepps S.Ramdom rapid amplification of cDNA ends(RRACE) allows for cloning of multiple novel human cDNA fragments containing (CAG) n repeats.Gene,1995, 155:289-292
    77. Chenchik A,Diachenko L,Moqadam F.Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA.Biotechniques,1996,21(3):526—534
    78. Christoffersen R E, Tucker M L,Laties G G.Cellulase gene expression in ripening avocado fruit: the accumulation of cellulase mRNA and protein as demonstrated by cDNA hybridization and immunodetection.Plant Mol Biol, 1984,3:385—391
    79. Cleveland D W,Sullivan K F.Molecular biology and genetics of tubulin. Annu Rev Biochem, 1985,54:331-365
    80. Concha D, Keith R,Stacey N J,et al.A pectate lyase from Zinnia elegans is anxin inducible.The Plant Journal,1998,13(1):17-28
    81. Cosgrove D J.How do plant cell walls extend?Plant Physiol,1993,102:1—6
    82. Cosgrove D J. Loosening of plant cell walls by expansins.Nature,2000,407:321—326
    83. Delannoy E,Marmey P, Jalloul A,et al.Molecular analysis of ClassIII peroxidases from cotton.The Journal of Cotton Science, 2006, 10:53-60
    84. Delannoy E,Marmey P, Penel C.Les peroxydases vegetales de classIII. Acta Bot.Gall, 2004, 151:353-380
    85. Delmer D P.Bohnert H J, Merchant S.(ed.):Annual Review of Plant Biology.2002,53
    86. Delmer D P,Pear J R, Andrawis A.Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers.Mol Gen Genet, 1995, 248:43-51
    87. Dhugga K S, Tiwari S C,Ray P M.A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis:Purification, gene cloning, and trans-Golgi localization. Proc Natl Acad USA,1997,94:7679-7684
    88. Dircks L K,Vancanneyt G,McCormick S.Biochemical characterization and baculovirus expression of the pectate lyase-like LAT56 and LAT59 pollen proteins of tomato.Plant Physiol Biochem.1996,34:509-520
    89. Dixon D C,Seagull R W, Triplett B A.Changes in the accumulation of α -and β -tubulin isotypes during cotton fiber development.Plant Physiol,1994,105:1347-1353
    90. Domi' nguez-Puigjaner E,LLop I,Vendrell M,et al.A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.Plant Physiol,1997,114:1071—1076
    91. Duroux L,Welinder K G.The peroxidase gene family in plants:a phylogenetic overview.J.Mol.Evol,2003,57:397-407
    92. Feng J X, Ji S J,Shi Y H,et al.Analysis of five differentially expressed gene families in fast elongating cotton fiberActa Biochim Biophys Sin,2004,36:51—56
    93. Ferguson D L, Turley R B,Kloth R H.Identification of a delta-TIP cDNA clone and determination of related A and D genome subfamilies in Gossypium species.Plant Mol Biol, 1997,34:111 - 118
    94. Fields S, Song O.A novel genetic system to detect protein-protein interactions.Nature,1989,340:245—246
    95. Fukuda H.Tracheary element formation as a model system of cell differentiation.Int Rev Cytol, 1991,136:289-332
    96. Gajhede M.Plant peroxidases:substrate complexes with mechanistic implications.Biochem. Soc.Trans,2001,29:91-99
    97. Giddings T H, Staehelin L A.Microtubule mediated control of microfribril deposition:a reexamination of the hypothesis. In: Lloys CW(ed) The cytoskeletal basis of plant growth and form. Academic Press,London,85—89
    98. Gietz R D, Woods R A.Genetic transformation of yeast.Biotechniques,2001,30:816—831
    99. Gupta J D,Liq S.Thomson A B,et al.Characterization of cDNA encoding a novel plant poly(A) polymerase.Plant Molecular Biology,1998,37:729-734
    100. Haigler C H, Ivanova-Datcheva M, Hogan P S,et al. Carbon partitioning to cellulose synthesis. Plant Mol Biol,2001,47:29-51
