地衣芽孢杆菌pelB,amyX,yvdF基因的功能鉴定与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地衣芽孢杆菌(Bacillus licheniformis)是芽孢杆菌中最具应用潜力的菌种之一,具有酶系丰富,产酶量高等诸多优良特性。地衣芽孢杆菌基因组序列已于2004年被公布,为利用基因工程手段开发其应用潜力提供了基础。本文从地衣芽孢杆菌基因组DNA中分别克隆了被标注为pelB、amyX和yvdF的基因,在大肠杆菌等不同宿主中表达出有活性的重组酶并对重组酶表达情况及酶学性质进行了初步分析。
     对地衣芽孢杆菌基因组序列分析后发现有两条基因可能编码果胶酶,分别被标注为pelA和pelB,其中对pelB基因的研究迄今未见报道。本文从地衣芽孢杆菌CICIM B1699染色体DNA中扩增出可能编码果胶裂解酶的基因pelB,插入启动子PQ下游,分别构建了重组质粒pLa-PQ-pelB和pHY-PQ-pelB。重组大肠杆菌JM109 (pLa-PQ-pelB)表达出有活性的果胶裂解酶,酶活力为0.6 U/mL,上述实验证明了pelB基因编码的蛋白具有果胶裂解酶的功能。重组酶的酶学性质显示其最适反应温度为45℃,最适pH为10.5。金属离子Ca2+对重组酶具有激活作用,其中6 mmol/L Ca2+浓度激活作用最为明显,而Mg2+、Zn2+、Cu2+能强烈抑制酶活。利用HPLC-ESI-MS对重组酶酶解产物进行测定发现,酶解产物含有不饱和二聚半乳糖醛酸和不饱和三聚半乳糖醛酸。将重组质粒pHY-PQ-pelB导入地衣芽孢杆菌CICIM B1699,获得重组菌后进行发酵实验,发酵液中果胶裂解酶酶活达到4.2 U/mL,与原始菌株相比产酶水平提高了60%。
     对地衣芽孢杆菌14580基因组序列分析显示基因组中有两个基因amyX和yvdF,其编码的蛋白均具有典型的普鲁兰酶保守区,而有关其基因功能的研究均未见实验研究报道。以地衣芽孢杆菌CICIM B1699染色体DNA为模板通过PCR方法扩增获得amyX和yvdF编码区,分别构建了表达载体pHY-P43-amyX和pHY-P43-yvdF。含重组质粒pHY-P43-amyX的重组枯草芽孢杆菌1A717细胞内酶活有明显提高,但细胞外没有检测到明显酶活,该基因可能编码胞内普鲁兰酶。重组枯草芽孢杆菌1A717 (pHY-P43-yvdF)表达出有活性的胞外普鲁兰酶,发酵液中酶活力达到4.6 U/mL,对其重组酶水解性质分析显示该酶可能为I型普鲁兰水解酶。重组酶酶学性质分析显示该两种重组酶的最适反应温度都为45℃,最适pH为6.5,其中重组酶AmyX在30-80℃热稳定性较好,而重组酶YvdF在55℃以上时迅速失活。重组酶反应不需要金属离子的参与,但是很多离子如Mg2+、Mn2+、Li+、Na+对酶活性有不同程度的促进作用;Zn2+、Cu2+、Co2+、EDTA、SDS对该酶有不同程度的抑制作用。将重组质粒pHY-P43-yvdF导入地衣芽孢杆菌CICIM B1699,测得重组菌的发酵上清液酶活力约为6.8 U/mL,较原始对照菌株B. licheniformis CICIM B1699酶活力水平高出2倍。
B. licheniformis was thought an industrial organism which has such good characters as anti-heat, nonpathogenic, abundant enzyme system. The genome sequence of B. licheniformis was published in 2004, which provided an important material to the development of its potential applications. In this paper, cloning and expression of the gene pelB, amyX and yvdF in different hosts were investigated and ecombinant enzymes were characterized, respectively.
