农杆菌介导遗传转化获得转β-甘露糖苷酶正义、反义基因的棉花
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维是纺织工业的重要原料,在国民经济中占有重要地位。因此,从分子水平阐明棉纤维发育的机理,具有重要的理论价值和现实意义。
     为了研究β-甘露糖苷酶(GhManA2)在棉纤维发育中的确切功能,本研究将其基因序列以正向,反向构建到由纤维特异启动子E6驱动的植物表达载体pBI121中,通过农杆菌介导法将其转入棉花,试图通过该基因在纤维发育中的过量表达和抑制表达对棉纤维发育的影响来研究其在纤维发育中的确切功能。本研究包括以下2个方面:
     利用DNA重组技术将基因GhManA2序列以正向,反向构建到由纤维特异启动子E6驱动的植物表达载体pBI121-E6中,经过SmaI,NotI酶切鉴定和特异引物的PCR扩增及测序证明载体构建成功,可用于棉花的遗传转化。分别以泗棉3号和W0品系为基因转化受体,将正义、反义GhManA2载体利用农杆菌介导法转化棉花,共得到53个愈伤系的500株转化的再生植株。
     用NPTⅡ和启动子-目的基因引物对再生植株DNA进行PCR扩增,初步得到T_0代转化的阳性植株230株。正义载体的再生植株中,NPTⅡ基因引物阳性率为97.92%,启动子-目的基因引物的阳性率为87.23%,反义载体的再生植株中,NPTⅡ基因引物阳性率为95.19%,启动子-目的基因引物的阳性率为64.65%。只有用NPTⅡ基因引物和启动子-目的基因引物扩增结果都为阳性的植株才被初步认为是阳性植株。本实验中,一共嫁接了230株阳性植株,成活了196株。随机取T_0代8株PCR阳性再生植株做Southern杂交。结果证明NPTⅡ基因已经整合到植物基因组中。进一步以E6启动子为探针进行Southern杂交,有部分植株有特异的杂交信号说明T-DNA区的E6启动子已整合到棉花基因组中。对T_1、T_2代转基因植株提取叶片DNA,用启动子-基因特异引物对其进行PCR扩增,在检测的7个T_1转基因株系中,目的基因的分离比例都符合孟德尔一对基因的分离比例(3:1),结合Southern杂交结果,推测多拷贝插入的目的基因可能整合到了同一条染色体上。
Cotton fiber is the most important textile material, plays an important role in ournational economy. So, it is important to elucidate fiber development process by molecularbiology.
     To characterize the precise function ofβ-mannosidase in cotton fiber, in this study,the sense and antisense coding sequence of theβ-mannosidase gene were fused withfiber-specific E6 promoter to build the constructs of sense gene and antisense RNA gene,and with which to transform into cotton via Agrobacterium-mediated transformation, and tomake them over expression, or suppression the expression of the endogenesis gene in thecotton genome in the purpose of studying the real function of this gene in fiberdevelopment.
     By DNA recombination technology, the sense and antisense coding sequence of theβ-mannosidase gene droved by fiber-specific E6 promoter were constructed using the binaryvector pBI121 as backbone vector. PCR with the special primer and sequencing of the PCRproduct and digestions with SmaI and NotI proved the two vectors were constructedsuccessfully and can be used for transformation. By Agrobacterium mediatedtransformation, the above-mentioned twoβ-marmosidase constructs were successfullytransferred to the cotton cultivars, Simian3 and W0, Around 500 T_0 regeneration plantsfrom 53 different calli lines were obtained.
     PCR amplification and Southern blot analysis of the transgenic cotton plants wereused to confirm the integration of the transgenes. The primers were designed according tothe sequences of NPTⅡand E6-β-mannosidase gene and applied to PCR analyses of T_0transgenic plants. For the sense vector, the percentage of the plants with positive signals inNPTⅡprimer reaction is 97.92%, that of the plants in E6-β-mannosidase primer reactionis 87.23%; and for the antisense vector, the percentage of the plants with positive signals inNPTⅡprimer reaction is 95.19%, that of the plants in E6-β-marmosidase primer reactionis 64.65%. The plants showing both positive signals of NPTⅡand E6-β-mannosidaseprimers were regarded as positive transgenic plants primarily and were regenerated by grafting. In this research, 230 positive plants were grafted and 196 of them were survived. 8To plants which were regarded as positive transgenic plants primarily by PCR reaction werefurther analyzed with Southern blotting. Using NPTⅡgene as the probe, the results showedthat the NPTⅡgene had been inserted to the cotton genome, using E6 promoter as theprobe, the results showed that the E6 promoter had been integrated into the cotton genomein some T_0 plants. PCR analysis of T_1 and T_2 transgenic plants using the E6-β-mannosidase gene special primers showed that the segregation ratio of ManA2 gene inseven transgenic lines were inherited in a classical Mendelian manner (3:1). But Southernblot showed that there was more than one copy of ManA2 gene in some transgenic lines,which perhaps was because of mutiple-copy integration in one site of the cottonchromosome.