    101. Harmer S E,Orford S J.Timmis J N.Characterisation of six α -expansin genes in Gossypium hirsutum (upland cotton).Mol Genet Genomics,2002,268:l—9
    102. Hashimoto H,Morikawa H.Yamada Y,et al.A novel method for transformation of intact yeast cells by electroinjection of plasmid DNAAppl Microbiol Biot,1985,21:336—339
    103. Henrissat B,Claeyssens M,Tomme P,et al.Cellulase families revealed by hydrophobic cluster analysis.Gene,1989,81:83—95
    104. Hiraga S, Sasaki K,Ito H.A large family of classIII plant peroxidases.Plant Cell Physiol,2001, 42:462-468
    105. Hood M T, Stachow C. Transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res,1990,18:688
    106. Hulskamp M, Misera S, Juvrgens GGenetic dissection of trichome cell development. 1994,Cell, 76:555-566
    107. Im K H,Cosgrove D J, Jones A M. Subcellular localization of expansin mRNA in xylem cells. Plant Physiol,2000,123:463-470
    108. Ji S J,Lu Y C,Li J,et al.A β -tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast.Biochemical and Biophysical Research Communications,2002,296:1245—1250
    109. Ji S J,Lu Y C, Feng J X,et al.Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array.Nucleic Acids Res,2003,31:2534— 2543
    110. John M E,Crow L J.Gene expression in cotton (Gossypium hirsutum L.) fibers: Cloning of the mRNAs.Proc Natl Acad Sci USA,1992,89:5769-5773
    111. John M E,Keller G. Characterization of mRNA for a proline-rich protein of cotton fiber.Plant Physiol,1995,108:669-676
    112. John M E.Characterization of a cotton (Gossypium hirsutum L.) fiber RNA Fb-E6.Plant Physiol, 1995,107:1477-1478
    113. Kawai M,Aotsuka S,Uchimiya H.Isolation of a cotton CAP gene: a homologue of adenylyl cyalase-associated protein highly expressed during fiber elongation.Plant Cell Physiol, 1998, 39:1380-1383
    114. Kemmerer E C,Tucker M L. Comparative study of cellulases associated with adventitious root initiation, apical buds, and leaf, flower, and pod abscission zones in soybean.Plant Physiol,1994,104:557-562
    115. Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis.Plant Physiol,2001,127:1361-1366
    116. Kim H J,Triplett B A.Cotton fiber germin-like protein.I.Molecular cloning and gene expression.Planta,2004,218:516-524
    117. Laosinchai W, Cui X, Brown R M.A full cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and cotton CelA1 (Accession No. AF 200453) (PGR 00-002). Plant Physiol,2000,122:291
    118. Li X B,Cai L,Cheng N H,et al.Molecular characterization of the cotton GhTub1 gene that is preferentially expressed in fiber.Plant Physiol,2002,130:666-674
    119. Li Y L,Sun J,li C H,et al.Specific expression of a β -tubulin gene(GhTub1) in developing cotton fibers.Science in China Series C,2003,46:235-242
    120. Liang X E,Suo J F,Xue Y B.Development and application of a transformation-competent artificial chromosome(TAC) genomic DNA library in allotetrapolid Cotton(Gossupium hirsutum L).Cotton Science,2002,14(suppl):52
    121. Lila T, Drubin D G. Evidence for physical and functional interaction among two Saccharmyces cerevisiae SH3 domain protein, an adenylyl cyclase-associated protein and the actin cytoskeleton.Mol Biol Cell,1997,8:367-385
    122. Liu B,Joshi H C, Wilson T J,et al. Y -Tubulin in Arabidopsis: gene sequence, imminoblot, and immunofluorescence studies.Plant Cell, 1994,6:303 - 314
    123. Liu H C,Creech R G, Jenkins J N,et al. Cloning and promoter analysis of the cotton lipid transfer protein genes Ltp3(1).Biochim Biophys Acta,2000,1487:106-111
    124. Loguercio L L,Zhang J Q, Wilkins T A.Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.).Mol Genet and Genomics,1999,261:660-671