     A complete structure gene pelB which probably encoded pectinase was cloned from B. licheniformis CICIM B1699 by polymerase chain reaction. The recombinant plasmids pLa-PQ-pelB and pHY-PQ-pelB were constructed with pelB under the control of PQ promoter. The pectinase was successfully expressed in Escherichia coli JM109 via the mediation of plasmid pLa-PQ-pelB. The optimal pH and temperature of recombinant pectinase were pH 10.5 and 45℃. The activity of enzyme was enhanced by Ca2+ and strongly inhibited by ions of Mg2+, Zn2+ and Cu2+. Under the different concentration of Ca2+, the optimum concentration was 6 mmol/L. The products from polygalacturonic acid degraded by enzyme were analyzed by electrospray ionization mass spectrometry (ESI-MS). Unsaturated bigalacturonic acid and unsaturated trigalacturonic acid were found. B. licheniformis CICIM B1699 carrying pHY-PQ-pelB produced 4.2 U/mL pectinase, which was about 60% higher than that of parent strain.
     Analysis of the complete genome sequence of B. licheniformis 14580 revealed that there were two genes amyX and yvdF, which probably encoded pullulanase. The recombinant plasmids of pHY-P43-amyX and pHY-P43-yvdF were constructed and expressed in Bacillus subtilis 1A717. The AmyX as intracellular enzyme were detected and the YvdF showed the enzyme activity of 4.6 U/mL in B. subtilis 1A717. The hydrolytic characters of YvdF were observed that the recombinant belonged to type I pullulan hydrolases. The enzymatic properties of the recombinant enzymes were analyzed systemically in the study. Pullulan hydrolysis activity was optimal at pH 6.5 and 45℃. Metal ions were needless in the enzymatic reaction, however, the pullulanase activity was improved more or less by the addition of some ions such as Mg2+、Mn2+、Li+ and Na+, and was inhibited by the addition of Zn2+、Cu2+、Co2+、EDTA and SDS. The recombinant B. licheniformis CICIM B1699 with pHY-P43-yvdF produced 6.8 U/mL, which was 2-fold higher than that of the control strain.
引文
1.唐娟,张毅,李雷雷.地衣芽孢杆菌应用研究进展[J].湖北农业科学, 2008, 47(3): 351-354.
    2.张江,张立新.地衣芽孢杆菌植酸酶基因的克隆及其在大肠杆菌中的表达[J].湖北大学学报, 2004, 26(4): 337-340.
    3.牛丹丹,徐敏,马骏双等.地衣芽孢杆菌α-淀粉酶基因的克隆和及其启动子功能鉴定[J].微生物学报, 2006, 46(4): 576-580.
    4.唐雪明,邵蔚蓝,沈微等.地衣芽孢杆菌6816碱性蛋白酶基因在大肠杆菌中的克隆和表达[J].生物技术, 2001, 11(4): 3-6.
    5.刘永生,冯家勋,段承杰等.地衣芽孢杆菌GXN151的纤维素酶基因cell2A的序列分析及其在大肠杆菌中的表达[J].广西农业生物科学, 2003, 22(3): 194-199.
    6.王正祥,马骏双,牛丹丹等.地衣芽孢杆菌β-甘露聚糖酶的基因克隆和鉴定[J].应用与环境生物学报, 2007, 13(2): 253-256.
    7. Michael W R, Preethi R, Beth A N, et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species[J]. Genome Biology, 2004, 5(10): R77.
    8. Kashyap D R, Vohra P K, Chopra S, et al. Applications of pectinases in the commercial sector: a review[J]. Bioresource Technology, 2001, 77: 215-227.
    9.王鸿飞,李和生,庄荣玉.用果胶酶澄清桑堪果汁的工艺研究[J].蚕业科学, 2002, 28(2): 138-140.
    10.许毅,周岩民,王恬等.果胶酶在饲料中的应用[J].中国饲料, 2004, 1: 12-14.
    11. Bruhlmann F, Leupin M, Erismann K H, et al. Enzymatic degumming of ramie bast fibers. Journal of Biothechnology, 2000, 76: 43-50.