引文
1. Agrawal D C, Banerjee A K, Kolala R R, et al. In vitro induction of multiple shoots and plant regeneration in cotten (Gossypium hirsutum L.) [J]. Plant Cell Rep., 1997,16: 647-652
    2. Allchayat A H, Kraemer S A, Leipprandt J R, et al. Humanp-mannosidase cDNA characterization and first identification of a mutation associated with humanp-mannosidosis. Hum. Mol. Genet., 1998, 7:75-83
    3. Andrawis A, Solomon M, Delmer D P. Cotton fiber annexins: a potential role in the regulation of callose synthase [J]. Plant J., 1997,3: 763-772
    4. Arioli T, Peng L, Betzner A S, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis [J]. Science, 1998,279(5351): 717-720
    5. Ayub R, Guis M, BenAmor M et al. Expression of ACC oxidase antiense gene inhibits ripening of cantaloupe melonfruits [J]. 1996, Nature Biotechnology, 14: 862-866
    6. Barrero R A, Umeda M, Yamamura S, et al. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division [J]. Plant Cell, 2002,14(1): 149-163
    7. Basra A S, Malik C P. Development of the cotton fiber [J]. Int. Rev. Cytol, 1984, 89: 65-113
    8. Baum B, Li W, Perrimon N. A cyclase-associated protein regulates actin and cell polarity during Drosophila cogenesis and in yeast [J]. Curr. Biol., 2000, 10(16): 964-973
    9. Bayley C, Trolinder N, Ray C, et al. Engineering 2.4-D resistance into cotton [J]. Theor. Appl. Genet., 1992, 83: 645-649
    10. Beasley C A. In vitro culture of fertilized cotton ovules [J]. Bioscience, 1971,21: 906-907
    11. Benlali A, Draskovic I, Hazelett D J, et al. Act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc [J]. Cell, 2000, 101(3): 271-281
    12. Bidney D, Scelonge C, Martich J, et al. Microprojectile bombardment of plant tissue increases transformation frequency by Agrobacterium tumefaciens [J]. Plant Mol. Biol., 1992,18: 301-313
    13. Birch R. G. Plant Transformation: Problems and strategies for practical application [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997,48: 297-326
    14. Bird C R, John A R, Jonathon D et al. Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes [J]. Biotechnology, 1991, 9: 635-639
    15. Chlan C A, Lin J, Cary J, et al. A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue [J]. Plant Mol. Biol. Rep., 1995,13: 31-37
    16. Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin [J]. Annu. Rev. Biochem., 1985,54:331-365
    17. Cosgrove D J, Jones A M. Loosening of plant cell walls by expansins [J]. Nature, 2000, 407: 321-326
    18. Cotten M, Birnstiel M. Ribozyme mediated destruction of RNA in vivo [J]. EMBOJ, 1989,8(12): 3861-3866
    19. Courthey-gutterson N, Napoli C, Lemieux C,et al. Modification of flower color in Florsit's chrysanthemum: production of a white flowering variety through molecular genetics [J]. Biotechnology, 1994, 12: 268-271
    20. Cousins Y L, Lyon B R, Llewellyn D J. Transformation of an Australian cultivar cotton improvement through genetic engineering [J]. Platt Physiol., 1991,18:481-494
    21. Crookers P R, Grierson D. Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation [J]. Plant Physiol., 1983, 72: 1088-1093
    22. Davidonis C H, Hamilton R H. Plant regeneration from callus tissue of Gossypium hirsutum L [J]. Plant Science Letters, 1983, 32: 89-93
    23. De Langhe E A. Towards an international strategy for genetic improvement in the genus Musa [J]. In: Banana and Plantain Breeding Strategies. Persley, G S and De Langhe, E A. (Eds.), pp. 19-21. Proceedings of an international workshop, 13-17 October 1986, Cairns, Australia, ACIAR PRIC. No 21
    24. Delgado I J, Wang Z H, Rocher A, et al. Cloning and characterization of AtRGP1: Areversibly autoglycosylated Arabidopsis protein implicated in cell wall biosynthesis [J]. Plant Physiol., 1998,116: 1339-1349
    25. Delmer D P, Pear J R, Andrawis A. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers [J]. Mol. Gen. Genet., 1995, 248:43-51
    26. Dhugga K S, Tiwari S C, Ray P M. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: Purification, gene cloning, and trans-Golgi localization [J]. Proc. Nati. Acad .USA, 1997,94: 7679-7684
    27. Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of α - and β -tubulin isotypes during cotton fiber development [J]. Plant Physiol., 1994, 105: 1347-1353
    28. Ecker J R, Davis R W. Inhibition of gene expression in plant cells expression of antisense RNA [J]. Proc. Nati. Acad .USA, 1986, 83: 5372-5376
    29. Fakhrieh V, Woonbong K, and Thea A.Wilkins. Phosphoenolpyruvate carboxylase cDNAs from developing cotton (Gossypium hirsutum) fibers [J]. 1997, Plant Physiol., 115: 315-327
    30. Ferguson D L, Turley R B, Kloth R H. Identification of a delta-TIP cDNA clone and determination of related A and D genome subfamilies in Gossypium species [J]. Plant Mol. Biol., 1997, 34: 111-118
    31. Finer J J, McMullen M D. Tansformation of cotton (Gossypium hirsutum L.) via particle bombardment [J]. Plant Cell Rep., 1990, 8: 586-589
    32. Firoozabady E, DeBoer D L, Merlo D J, et al. Transformation of cotton (Gossypium hirsutum L.) by Agrobaterium tumefacies and regeneration of transgenic plants [J]. Plant Mol. Biol., 1987,10: 105-114
    33. Freeman N L, Field J. Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly [J]. Cell Motil. Cytoskeleton., 2000,45: 106-120.