    125. Lucas W J,Ding B,vander Schoot C. Plasmodesmata and the supracellular nature of plants.New Phytol,1993,125:435-476.
    126. Ma D P,Iiu H C,Creech R G,et al.Cloning and characterization of a cotton lipid transfer gene specifically expressed in fiber cells.Biochim Biophys Acta,1997,1334:111-114
    127. Ma D P,Tan H,Si Y,et al.Differential expression of a lipid transfer protein gene in cotton fiber. Biochim Biophys Acta,1995,1257:81-84
    128. Martin C, Bhatt K,Baumann K,et al.Shaping in plant cells.Curr Opin Plant Biol,2001,4:540-549
    129. Martin T, Frommer W B,Salanoubat M,et al.Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J,1993,4:367-378
    130. McQueen M S, Cosgrove D J.Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension.Proc Nad Acad USA,1994,91:6574-6578
    131. Medina-Escobar N, Cardenas J,Moyano E,et al.Cloning,molecular characterization and expression pattern of a strawberry characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants.Plant Mol Biol,1997(34):867-877
    132. Meinert M C, Delmer D P.Changes in biochemical composition of the cell wall of cotton fiber during development.Plant Physiol,1977,59:1088-1097
    133. Minet M,Dufour M E,Lacroute F.Complementation of auxotrophic mutants by Arabidopsis thaliana cDNAs.The Plant Joumal,1992,2:417-422
    134. Minoru S,Toyomasa H.High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation.Yeast,2001,18:1015-1021
    135. Morris G J,Winters L,Coulson G E,et al.Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiaeJ Gen Microbiol,1983,129:2023-2034
    136. Mouradov A, Glassick,Teasdale R. Isolation and characterization of a new MADS-box cDNA from Pinus radiata (PGR97 - 027).Plant Physiol,1997,113:665
    137. Nasr F,Bertauche N,Dufour M E,et al.Heterospecific cloning of Arabidipsis thaliana cDNAs by direct complementation of pyrimidine auxothrophic mutants of Saccaromyces cerevisiae.I Cloning and sequence analysis of two cDNAs catalyzing the second, fifth and sixth steps of the denovo pyrimidine biosynthesis pathway.Mol Gen Genet,1994,244:23-32
    138. Niedermeyer W,Parish G R,Moor H. Reactions of yeast cells to glycerol treatment alterations to membrane structure and glycerol uptake.Protoplasma,1977,92:177-193
    139. Orford S J.Timmis J N.Abundant mRNAs specific to the developing cotton fiber.Theor Appl Genet,1997,94:909-918
    140. Paterson A H,Brubaker C L,Wendel J F.A rapid method for extraction of cotton (Gossypium ssp.) genomic DNA suitable for RFLP or PCR analysis.Plant Mol Biol Rep,1993(11):122-- 127.
    141. Penel C,Gaspar T, Greppin H.Plant Peroxidases 1980-1990.University of Geneva Press.1992.
    142. Potikha T S.Collins C C, Johnson D I,et al. The involvement of hydrogen peroxide in the different secondary walls in cotton fibers.Plant Physiol,1999,119:849-858
    143. Preuss M L, Delmer D P, Liu B. The cotton kinesin-like cahnodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol,2003,132:154~160
    144. Pyee J, Yu H, Kolattukudy P E.Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica olerancea) leaves.Arch Biochem Biophys,1994, 311: 460~468
    145. Rayle D L, Cleand R E. The acid growth theory of auxin-induced cell elongation is alive and well.Plant Physiol, 1992,99:1271~1274
    146. Richmond T A. Higher plant cellulose synthases.Genome Biol,2000,1(4): 1~6
    147. Richmond T A, Somerville C R.The cellulose synthase supeffamily.Plant Physiol,2000, 124:495~498
    148. Rinehant J A, Petersen M W, John M E.Tissue-specific and developmental regulation of cotton gene FbL2A.Plant Physiol,1996,112:1331~1341
    149. Ritter D,Allen R D,Trolinder N, et al. Cotton cotyledon cDNA encoding a peroxidase. Plant Physiol,1993,102:1351
    150. Rogers H J,Harvey A, Lonsdale D M.Isolation and characterization of a tobacco gene with homology to pectate lyase which is specifically expressed during microsporogenesis. Plant Mol Biol,1992,20: 493~502