    12. Reid I,Rieard M. Peetinase in papermaking: solving retention problems in mechanical pulps bleached with hydrogen peroxide[J]. Enzyme and Technology, 2000, 26: 115-123.
    13. Kobayashi T, Sawada K, Sumitomo N, et al. Bifunctional pectinolytic enzyme with separate pectate lyase and pectin methylesterase domains from an alkaliphilic Bacillus[J]. World Journal of Microbiology and Biotechnology, 2003, 19(3): 269-277.
    14. John J, Vladimir E S, Nicole H C P, et al. The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi[J]. Journal of Biological Chemistry, 2004, 279(10): 9139-9145.
    15. Berensmeier S, Singh S A, Meens J, et al. Cloning of the pelA gene from Bacillus licheniformis 14A and biochemical characterization of recombinant, thermostable,high-alkaline pectate lyase[J]. Environmental Biotechnology, 2004, 64: 560-567.
    16.张宁欣,赵学慧.果胶酶高产菌株选育[J].微生物杂志, 1996, 16(3): 1-8.
    17. Pickergill R, Jenkins J, Harris G, et al. The structure of Bacillus subtilis pectate lyase in complex with calcium[J]. Nature Structural Biology, 1994, 1: 717-723.
    18. Harmsen J A, Kusters S M. Cloning and expression of a second Aspergillus niger pectin lyase gene (pelA): indications of a pectin lyase gene family in A. niger[J]. Current Genet, 1990, 18(2): 161-166.
    19. Sang W C, Seungho L, Whanchul S. The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex[J]. Journal of Molecular Biology, 2001, 311(4): 863-878.
    20. Zhao Q X, Yuan S, Zhang Y L, et al. Expression, purification and characterization of pectate lyase A from Aspergillus nidulans in Escherichia coli[J]. World Journal of Microbiology and Biotechnology, 2007, 23: 1057-1064.
    21. Whitehead M P, Shieh M T, Cleveland T E, et al. Isolation and characterization of polygalacturonase genes (pecA and pecB) from Aspergillus flavus[J]. Applied and Environment Microbiology, 1995, 61(9): 3316-3322.
    22. Zhang Y L, Zhao Q X, Zhu H, et al. Expression of endopolygalacturonase A of Aspergillus oryzae in Escherichia coli[J]. Chinese Journal of Biotechnology, 2007, 23(1): 101-105.
    23. Jeffrey W C, Robert B, Thomas E C, et al. Cloning and characterization of a novel polygalacturonase-encoding gene from Aspergillus parasiticus[J]. Gene, 1995, 153(1): 129-133.
    24. Zhai C, Cao J W, Wang Y L. Cloning and expression of a pectate lyase gene from Bacillus alcalophillus NTT33[J]. Enzyme and Microbial Technology, 2003, 33(2-3): 173-178.
    25. Sridevi A S, Hans P, Hans D. Exopolygalacturonate lyase from a thermophilic Bacillus sp.[J]. Enzyme and Microbial Technology, 1999, 25(3-5): 420-425.
    26. Schnitzhofera W, Vr?anskáM, et al. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK[J]. Journal of Biotechnology, 2006, 121: 390-401.
    27. Jenny S, Yangdou W, Paul H G. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f. sp. malvae and the relationship between their expression in culture and during necrotrophic infection[J]. Gene, 2000, 243(1-2): 139-150.
    28. Liu Y, Chatterjee A, Chatterjee A K. Nucleotide sequence and expression of a novel pectate lyase gene (pel-3) and a closely linked endopolygalacturonase gene (peh-1) of Erwinia carotovora subsp. carotovora 71[J]. Applied and Environmental Microbiology, 1994,60(7): 2545-2552.
    29. Lei S P, Lin H C, Wang S S, et al. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase[J]. Journal of Bacteriology, 1987, 169(9): 4379-4383.
    30. Tamaki S J, Gold S, Robeson M, et al. Structure and organization of the pel genes from Erwinia chrysanthemi EC16[J]. Journal of Bacteriology, 1988, 170(8): 3468-3478.
