高山红景天红景天甙生物合成相关基因的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高山红景天是一种新兴适应原性珍稀药用植物。世界范围内对其特征性功能成分红景天甙和甙元酪醇的生物合成途径的研究尚属空白。本文采用cDNA末端快速克隆技术(RACE),以高山红景天为试材,分离得到与红景天甙和酪醇生物合成相关的两个基因,对其基因特性、基因功能进行了鉴定和分析。
    植物次生代谢中产生的小分子糖甙类化合物是由尿苷二磷酸葡萄糖基转移酶(UDP-glucosyltransferase,UDPGT,UGTs)催化合成的。本文首次从高山红景天中克隆了UDP-葡萄糖基转移酶全长cDNA 序列,命名为UGT1。对UGT1 进行基因特性分析的基础上,构建了植物高效表达载体pBSUGT1 并利用农杆菌介导法转化回高山红景天,经过分子鉴定证明UGT1已经整合到高山红景天基因组DNA分子中并在转录水平大量表达。转UGT1 基因高山红景天愈伤组织红景天甙含量HPLC 测定结果表明,UGT1 的超表达使红景天甙含量大幅增加。
    酪醇在生物体内的合成目前只能够通过其分子结构和化学性质判断,苯丙烷类代谢途径中的苯丙氨酸解氨酶(PAL)为酪醇的合成提供了碳架结构最为相似的前体化合物来源。本文首次从高山红景天中分离了在植物次生代谢中起关键作用的苯丙氨酸解氨酶全长cDNA 序列,命名为PALcl1。对其基因特性、表达模式以及PALcl1 基因差异表达组织中的红景天甙含量进行了分析,结果表明,PALcl1 在不同组织和有诱导条件存在的情况下的转录水平与红景天甙含量变化呈正相关。综上,通过对红景天甙生物合成途径上游、下游相关关键基因的分离、鉴定、分析起始了对红景天甙生物合成代谢途径分子机制分析,为最终阐明红景天甙的生物合成代谢通路奠定了基础。
The genus Rhodiola L consists of nearly 90 species and nearly 70 species inChina. The Rhodiola sachalinensis is found in the northern parts of China, which isa cherish plant for medicinal materials. Salidroside and tyrosol are functionalcomponents identi?ed in a number of plants Rhodiola L. such as R. crenulata, R.fastigiata, R. kirilowii and R. saccharinensis. As one of the active components of thearctic root (Rhodiola sachalinensis), salidroside is suggested to function as anadaptogen, i.e. a biologically-active compound that is supposed to increaseresistance in humans to different stress-related disorders and a variety of ailments ordiseases. For example, salidroside has been reported to act as an anti-in?ammatory,anti-cancer, anti-viral, anti-aging, anti-oxygen deficiency, anti-fatigue, anti-radiation,double-regulation and other new action mechanism compounds. But there are threepuzzles which should be solved in the process of research and utilization of theseplants. Characteristics of reproductive ecology produce endangered stages, thesystem research of the plant is poor and the over utilization lead to the destroy ofecology environment.