    34. Fukuda H. Tracheary element formation as a model system of cell differentiation [J]. Int. Rev. Cytol., 1991, 136: 289-332
    35. Gahakwa D, Maqbool S B, Fu X, et al. Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgrounds [J]. Theor. Appl. Genet., 2000,101:388-399
    36. Gawel N J, Robacker C D. Somatic embryogenesis in two Gossypium hirsutum genotypes on semi-solid versus liquid proliferation media [J]. Plant Cell Tiss. Organ. Culture, 1990,23: 201-204
    37. Giddings T H, Staehelin L A. Microtubule mediated control of microfribril deposition: a reexamination of the hypothesis. In: Lloys CW(ed) The cytoskeletal basis of plant growth and form [J]. Academic Press, 1991, London, 85-89
    38. Glover B J, Rodriguez M, Martin C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor [J]. Development, 1998, 125: 3497-3508
    39. Gould J H, Magallanes-Cedeno M. Adaptation of cotton shoot apex culture to Agrobacterium-mediated transformation [J]. Plant Mol. Bio. Rep., 1998,16: 283
    40. GRAVES D A, Steward J M. Analysis of the protein constituency of development of cotton fibers [J]. J. Exp. Bot., 1988, 39: 59-69.
    41. Gupta P, Raghuvanshi S, Tyagi A K. PCR-amplification and cloning of the coding regions of a cDNA for a reversibly glycosylated polypeptide from rice with possible involvement in the biosynthesis of glucans [J]. Plant Biochem Biotechnol, 2000, 9: 99-102
    42. Haigler C H, Holaday A S, Wu C. Transgenic cotton over-expressing sucrose phosphate synthase produces higher quality fibers with increased cellulose content and has enhanced seed cotton yield [J]. Abstract 447. In: Proceedings of Plant Biology 2000, 15-19 July, San Diego, CA. American Society of Plant Physiologists, Rockville, MD
    43. Haigler C H, Ivanova-Datcheva M, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Mol. Biol., 2001,47: 29-51
    44. Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plant [J]. Nature, 1990,346: 284
    45. Harmer S E, Orford S J, Timmis J N. Characterisation of six α -expansin genes in Gossypium hirsutum (upland cotton) [J]. Mol. Genet. Genomics, 2002, 268: 1-9
    46. Hasenfratz M P, Tsou C L, Wilkins T A. Expression of two related vacuolar H~+-ATPase 16-kilodation proteolipid genes is differentially regulated in a tissue-specific manner [J]. Plant Physiol., 1995, 108: 1395-1404
    47. Holland N, Halland D, Helentjaris T, et al. A comparative analysis of the plant cellulose synthase (CesA) gene family [J]. Plant Physiol., 2000,123: 1313-1324
    48. Horsch R B, Fraley R T, Rogers S G, et al. Inheritance of functional foreign genes in plants [J]. Science, 1984,23:496-498
    49. Hsu C L, Stewart J M. Callus induction by (2-chlorethyl) Phosphoric (CPA) acid in cultured cotton ovules [J]. Physiol. Plant, 1976, 38: 150-153
    50. Hulskamp M, Misera S, Juvrgens G. Genetic dissection of trichome cell development [J]. Cell, 1994, 76:555-566
    51. Izant J G, Weintraub H. Inhibition of thymidine kinase gene expression by anti-sense RNA: Amolecule approach to genetic analysis [J]. 1984, Cell, 36: 1007-1015
    52. Ji S J, Lu Y C, Li J. A-beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast [J]. Biochem. Biophys. Res. Commun., 2002, 296: 1245-1250
    53. John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fibers: Cloning of the mRNAs [J]. Proc Natl Acad Sci USA, 1992, 89: 5769-5773
    54. John M E, Keller G. Characterization of mRNA for a proline-rich protein of cotton fiber [J]. Plant Physiol., 1995, 108: 669-676
    55. John M E. Characterization of a cotton (Gossypium hirsutum L.) fiber RNA Fb-E6 [J]. Plant Physiol., 1995, 107: 1477-1478
    56. Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene: a homologue of adenylyl cyalase-associated protein highly expressed during fiber elongation [J]. Plant Cell Physiol., 1998, 39:1380-1383
    57. Kawaji H, Mizuno T, Mizushima S. Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins 0-8 and 0-9 of Escherichia coli K-12 [J]. Journal of Bacteriology, 1979,140: 843-847
    58. Keller G, Spatola L, McCable D, et al. Transgenic cotton resistant to herbicide bialaphos [J]. Transgen. Res., 1997, 6: 385-392
    59. Koes R E, Spelt C E, van den Elzen P J, et al. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida [J]. Gene, 1989, 81(2): 245-257.