    31. Guo W J, Candelas L G, Kolattukudy P E. Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of the gene product expressed in Pichia pastoris[J]. Journal of Bacteriology, 1995, 177(24): 7070-7077.
    32. Ribon A O B, Queiroz M V, Coelho J L C, et al. Differential expression of polygalacturonase-encoding genes from Penicillium griseoroseum in different carbon sources[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 29(3): 145-148.
    33. Kusters S M, Flipphi M, Graaff L, et al. Characterization of the Aspergillus niger pelB gene: structure and regulation of expression[J]. Molecular Gen Genet, 1992, 234(1): 113-120.
    34. Gainvors A, Nedjaoum N, Gognies S, et al. Purification and characterization of acidic endo-polygalacturonase encoded by the PGL1-1 gene from Saccharomyces cerevisiae[J]. FEMS Microbiology Letters, 2000, 183: 131-135.
    35. Crotti L B, Terenzi H F, Polizeli M L T M. Characterization of galactose induced extracellular and intracellular pectolytic activities from the exo-1 mutant strain of Neurospora crassa[J]. Industrial Microbiology and Biotechnology, 1998, 20: 238-243.
    36.张树政.酶制剂工业[M].北京:科学出版社, 1989.
    37. Sambrook J, Russell D W. Molecular cloning: a laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 2001.
    38. Abdullah M, Catley B J, Lee E Y C, et al. The mechanism of carbohydrase action in pullulanase, an enzyme specific for the hydrolysis ofα-1-6 bonds in amylaceous ogligo-and polysaccharides[J]. Cereal Chemistry, 1966, 43: 111-116.
    39. Wallenfels K, Keilich G, Bechtler G, et al. Pullulan, structure elucidation by physical, chemical, and enzymic methods[J]. Biochemische Zeitschrift, 1965, 341: 433-450.
    40. Doman P M. Pullulan degrading enzymes of bacterial origin[J]. Critical Reviews in Microbiology, 2004, 30: 107-109.
    41.金羽中.普鲁兰酶的研究开发[D].江苏:无锡轻工业大学, 1998.
    42. Hans B, Kurt W. Untersuchungen an pullulan II spezifischer abbau durch ein bakterielles enzyme[J]. Biochemische Zeitschrift, 1961, 334: 79-95.
    43. Shuichi K, Naokazu N, Shin I T, et al. Purification and properties of Bacillus acidopullulyticus pullulanase[J]. Agricultural and Biological Chemistry, 1988, 52(9):2293-2298.
    44.李红,孙红军.国内外普鲁兰酶市场分析及预测报告(2003/2004年度)[R].北京:理德斯普企业管理咨询有限公司, 2004.
    45.程池.普鲁兰酶Promozyme 200L及其生产菌种[J].食品与发酵工业, 1992, 6: 72-76.
    46. MatusehekM, Burchhardt G, Sahm K, et al. Pullulanase of themroanaerobacterium themrosulufrigenes EMI (clostridium themrosuloforgenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attaehment to the cell surafee[J]. Journal of Bacteriology, 1994, 176(11): 3295-3302.
    47. Kim C H, Choi H I, Lee D S. Pullulanases of alkaline and broad pH range from a newly isolated alkalophilic Bacillus sp. S-1 and Micrococcus sp. Y-1[J]. Industrial Microbiology, 1993, 12: 48-57.
    48. Adams K R, Priest F G. Extracellular pullulanase synthesis in Bacillus macerans[J]. FEMS Microbiological Letters. 1997, 1: 269-273.
    49. Kusano S, Nagahata N, Takahashi S I, et al. Purification and prpoperties of Bacillus acidopullulyticus pullulanase[J]. Agricultural Biology and Chemistry, 1988, 52: 2293-2298.
    50. Norman B E. A novel Bacillus pullulanase-its properties and application in the glucose syrup industry[J]. Denpun Kagaku, 1983, 30: 200-221.
    51. Gomes. I, Gomes. J, Steiner. W. Highly thermostable amylase and pullulanase of the extreme thermophilic bacterium Rhodothermus marinus: production and partial characterization[J]. Bioresource Technology, 2003, 207-214.