    Uridine diphosphate (UDP) glycosyltransferases (UGTs) mediate the transferof glycosyl residues from activated nucleotide sugars to acceptor molecules(aglycones), thus regulating properties of the acceptors such as their bioactivity,solubility and transport within the cell and throughout the organism. AUDP-glucosyltransferase cDNA gene was successfully isolated from Rhodiolasachalinensis and named as UGT1 with 1598 bp (GenBank accessionnumber:AY547304), which encodes a predicted polypeptide of 480 amino acids with53.87 kDa and pI 5.40 and contains only one possible transmembrane domains atamino-terminus. Phylogenetic tree analysis of the UGTs showed that it sharesgreater similarity with the other plant UGTs (24.23-54.24%). Carboxy-terminus ofdeduced amino acid sequence includes a part of the glucosyltransferase signaturesequence and has 44%-72% identity to other plant UDP-glucosyltransfereses withhighly homologous similarity to UDP-glucose: salicylic acid-inducibleglucosyltransferases. Amino-terminal consensus sequence showed 62% to 68%identity with the known salicylate-induced and phenylpropanoid: glucosyltransferasehomologs. Thus, it was indicated that UGT1 might function as aUDP-glucosyltransferase. Southern blot analysis with a UGT1 specific fragment asprobe showed that one copy of UGT1 gene in Rhodiola sachalinensis. The RNA gelblot analysis showed a different UGT1 expression patterns among the differentorgans at mRNA level with abundant in callus but none in leaves. The determinationof salidroside in callus and leaves of Rhodiola sachalinensis by HPLC showed
引文
[1]中国科学院中国植物志编委会. 中国植物志. 科学出版社, 1984,(34): 161~199
    [2]明海泉, 夏光成, 张瑞钧等. 红景天研究进展. 中草药, 1988, 19(5): 37~42
    [3]贾国夫, 红景天的研究概况及展望. 四川草原, 1998, 3: 38~39
    [4]李建新, 刘松艳, 李绪文等. 高山红景天茎叶的三萜成分研究. 东北师范大学学报, 1997,(4) :53~55
    [5]陈纪军, 陈金素, 陈泗英等. 德钦红景天的化学成分. 云南植物研究, 1999, 21(4): 525~530
    [6]王曙, 王锋鹏. 大花红景天化学成分的研究. 药学学报, 1992, 27(2): 117~120
    [7]张所明, 王景山, 张惠迪等. 藏药大株红景天化学成分研究. 中国中药杂志, 1991, 16(8):483
    [8]张坚, 康胜利, 王晋等. 狭叶红景天氨基酸和微量元素的分析. 青海医药杂志, 1995,25(8): 55
    [9]康胜利, 张坚, 王晋等. 狭叶红景天化学成分的研究. 中国中药杂志, 1992, 17(2): 100~101
    [10]彭江南, 马成禹, 葛永潮. 狭叶红景天的化学成分. 中国中药杂志, 1994, 19(11): 676~677
    [11]邱林刚, 陈金瑞, 蒋思平等. 喜马红景天的化学成分. 云南植物研究, 1989, 11(2): 219~222
    [12]马忠武, 何关福, 吴莉莉等. 帕里红景天的化学成分研究. 植物学报, 1995, 37(7): 574~580
    [13]娄红祥. 菱叶红景天化学成分研究. 沈阳药学院学报, 1990, 7(2): 145
    [14]邱林刚, 王叶富, 陈金瑞等. 圣地红景天的成分研究. 天然产物研究与开发, 1991, 31:6~10
    [15]彭江南, 葛永潮, 李晓晖. 长鞭红景天的化学成分的研究. 药学学报, 1996, 31(10):798~800
    [16]彭江南, 马成禹, 葛永潮. 大花红景天的化学成分. 中草药, 1995, 26(4): 177~179
    [17]安丰. 四川红景天属植物的生药学研究. 中国中药杂志, 1993, 18(8): 456~459
    [18]王西芳. 红景天属植物的生药学研究. 陕西中医药学院学报, 1994, 17(2): 26~28
    [19]钱彦丛. 红景天研究新进展. 中药材, 1995, 18(10): 499~501
    [20]胡挺松, 陆一鸣, 马兰青等. 红景天属4种植物RAPD分析与分类鉴定. 中草药, 2004, 35(11): 1286~1289
    [21]黄增艳, 范书铎. 库页红景天对鼠抗疲劳作用机理的实验研究. 中国医科大学学报,1998, 27(2): 123~126
    [22]黄增艳, 范书铎. 库页红景天抗疲劳作用的实验研究. 中国医科大学学报, 1998, 27(1):20~24
    [23]陈亚东, 曹秀兰, 田长有等. 高山红景天对小鼠耐缺氧、抗疲劳及耐低温作用的影响.中国中医药科技, 2002, 9(3): 157~158
    [24]曹晓哲, 邢传平, 杨生岳等. 缺氧和营养不良对大鼠膈肌超微结构的影响及红景天保护作用的电镜研究. 高原医学杂志, 1998, 8(2): 28~29
    [25]张洪志, 王春泉, 孙淑平等. 红景天等药物对提高运动员耐力的研究. 航天医学与医学工程, 1996, 9(3): 219~220
    [26]尹桂山, 邹静琴, 王桂香. 红景天根乙醇浸液的营养延缓衰老作用研究. 营养学报,1992, 14(1): 98~100
    [27]崔旭. 红景天复方制剂对家蝇寿命及脑组织自由基代谢的影响. 白求恩医科大学学报,1995, 21(4): 347~350