    60. Kral A R, Lenting P E, Veenstra J, et al. An anti-sense chalcone synthase gene in transgenic plant inhibists flower pigmentation [J]. Nature, 1988, 333: 866-869
    61. Krol A R, Mur L A, Lange, P. Antisense chaicone synthase gene in petunia: visualization of variable transgenic expression[J]. M.G.G., 1990,220: 204-212
    62. Kumar S, Sharma P, Pentel D. A genetic approach to in vitro regeneration of non-regenerating cotton(Gossypium hirsutum L.) Cultivars plant cell rep., 1998,18: 59-63
    63. Kuntzon D S, Thompson G A, Rsadke S E, et al. Modification of Brassiea seed oil by antisense expression of a stearoylacyl carrier protein desaturase gene [J]. Proc. Natl. Acad. Sci .USA., 1992.(89): 2624-2628.
    64. Kurek I, Kawagoe Y, Jacob-Wilk D, et al. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains [J]. Proc. Natl. Acad. Sci. USA., 2002, 99: 11109-11114
    65. Laosinchai W, Cui X, Brown RM, et al. A full cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and cotton CelA1 (Accession No. AF 200453) (PGR 00-002) [J]. Plant Physiol., 2000,122: 291
    66. Lee M M, Schiefelbein J. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis [J]. Development, 2001, 128(9): 1539-1546
    67. Leelavathi VG, Sunnichan R, Kumria G P, et al. A simple and rapid Agrobacterium-mediated transformation protocol for cotton ( Gossypium hirsutum L.): Embryogenic calli as a source to generate large numbers of transgenic plants [J]. Plant Cell Rep., 2004,22:465-470
    68. Li X B, Cai L, Cheng N H, et al. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber [J]. Plant Physiol., 2002, 130: 666-674
    69. Lila T, Drubin D G. Evidence for physical and functional interaction among two Saccharmyces cerevisiae SH3 domain protein, an adenylyl cyclase-associated protein and the actin cytoskeleton [J]. Mol. Biol. Cell, 1997, 8: 367-385
    70. Liu B, Joshi H C, Wilson T J, et al. Y -Tubulin in Arabidopsis: gene sequence, imminoblot, and Immunofluorescence studies [J]. Plant Cell, 1994,6: 303-314
    71. Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.) [J]. Mol. Genet, and Genomics, 1999,261: 660-671
    72. Ma D P, Liu H C, Creech R G, et al. Cloning and characterization of a cotton lipid transfer gene specifically expressed in fiber cells [J]. Biochim. Biophys. Acta., 1997, 1334: 111-114
    73. Ma D P, Tan H, Si Y, et al. Differential expression of a lipid transfer protein gene in cotton fiber [J]. Biochim. Biophys. Acta., 1995, 1257: 81-84
    74. Malmgren C, Engdahl H M, Romby P, et al. An antisense /target RNA duplexora strong intramolecular RNA structure 5' of plasmid [J]. RNA, 1996,(2): 1022
    75. Maurel C, Reizer J, Schroeder J. The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes [J]. EMBO J., 1993,12: 2241-2247.
    76. McCabe D E, Martine B J. Transformation of elite cotton cultivars via particle bombardment of meristems [J]. Bio/Technol., 1993,11: 596-598.
    77. McQueen M S, Cosgrove D J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension [J]. Proc. Natl. Acad. Sci. USA., 1994, 91: 6574-6578
    78. MeCabe D E, Martinell B J. Transformation of elite cotton cultivars via particle bombardment of meristems [J]. Biotechnology, 1993,11: 596-598
    79. Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall of cotton fiber during development [J]. Plant Physiol., 1977, 59: 1088-1097
    80. Morre J L, Permingeat H R, Romagnoli M V, et al. Multiple shoot induction and plant regeneration from embryonic axes of cotton (Gossypium hirsutum L.) [J]. Plant Cell Tiss. Organ. Cult., 1998,54: 131-136
    81. Murray F, Llewellyn D, McFadden H, et al. Expression of Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic [J]. Mol. Breed., 1999, 5: 219-232.
    82. Okamoto K, Inoue T, Tsujii K, et al. Mechanism for the autogenous control of the crp operon :transcriptional inhibition by a divergent RNA transcript [J]. Proc. Natl. Acad. Sci. USA., 1986,83(14): 5000
    83. Oppenheimer D G, Herman P L, Sivakumaran S. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules [J]. Cell, 1991,67: 483-493.