    151. Ruan Y L, Chourey P S. A fibedess seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds.Plant Physiol,1998,118:399~406
    152. Ruan Y L, Liewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin.Plant Cell,2001,13:47~63
    153. Ruan Y L, Patrick J W. The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta,1995,196: 434~444
    154. Sabelnikov A G, Cymbalyuk E S, Gongadze G, et al. Eschenchia coli membranes during electrotransformation: an electron microscopy study.Biochim Biophys Acta,1991,1066: 21~28
    155. Sambrook J, Russell D W.Molecular Cloning:A Laboratory Manual.Cold Spring Harbor Laboratory Press,Cold Spring Harbor, New York. 2001
    156. Schena M,Shalon D,Davis R W, et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science,1995,270(5235):467~470
    157. Shimizu Y, Aotsuka S,Hasegawa O, et al.Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells.Plant Cell Physiol,1997,38:375~378
    158. Shin H,Brown R M.GTPase activity and biochemical characterization of a recombinant cotton fiber annexin.Plant Physiol,1999,3:925-934
    159. Siebert P D,Chenchik A,Kellogy D E,et al.An improved PCR method for walking in uncloned genomic DNA.Nucleic Acids Research,1995,23:1087-1088
    160. Snustad D P.Plant tubulin genes:structure and differential expression during development.Dev Genet,1987,8:435-460
    161. Silvia J B,Jose R N, Juan M B,et al.Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene.Plant Physiology,2002,128:751—759
    162. Song P,Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display.Biochim Biophy Acta,1997,1351(3):305—312
    163. Stewart J.Fiber initiation on the cotton ovule (Gpssypium hirsutum).Am J Bot,1975,62:723—730
    164. Suga M,Hatakeyama T.High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation.Yeast,2001,18:1015-1021
    165. Tan H,Creech R G, Jenkins J N,et al. Cloning and expression analysis of two cotton (Gossypium hirsutum L.) genes encoding cell wall proline-rich proteins.DNA Seq,2001,12:367-380
    166. Turcich M P, Hamilton D A,Mascarenhas J P.Isolation and characterization of pollen-specific maize genes with sequence homology to ragweed allergens and pectate lyases.Plant Mol Biol,1993,23:1061-1065
    167. Velculescu V E,Zhan G L,Vogelstein B,et al.Serial analysis of gene expression.Science,1995, 270:484-487
    168. Verde F,Mata J, Nurse P.Fission yeast cell morphogenesis: Identification of new genes and analysis of their role during the cell cycle.Mol Cell Biol,1995,131:1529-1538
    169. Wafler U, Meiler H.Enzymes activities in developing cotton fibers.Plant Physiol Biochem,1994, 32:697-701
    170. Waterhouse P M,Wang M B,Finnegan E J.Role of short RNAs in gene silencing.Trends Plant Sci,2001,6:297-301
    171. Wesley S V,Helliwell C A,Smith N A,et al.Construct design for efficient,effective and high-throughput gene silencing in plants.The Plant Journal,2001,27(6):581—590
    172. WILKINS T,Rajasekaran K, Anderson D M.Cotton biotechnology.Crit.Rev.Plant Sci.2000,19: 511-550
    173. Xia B L,Peng D G, Liu Q L.The development of the research of peroxidases in mechanism and application.Chinese Journal of Inorganic Chemistry,2003,5:No.l P.I
    174. XIA G X,Ramachandran S, Hong Y,et al.Identification of plant cytoskeletal.cell cycle-related and polarity-related proteins using Schizosaccharomyces pombe.The Plant Journal. 1996, 10(4):761 — 769
    175. YAMAMOTO E,Baird W V.Three Cotton Fiber-Expressed cDNAs(Accession Nos.AF072404,AF072405,and AF072406).(PGR98-144)Plant Physiol. 117:1525
    176. Zhao G R,Liu .I Y, Du X M.Molecular cloning and characterization of cotton cDNAs expressed in developing fiber cells.Biosci Biotechnol Biochem,2001,65(12):2789~2793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700