    [28]金永日, 睢大员, 于晓风等. 红景天茎叶提取物的抗衰老作用研究. 中国老年学杂志,2001, 21(5): 228~230
    [29]姜义, 宵雪媛, 关桂梅. 红景天甙对x射线照射小鼠的预防作用. 中华放射医学防护杂志, 1995, 15(3): 214~216
    [30]明海泉. 红景天甙的合成及药理作用. 医学通报, 1986, (6): 373~375
    [31]尹旭辉, 杨成君, 姜在福等. 红景天对寒冷适应过程中正常人体免疫功能的调节作用.解放军预防医学杂志, 1996, 14(6): 405~409
    [32]房家智, 张晓艳, 陆瑛等. 红景天甙酮对大鼠离体工作心脏心功能的影响. 白求恩医科大学学报, 1996, 22(1): 4~6
    [33]王晓松. 红景天甙、酮对大鼠心血管功能的影响. 白求恩医科大学学报, 1996, 22(1): 7~9
    [34]姜平, 张杰, 刘鹤强等. 狭叶红景天治疗高原红细胞增多症的探讨: 附17例病例近期疗效分析. 高原医学杂志, 1990, 123(2): 50~52
    [35]孙非, 王秀清, 许守民等. 高山红景天多糖抗柯萨奇B5病毒作用的实验研究. 中草药,1993, 24(10): 532~534
    [36]钱锦康. 大花红景天的药理作用和对中枢介质的影响. 高原医学杂志, 1988, 107(2): 9
    [37]黄德昌, 岳安云. 高原人参---红景天生态气候条件浅析. 气象, 1994, 20(3): 241
    [38]朱建雯, 谭敦炎, 陈敬峰. 高山红景天种群分布格局的研究. 干旱区研究, 1999, 16(2):16~191
    [39]王强, 阮晓, 方兰等. 资源植物红景天研究综述.新疆农业大学学报, 2002, 25(4): 57~62
    [40]祖元刚, 唐艳. 高山红景天有性生殖过程及濒危原因的生态学分析. 植物研究, 1998,18(3): 336~3401
    [41]刘世强. 高山红景天愈伤组织的诱导和植株再生的研究. 辽宁农业科学, 1991, 5: 17~22
    [42]罗明, 谭敦炎, 张玉霞等. 高山红景天的组织培养. 新疆农业科学, 1996, 3: 123~125
    [43]马兰青, 胡挺松, 郭万里等. 大花红景天的组织培养与植株再生. 中国植物学会70周年年会论文集, 2003, 495~496
    [44]胡挺松, 马兰青, 郭万里等. 长鞭红景天的组织培养和快速繁殖. 植物生理学通讯,2004, 40(3): 333
    [45]许建峰, 赵岩, 韩爱明等. 高山红景天愈伤组织的诱导及培养研究. 应用与环境生物学报, 1995, 1(1): 19~25
    [46]姜明兰, 钟文田, 韩洪等. 组织培养生产高山红景天有效成分的研究Ⅰ. 高山红景天愈伤组织的诱导与培养. 沈阳农业大学学报, 1994 ,25(4) :355~359
    [47]秦佳梅, 张弓, 张卫东等. 红景天叶片诱导再生植株. 中国野生植物资源, 1999, 18(1):45
    [48]许建峰, 韩爱明, 冯朴荪等. 高山红景天愈伤颗粒组织悬浮培养动力学及工艺的研究.生物工程学报, 1996, 12(4): 460~465
    [49]许建峰, 刘传斌, 方晓丹等. 高山红景天细胞悬浮培养中pH 值对红景天甙胞外释放及细胞活性的影响. 植物学报, 1997, 39(11): 1022~1029
    [50]韩爱明, 许建峰, 方晓丹等. 影响高山红景天细胞悬浮培养中细胞生长和红景天甙积累的几个因素. 植物生理学通讯, 1997, 33(1): 33~36
    [51]许建峰, 韩爱明, 冯朴荪等. 高山红景天细胞悬浮培养生长和营养成分摄取动力学及其计量关系. 应用与环境生物学报, 1997, 3(2): 100~105
    [52]谢健, 许建峰, 冯朴荪等. 高山红景天致密愈伤组织颗粒内氧传递特性与细胞活性的研究. 生物工程学报, 1998, 14(2): 158~163
    [53]许建峰, 谢健, 冯朴荪等. 气升式反应器培养高山红景天愈伤组织颗粒的动力学与氧传递特性研究. 化学反应工程与工艺, 1998, 14(3): 305~312
    [54]许建峰, 谢健, 李宁等. 高山红景天致密愈伤组织颗粒悬浮培养结构化动力学模型. 大连理工大学学报, 1999, 39(1): 43~48
    [55]许建峰, 苏志国, 冯朴荪. 利用高山红景天培养细胞生物转化外源酪醇生产红景天甙的研究. 植物学报, 1998, 40(12): 1129~1135
    [56]李伟, 黄勤妮. 西藏红景天组织培养及红景天甙相关酶的研究. 中国植物学会七十周年年会论文摘要汇编, 高等教育出版社, 2003: 333~334
    [57]卢存福, 简令成, 匡廷云. 低温诱导唐古特红景天细胞分泌抗冻蛋白.生物化学与生物物理进展, 2000, 27(5): 555-558
    [58]董妍玲, 潘学武. 植物次生代谢产物简介. 生物学通报, 2002, 37(11): 17~19
    [59]何水林, 郑金贵, 黎红志. 种植制度中作物他感作用及其应用. 中国集约型农作制度可持续发展. 江西科学技术出版社, 2000: 219~224
    [60]何水林. 植保素代谢与植物防御反应. 广东科技出版社, 2002: 1~25
    [61]石碧, 狄莹. 植物多酚. 科学出版社, 1999. 171~180; 285~290
    [62]Crock J, Wildung M, Croteau R. Isolation and bacterial expression of a sesquiterpenesynthase cDNA clone from peppermint(Menthax piperita L.) that produces the aphid alarmpheromone ( E)-β-farnesene. Proc Natl Acad Sci USA, 1997, 94(24): 12833~12838
    [63]Dicke M. Evolution of induced indirect defence of plants. In: Tollrian R, Harvell CD. TheEcology and Evolution of Inducible Defenses. Princeton: Princeton University Press , 1999.62~88
    [64]Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emission innature. Science, 2001, 291: 2141~2144
    [65]Turlings TC, Tumlinson J H. Systemic release of chemical signals by herbivore injured corn.Proc Natl Acad Sci USA, 1992, 89: 8399~8402
    [66]De Moraes CM ,Mescher MC ,Tumlinson J H. Caterpillar-induced plant nocturnal plantvolatiles repel conspecific females. Nature, 2001, 410: 577~580