    84. Orford S J, Timmis J N. Abundant mRNAs specific to the developing cotton fiber [J]. Theor. Appl. Genet, 1997,94:909-918
    85. Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton {Gossypium hirsutum L.) genomic DNA suitable for RFLP and PCR analysis [J]. Plant Mol. Biol. Rep., 1993, 11:122-127
    86. Pear J R, Kawagoe Y, Schreckengost W E. Higher plant contains homologs of the bacterial celA gene encoding the catalytic subunit of cellulose synthase [J]. Proc. Natl. Acad. Sci. USA., 1996, 93: 12637-12642
    87. Perlak F J, Deaton R W, Armstrong T A, et al. Insect resistant cotton plants. Biotechnology, 1990, 8: 939-943
    88. Price H J, Smith R H. Tissue culture of Gossypium species and its potential in cotton genetics and crop improvement [J]. Proc Beltwide cotton. Prod. Res. Conf., 1977, 51-55
    89. Price H J, Smith R H. Somatic embyogenesis in suspension culture of G. Klotzschianum Anderss [J]. Planta, 1979, 145:305-307
    90. Potikha T S, Collins C C, Johnson D, et al. The involvement of hydrogen peroxide in the different secondary walls in cotton fibers [J]. Plant Physiol., 1999, 119: 849-858
    91. Puls J, Schuseil J. Chemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Coughtan M P, Hazlewood G P(ed.), Hemicelluloses and Hemicellulases, 1996, London England: Portland Press, 1-28
    92. Rajasekaran K, Grula J W, Hudepeth R L, et al. Herbicide-resistant Acala and coker cottons transformation with a native gene encoding mutant forms of acetohydroxyacid synthase [J]. Mol. Breed., 1996,2:307-319
    93. Rajasekaran K, Hudspeth R L, Cary J W, et al. High-frequency stable transformation of cotton (Gossypium hirsufum L.) by particle bombardment of embryogenic cell suspension cultures [J]. Plant Cell Rep., 2000, 19: 539-545
    94. Rajaseharan K. Regeneration of plants from cryopreserved embryogenic cell suspension and callus cultures of cotton (Gossypium hirsutum L.) [J]. Plant cell rep., 1996,15: 859-864
    95. Rayle D L, Cleand R E. The acid growth theory of auxin-induced cell elongation is alive and well [J]. Plant Physiol., 1992,99: 1271-1274
    96. Rezaian M A, Koltunow A M, Krake L R. Isolation of. three viroids and a circular RNA from grapevines [J]. J. Gen. Virol., 1988,69,413-422
    97. Richmond T A, Somerville C R. The cellulose synthase superfamily [J]. Plant Physiol., 2000, 495-498
    98. Rinehant J A, Petersen M W, John M E. Tissue-specific and developmental regulation of cotton gene FbL2A[J]. Plant Physiol., 1996,112: 1331-1341
    99. Robinson D G, Sieber H, Kammerlober W, et al. PIP1 aquaporins are concentrated in plasmalemmasomes of Arabidopsis thanalia mesophyll [J]. Plant Physiol., 1996, 111: 645-649.
    100. Romero L, Fuertes A, Benito M J. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thanalia [J]. Plant J., 1998,14: 273-284
    101. Rothstein S J, Lahners K N, Lotstein R J, et al. Promoter cassettes,antibiotic-resistance genes, and.vectors for plant transformation [J]. Proc. Natl. Acad. Sci. USA., 1987, 84: 8439-8443
    102. Ruan Y L, Llewllyn DJ, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell, 2003, 15: 952-964
    103. Sachs E S, Benedict J H, Stelly D M, et al. Expression and segregation of genes encoding CryIA insecticidal proteins in cotton [J]. Crop Sci., 1998,38:1-11
    104. Savin K W, Baudinette S C, Graham M W, et al. Antisense Acc oxidase RNA delays carnation petal seneseece [J]. Hortscience, 1995, 30(5): 970-972
    105. Seagull R W. The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers [J]. Protoplasma, 1990, 159:44-59.
    106. Sheely R E. A method for potentiometric determination of enzyme activity [J]. Proc. Natl. Acad.Sci.USA., 1988, 85
    107. Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant Cell Physiol., 1997, 38: 375-378
    108. Shin H, Brown Jr R M. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin [J]. Plant Physiol., 1999,119: 925-934.
    109. Shin H, Brown R M. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin [J]. Plant Physiol., 1999,3: 925-934
    110. Silflow C D, Oppenheimer D G, Kopczak S D, et al. Plant tubulin genes: structure and differential expression during development [J]. Dev. Genet., 1987,8: 435-460
    111. Simons R W, Kleckner N. Translation control of IS10 transposition [J]. Cell, 1983, 34: 683-691
    112. Smart L B, Vojdani F, Maeshima M, et al. Genes involved in osmoregulation during turgor-driven expasin of developing cotton fibers are differential regulated [J]. Plant Physiol., 1998,116:1539-1549
    113. Smith C J S, Watson C F, Ray J. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes [J]. Nature, 1988, 334: 724-726
    114. Smith R H. Defined conditions for the initiation and growth of cotton callus in vitro [J]. Gossypium arboreum. in Vitro, 1977, 13: 329-334
    115. Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display [J]. Biochim. Biophy. Acta., 1997, 1351(3): 305-312
    116. Suo J, Liang X, Pu L, et al. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.) [J]. Biochim. Biophys. Acta., 2003, 630(1): 25-34
    117. Sunikumar G, Rathore K S. Transgenic cotton: factors influncing Agrobacterium-mediated trancformation and regeneration [J]. Mol. Breed., 2001, 8: 37-52.