    52. Deweer P, Amory A. Pullulanase producing microorganisms[P]. United States Patent, 5817498, 1998-10-06.
    53. Ipsita R, Munishwar N G . Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads[J]. Enzyme and Microbial Technology, 2004, 34: 26-32.
    54. Duffner F. Cloning, sequence and expression of thermostable amylopullulanase of Desulfurococcus mucosus and its use in the production of sweeteners and ethanol from starch[P]. United States Patent, 6043074, 2000-03-28.
    55. Eijiro T. Thermoduric and acidurmic pullulanase enzyme and method for its production[P]. United States Patent, 5055403. 1991-10-08.
    56. Svendsen A. Starch debranching enzymes[P]. United States Patent, 435210, 2003-04-26.
    57. Kuriki T, Okada S, Imanaka T. New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis[J]. Journal of Bacteriology, 1988, 170(4): 1554-1559.
    58. Costanzo B, Martin A, Fiona B, et al. Cloning, sequencing, and characterization of a heatand alkali-stable type I pullulanase from Anaerobranca gottschalkii[J]. Applied and Environmental Microbiology, 2004, 70(6): 3407-3416.
    59. Nobuhiro S, Nobuyuki N, Hiromi N, et al. Cloning and expression of the thermostable pullulanase gene from Thermus sp. strain AMD-33 in Escherichia coli[J]. FEMS Microbiology Letters, 2006, 49(3): 385-388.
    60. Fiona D, Costanzo B, Jens T. A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis[J]. Journal of Bacteriology, 2000, 182(22): 6331-6338.
    61. Bertoldo C, Duffner F, Jorgensen P L, et al. Pullulanase type I from Fervidobacterium pennavorans Ven5: cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme[J]. Applied and Environmental Microbiology, 1999, 65(5): 2084-2091.
    62. Kuriki T, Park J H, Imanaka T. Characteristics of thermostable pullulanase from Bacillus stearothermophilus and the nucleotide sequence of the gene[J]. Journal of fermentation and bioengineering, 1990, 69(4): 204-210.
    63. Sashihara N, Nakamura N, Horikoshi K. Subcloning and nucleotide sequencing of the pul gene of Thermus sp. AMD-33[J]. St?rke, 1993, 45(4): 144-150.
    64. Coleman R D, Yang S S, Alister M P. Cloning of the debranching-enzyme gene from Thermoanaerobium brockii into Escherichia coli and Bacillus subtilis[J]. Journal of Bacteriology, 1987, 169(9): 4302-4307.
    65. Katsutoshi A, Katsuhisa S, Kazuaki I, et al. Purification and characterization of an alkaline amylopullulanase with bothα-1,4 andα-1,6 hydrolytic activity from alkalophilic Bacillus sp. KSM-1378[J] Biochimica et Biophysica Acta (BBA)-General Subjects, 1995, 1243(13): 315-324.
    66.奥斯伯J,布伦特R (王海林译).精编分子生物学实验指南[M].北京:科学出版社, 1999.
    67. Lewis P, Marston A L. GFP vectors for controlled expression and dual labeling of protein fusions in Bacillus subtilis[J]. Gene, 1999, 227: 101-109.
    68.徐敏.地衣芽孢杆菌0204高温α-淀粉酶编码基因的克隆序列分析和初步表达[D].无锡:江南大学, 2004.
    69. Harwood C R, Cutting S M. Molecular Biological Methods for Bacillus[M]. Chichester, New York: Wiley, 1990, 144-145.
    70.丁凤平,张秀之.碱性果胶酶PATE及其测定方法[J].中国生化药物杂志, 1993, 7(64): 42-43.
    71. Bibel M, Brett C, Gosslar U, et al. Isolation and analysis of amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritime[J]. FEMS Microbiology Letters, 1998, 158: 9-15.
    72.王玠.地衣芽孢杆菌DSM13分泌蛋白信号肽的研究[D].无锡:江南大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700