    [67]Bruin J, Dicke M, Sabelis MW. Plants are better protected against spirdermites afterexposure to volatiles from infested conspecifics. Experentia, 1992, 48: 525~529
    [68]Arimura GI. Herbivory-induced volatiles elicit defense gene in lima bean leaves. Nature,2000, 406: 512~515
    [69]Day TA, Howells BW, Rice WJ. UV absorption and epidermal transmittance spectra infolliage. Physiol Plant, 1994, 92: 207~218
    [70]Gitz DC, Liu L, McClare JW. Phenolic metabolism, growth, and UV-B tolerance in PALinhibited red cabbage seedlings. Phytochem, 1998, 49: 377~386
    [71]Isabecle SBJ, Shyam KD, Marcel AKL. UV radiation impacts light-mediated turnover of the PSⅡreaction center heterodimer in Arabidopsis mutant altered in phenlic metabolism. Plant Physiol, 2000, 124: 1275~1283
    [72]Ikeda I, Masto Y, Sasaki E, et, al. Tea catechins decrease micellar solubility and intestinal sbsorption of cholestezol in rats. Biochem Biophys Acta, 1992, 1127: 141~147
    [73]Hu XF, Shen SG, Piao ZR, et, al. Review on antioxidative mechanism of tea ployphenols. J Tea Sci, 1999, 19: 41~48
    [74]Dixon RA, Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7: 1085~1097
    [75]Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. A nnu Rev Plant Physiol Plant Mol Biol, 1995, 46: 521~547
    [76]Hartmut K. Lichtenthaler. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 47~65
    [77]Facchini PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. A nnu Rev Plant Physiol Plant Mol Biol, 2001, 52: 29~66
    [78]Kosuge T, Gilchrist DG. Aromatic amino acid biosynthesis and its regulation. Biochem Plants, 1980, 5: 507~531
    [79]Winkel-Shirtey B. Evdence for enzyme complexes in the phenylpropanoid and flavonoid pathway. Physiol Plant, 1999, 107: 142~149
    [80]McMullen MD, Byrne PF, Snook ME, et, al. Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci USA, 1998, 95: 1996~2000
    [81]Rasmussen S, Dixon RA. Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell, 1999, 11: 1537~1551
    [82]Burbulis IE ,Winkel-Shireley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthestic pathway. Proc Natl Acad Sci USA, 1999, 96: 12929~12934
    [83]He XZ , Dixon RA. Genetic manipulation of isoflvone 7-O-methyl-transferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell, 2001, 12: 1689~1702
    [84]Hrazdina G. Compartmentation in aromatic metabolism. In: Ibrahim RK. Recent Advances in Phytochemistry. New York: Plenum Press, 1992: 1~33
    [85]Winkel-Shirley B. Flavonoids biosynthesis: a colorful model for genetics, biochemistry. cell biology and biotechnology. Plant Physiol, 2001 ,126: 485~493
    [86]Dixon RA, Chen F, Guo D, Parvathl K. The biosynthesis of mono-lignois: a“metabolic grid”, or independent pathways to guaiacyl and syringyl units. Phytochemistry , 2001, 57: 1069~1084
    [87]Madyastha KM, Ridgway J E, Dwyer J G. Subcellular localization of acytochrome P-450-dependent monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol, 1999, 72: 303~313
    [88]Narita JO, Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during repening. Plant Cell, 1989, 1: 181~190
    [89]Choi D, Ward BL, Bostock RM. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme a reductase genes in reponse to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell, 1992, 4: 1333~1344