    118. Tan H, Creech R G, Jenkins J N, et al. Cloning and expression analysis of two cotton (Gossypium hirsutum L.) genes encoding cell wall proline-rich proteins [J]. DNA Seq., 2001, 12: 367-380
    119. Tang G Q, Sturm A. Antisense repression of sucrose sythase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning [J]. Plant Mol. Biol., 1999,41: 465-479.
    120. Taylor N G, Scheible W R, Culter S, et al. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase gene required for secondary cell wall synthesis [J]. Plant Cell, 1999, 11: 769-780
    121. Themmen A P N, Tucker G A, Grierson D. Degradation of isolated tomato cell walls by purified polygalacturonase in vitro [J]. Plant Physiol., 1982, 69: 122-124
    122. Thoma S, Kaneko Y, Somerville C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein [J]. Plant J., 1993, 3: 427-436
    123. Thomas J C, Adams D G, Keppenne V D, et al. Protease inhibitors of Manduca Sexta expressed in transgenic cotton [J]. Plant Cell Rep., 1995, 14: 758-762
    124. Timpa J D, Triplett BA. Analysis of cell-wall polymers during cotton fiber development [J]. Planta, 1993, 189:101-108
    125. Tomizawa J, Itoh T, Selzer G, et al. Plasmid ColE I incompatibility determined by interaction of RNAi with primer transcript [J]. Proc. Natl. Aca. Sci. USA., 1981, 78: 1421-1425
    126. Trolinder N L, Goodin J R. Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L) [J]. Plant Cell Rep., 1987, 6: 231-234
    127. Trolinder N L, Goodin J R. Somatic embryogenesis in cotton (Gossypium hirsutum L). I. Effects of source of explant and hormone regime [J]. Plant Cell Tiss. and Organ. Cult., 1988,12: 31 -42
    128. Trolinder N L, Goodin J R. Somatic embryogenesis in cotton (Gossypium hirsutum L) II. Requirements for embryo development and plant regeneration [J]. Plant Cell Tiss. and Organ. Cult., 1988, 12: 43-53.
    129. Trolinder N L, Xixian C. Genotype specificity of the somatic embryogenesis response in cotton (Gossypium hirsutum L.) [J]. Plant cell rep., 1989, 8: 133-136
    130. Umbeck P, Johnson G, Barton K. Genetically transformed cotton (Gossypium hirsudrm L.) plants [J]. Biotechnology, 1987, 5: 263-266
    131. Umbeck P, Swain W, Yang N S. Inheritance and expression of genes for kanamycin and chloramphenicol resistance in transgenic cotton plants [J]. Crop Science, 1989,29: 196-201
    132. Van der Krol A R, Lenting P E, Vennstra J, et al. Antisense chalcone synthrase gene in transgenetic plants inhibits flower pigmentation [J]. Nature, 1988, 333: 866-876
    133. Vander M, Stam I M, van Tunen M E, et al. Antisense inhibition of flavonoid biosynthesis in Petunia anthers results in male sterility [J]. Plant Cell, 1992,4: 253-262
    134. Vojtek A B, Cooper J A. Identification and characterization of a cDNA encoding mouse CAP: a homologue of the yeast adenylyl cyclase association protein [J]. J. Cell Sci., 1993,105: 777-785
    135. Wafler U, Meiler H. Enzyme activities in developing cotton fibers [J]. Plant Physiol. Biochem., 1994,32: 697-702.
    136. Wan C Y, Wilkins T A. Isolation of multiple cDNA encoding the vacuolar H~+-ATPase subunit B from developing cotton (Gossypium hirsutum L.) [J]. Plant Physiol., 1994, 106: 393-394
    137. Whittaker D J, Triplett B A. Gene-specific changes in alpha-tubulin transcript accumulated in developing fibers [J]. Plant Physiol., 1999, 121:181
    138. Wilkins T A. Vacuolar H~+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum L.) ovules [J]. Plant Physiol., 1993, 102: 679-681
    139. Wilkins T, Rajasekaran K, Anderson DM. Cotton biotechnology [J]. Crit. Rev. Plant Sci., 2000, 19: 511-550
    141. Wu Y, Meeley R B, Cosgrove DJ. Analysis and expression of the alpha-expansin and beta-expasin gene families in maize [J]. Plant Physiol., 2001,126: 222-232
    142. Yang W D, Wang S Y, Liu W P, et al. Inhibition of replication of rice dwarf virus in transgenic rice plant expressing antisense bozyme gene [J]. Viro logicasinica, 1996, (1): 277-283.