    [90]Dixon R. Natural products and plant disease resistance. Nature, 2001, 411(14): 843~847
    [91]Back KW. Structure-function comparsions of sesquiterpene cyclases isolated from Nicotiana tabacum and Hyoscyamus muticus. PhD dissertation of University of Kentucky, 1995. 1~10
    [92]Hashimoto T, Nakajima K, Ongena G,et, al. Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus niger. Plant Physiol, 1992, 100: 836~845
    [93]Portsteffen A, Drager B, Nahrstedt A. Two tropinone reducing enzymes from Datura stramonium transformed root cultures. Phytochemistry, 1992, 31: 1135~1138
    [94]Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature, 1990, 343: 425~430
    [95]Gondet L, Weber T, Maillot-Vernier P, et, al. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun, 1992, 186: 888~893
    [96]He SL, Lin WX, Chen RK, et, al. The induction of UV on sesquiterpene cyclase and squalene synthase in Capsicum annuum. J A gri Biotechnol, 1999, 7: 377~381
    [97]He SL, Zheng J G, Chen R K. Sesquite rpene cyclase gene expression in leaves of Capsicum annuum by some abiotic elicitors. Chin J Appl Environ Biol, 2002, 8: 61~65
    [98]Vogeli U, Chappell J. Induction of sesquiterpene cyclase and suppression of squalene synthase activities in plant cell cultures treated with fungal elicitor. Plant Physiol, 1988, 88: 1291~1296
    [99]Keller H, Czernic P, Ponchet M, et, al. Sesquiterpene cyclase is not a determining factor for elicitor and pathogen-induced capsidiol accumulation in tobacco. Planta, 1998, 205: 467~476
    [100]He Shuilin, Zheng Jingui, Wang Xiaofeng, et,al. Plant Secondary Metabolism: Function, Regulation and Gene Engineering. Chin J Appl Environ Biol, 2002, 8(5): 558~563
    [101]Facchini PJ, Huber Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54 (2): 121~38
    [102]Goddijn OJM, Pennings EJ, Schilperoort RA, et, al. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgene Res, 1995, 4: 315~323
    [103]Canel C, Lopes-Cardoso M I, Whitmer S,et, al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus rosues. Planta, 1998, 205: 414~419
    [104]Hain R, Bleseler B, Kindl H, et, al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15: 325~335
    [105]Hain R, Reif HJ, Krause E, et, al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 1993, 361: 153~156
    [106]Tian WZ, Ding L, Cao SY, et, al. Rice transformation with a phytoalexin gene and bioassay of the transgenic plants. Bot Sci Acta, 1998, 40(9): 803~808
    [107]梁辉, 郑近, 段霞瑜等. 用基因枪法获得抗白粉病转芪合酶基因小麦. 科学通报, 1999, 44(24): 2244~2248
    [108]Tattersall DB, Bak S, Jones PR, et, al. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science , 2001, 12: 595~601
    [109]Yu O, Jung W, Shi J, et, al. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol, 2000, 124: 781~793
    [110]Ye X, Al-Babili S, Kloti A, et, al. Engineering proitamin A (β-carotene ) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287 :303~305
    [111]Baucher M, Monties B, Van Montagu M, et, al. Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci, 1998, 17: 125~197
    [112]Atanassova R, Favet N, Martz F, et, al. Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J, 1995, 8: 465~477