    143. Yepes L M, Fusch M, Slightom J L, et al. Sense and antisense coat protein gene constructs confer high levels of resistance to tomato ringspot nepovirus in transgenic Nicotiana species [J]. Phytopathology, 1996, 86:417-424
    144. Zabaleta E, Mouras A, Hernould M, et al. Transgenic male-sterile plant induced by an unetdited atpg gene is restored to fertility by inhibiting it expression with antisense RNA [J]. Pro. Natl. Acad. Sci. USA., 1996,93: 11259-11263
    145. Zapata C, Park S H, El-Zik K M, et al. Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex [J]. Theor. Appl. Genet., 1999, 98: 252-256.
    146. Zhang X L, Sun J Z. Inheritance of the character of Somatic embryogenesis in upland cotton(Gossypium hirsutum L.) [J]. Vitro Cell Develop. Biol., 1996, 32 (3, part II): 93A
    147. Zhao G R, Liu J Y. Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development [J]. Biochim. Biophys. Acta., 2002,1574: 370-374.
    148. Zhou G L, Miyazaki Y, Nakagawa T, et al. Identification of a CAP (adenylyl-cyclase-associated protein) homologous gene in Lentinus edodes and its functional complementation of yeast CAP mutants [J]. Microbiology, 1998, 144: 1085-1093
    149. Zhou G Y, Weng J, Zhen Y S, et al. Introduction of exogenous DNA into cotton embryos. In: Wu R, Grossman L, and Molddave K, (eds), 1983, Methods m enzymology, Vol 101, Recombination DNA, Part C, pp 433-481
    150.陈建南,傅鸿仪,秦环英,等.HSP_(70)反义RNA对高粱花粉的正常形成的影响[J].科学通报,1997,42:1993-1996
    151.陈锦清,黄锐之,郎春秀,等.油菜PEP基因的克隆及PEP反义基因的构建[J].浙江大学学报(农业与生命科学版),1999,25(4):365-367
    152.陈志贤,Danny J,Llewellyn,等.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉株[J].中国农业科学,1994,27(2):31-37
    153.陈志贤,李淑君,Trolinder N L,等.棉花细胞悬浮培养胚胎发生和植株再生某些特性的研究[J].中国农业科学,1987,20(5):6-11
    154.陈志贤.纤维作物.见植物原生质体培养和遗传操作[M].许智宏 卫志明编,上海科学技术出版社,1998,223-226.
    155.楚鹰.纤维发育相关基因的SNP研究与棉花蔗糖合酶基因片段的克隆及表达分析[D].南京农业大学,2004,硕士学位论文
    156.傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册[M].北京:中国科学技术出版社,1994:35-39
    157.傅荣昭,孙勇如,贾士荣.植物遗传转化手册[M].北京:中国科学出版社,1995:9-11
    158.巩万奎,吴家和,姚长兵,等.葡萄糖氧化酶基因在棉花中的高效转化一转基因再生棉株的获得[J].棉花学报,2002,14(2):76-79
    159.郭三堆,崔洪志,倪万潮.双价抗虫转基因棉花研究[J].中国农业科学,1999,32(3):1-7
    160.郭三堆,倪万潮,徐琼芳.编码Bt杀虫蛋白质融合基因和表达载体及其应用[P].1995,专利号:ZL95119563.8.C12N 15-32
    161.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆和分子育种[J].科学通报,2003,48(5):410-417
    162.黄国存,蓝越梅.以GFP为标记用花粉管通道途径导入外源DNA[J].科学通报1998,43(23):2531-2533
    163.蒋建雄,郭旺珍,张天真.棉花两个β-甘露糖苷酶cDNA的克隆及其特征[J].植物生理与分子生物学报,2004,30(2):216-220
    164.蒋健雄.四个棉纤维发育相关基因全长序列的克隆及棉纤维伸长发育基因克隆的初步研究[D].南京农业大学,2003,博士后研究工作报告
    165.焦改丽,李俊峰,李燕娥,等.利用新的外植体建立棉花高效转化系统的研究[J].棉花学报,2002,14(1):22-27
    166.李付广,郭三堆,双价基因抗虫棉的转化与筛选研究[J].棉花学报1999,11(2):106-112
    167.李利红,王海云,李彦.棉花微丝结合蛋白基因GhPFN1的表达及功能研究[J].自然科学进展,2002,12(11):1213-1215
    168.李祥,易自力,蔡能,等.反义RNA及其在植物基因工程领域的应用[J].生物技术通讯,2003,14(2):162-164
    169.李燕娥,朱祯,陈志贤,等.豇豆胰蛋白酶抑制剂转基因棉花的获得[J].棉花学报,1998,10(5):237-243
    170.李一勤.细胞壁与植物的生长、发育和分化[M].李承森主编,植物科学进展(第二卷).北 京,1999,高等教育出版社,14-22
    171.刘进元,赵广荣,李骥.棉花纤维品质改良的分子工程[J].植物学报,1997,42:991-995
    172.卢迎春.棉花纤维发育相关基因的大规模克隆与功能研究[D].北京大学,2002,博士论文
    173.陈妹幼,聂以春,张献龙.转化棉花胚性愈伤可以有效缩短转基因周期[J].华中农业大学学报,2002,21(5):406-408
    174.路铁刚,孙敬三.根癌农杆菌转化单子叶植物研究概况[J].生物工程进展,1990,10(3):4-8
    175.孟钊红,焦改丽,张换样,等.Gus基因在转幕因棉花细胞中的表达及其与NPT 1I基因、Bt基因表达的相关性[J].棉花学报,2001,13(4):243-246;
    176.倪万潮,黄骏麒,郭三堆.转Bt杀虫蛋白幕因的抗棉铃虫棉花新种质[J].江苏农业学报,1996,12(1):1-6
    177.欧阳波,李汉霞,叶志彪.植物B-1,3-葡聚糖酶及其基因[J].中国生物工程杂志.2002,12(6):18-23
    178.秦治翔,杨佑明,张春华,等.棉纤维次生壁增厚相关基因的cDNA克隆与分析[J].作物学报,2003,29(6):860
    179.石东乔,周奕华,张丽华,等.油菜BcNA1启动子与拟南Fad2基因的克隆及相关植物表达载体的构建[J].云南大学学报(自然科学版),1999,(21)增刊:47
    180.孙敬,唐灿明,袁小玲,等.利用卡那霉素间接鉴定法进行大规模的棉花转基因育种技术[J].棉花学报,2000,12(5):270-276
    181.王福聚,肖兴国.植物遗传转化研究进展[J].生物学教学,2002,10:3-5
    182.王关林,方宏筠.植物基因工程[M].北京科学出版社,2002:7-80
    183.王关林,方宏筠.植物基因工程[M].北京科学出版社,2004:659-660
    184.王景雪,孙毅.农杆菌介导的植物基因转化研究进展[J].生物技术通报,1999,(Ⅰ):7-13
    185.王伟,朱祯,高越峰,等.双价抗虫基因陆地棉转化植株的获得[J].植物学报,1999,41(4):384-388
    186.王志成.棉花与膜结合的内切-1,4-β-葡聚糖酶基因的克隆及序列特征分析[D].湖南农业大学,2004,硕士学位论文
    187.吴敬音,朱卫民,余建明等.陆地棉(Gossypium hirsutunr L.)茎尖分生组织培养及其在基因导入上的应用.[J]棉花学报,1994,6(2):82-89
    188.武耀廷,张恒木,刘进元.棉纤维细胞发育过程中非纤维素的生物合成[J].棉花学报,2004,16(3):189-193
    189.武耀廷,张恒木,刘进元.棉纤维细胞发育过程中纤维素的生物合成[J].棉花学报,2003,15(3):174-179
    190.肖国缨.根癌农杆菌介导的植物遗传转化研究现状和前景[J].作物研究,1998(1):44-48
    191.谢道听,范云六,倪万潮.苏云金芽孢杆菌(Bacillus thuringiensis)杀虫晶体蛋自幕因导入棉花获得转基因植株[J].中国科学(B)辑,1991,4:367-373
    192.徐楚年,张仪,余丙生,等.棉花四个栽培种纤维发育早期扫描电镜的比较研究[J].北京农业大学学报,1987,13(3):254-261.
    193.徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展[J].生命科学,2002,14(4):223-225
    194.叶健明,唐克轩,沈大棱.植物转基因方法概述[J].生命科学,1999,11(2):58-60
    195.于晓红,朱勇清,陈晓亚,等.种子特异表达ipt转基因棉花根和纤维的改变[J].植物学报.2000,42(1):59-63
    196.于晓红.棉纤维发育与改良的初步研究[D].中国科学院上海植物生理研究所,1999,博士研究生学位论文
    197.曾凡锁,詹亚光.转基因植物中外源基因的整合特性及其研究策略[J].植物学通报,2004,21(5):565-577
    198.张宝红,丰嵘.棉花生物技术研究现状[J].生物工程进展,1992,12(5):18-21
    199.张宝红,丰嵘.棉花组织培养名录[J].植物生理学通讯,1992,28(4):313-320
    200.张宝红.棉花组织培养名录(续)[J].植物生理学通讯,1994,30(5):386-391
    201.张恒木,刘进元.棉纤维中优势表达β-半乳糖苷酶基因的分子克隆及其特征[J].植物学报,2005,47(2):223-232
    202.张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12(6):321-326
    203.张家明,孙雪飘,郑学勤等.陆地棉愈伤诱导及胚胎发生能力的遗传分析[J].中国农业科学,1997,30(3):36-43
    204.周光宇.农业分子育种一授粉后外源DNA导入植物的技术[J].中国农业科学,1988,21:1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700