    [113]Leslievander Fits, Johan Memelink. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science , 2000 , 289: 295~297
    [114]Alan ML, Walbot V, Davis RW. Arabidopsis and Nicotiana anthocyanin production activated by maize regulator R and C1. Science, 1992 , 258: 1773~1175
    [115]Joe Ross, Yi Li, Eng-Kiat Lim, et al. Higher plant glycosyltransferases. Genome Biology 2001, 2(2): reviews 3004.1~3004.6
    [116]王克夷. 糖基转移酶研究进展. 生物化学与生物物理学进展, 1994, 21: 9~13
    [117]Ford CM, Boss PK, Hoj PB. Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 1998, 273: 9224~9233.
    [118]Ralston E J, English J J,Dooner H K. Sequence of three bronze alleles of maize and correlation with the genetic fine structure. Genetics, 1988, 119: 185~197
    [119]Matin C R, Prescott A, Mackay S, et, al. Control of anthocyanin biosynthesis flowers of Antirrhinum majus. Plant J, 1991.1: 37~49
    [120]Moehs C.P, Allen P V, Friedman M, et, al. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J, 11, 227~236.
    [121]Wise R P, Rohde W, Salamini F. Nucleotide sequence of the Bronze-1 homologous gene from Hordeum vulgare. Plant Mol Biol, 1990, 14: 277~279
    [122]Yamazaki M, Gong Z, Fukuchi-Mizutani M, et, al. Molecular cloning and biochemical characterzation of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin .The Journal of Biology Chemistry, 1999, 274: 7405~7411
    [123]Tanaka Y, Yonekura K, Fukuchi-Mizutani M, et, al. Molecular and characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol, 1996, 37: 711~716
    [124]Brugliera F, Holton T A, Stevenson T W, et al. Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J, 1994, 5: 81~92
    [125]Szerszen J B, K Szczyglowski, Bandurski S. A gene from Zea mays involved in conjugation of growth hormone indol-3-acetic acid. Science, 1994, 265: 1699~1701.
    [126]Lee, H.I, Raskin I. Purification, cloning, and expression of a pathogen inducible UDP-glucose: salicylic acid glucosyltransferase from tobacco. J Biol Chem, 1999, 274: 36637~36642
    [127]Kapitonov D, Yu R K. Conserved domains of glycosyltransferases. Glycobiology, 1999, 9: 961~978
    [128]Li Y, Baldauf S, Lim EK, et, al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem, 2001, 276: 4338~4343
    [129]Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism.Plant Cell, 1995, 7: 1085~1097
    [130]欧阳光察, 应初衍等. 植物苯丙氨酸解氨酶的研究. 水稻、小麦PAL 的纯化及基本特性. 植物生理学报, 1985, 11(2): 204~214
    [131]JonesD H. Review Article Number 3. Phenylalanine ammonia-lyase: Regulation of its induction and its role in plant development. Phytochemisty, 1984, 23 (7): 1349~1359
    [132]Nakashima J. Immunocytochemical localization of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesop hyll cells.Plant Cell Physiology, 1997, 38: 113~123
    [133]Mauch-Mani B, Slusarenko A J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 1996, 8: 203~212
    [134]Ohl S. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell, 1990, 2: 837~848
    [135]Cramer C L. Phenylalanine ammonia-lyase gene organization and st ructure. Plant Molecular Biology, 1989, 12: 367~383
    [136]Shinji Kawamata. Temporal and spatial pattern of expression of the pea phenylalanine ammonia-lyase gene promoter in t ransgenic tobacco. Plant Cell Physiology, 1997, 38 (7): 792~803
    [137]Lois R, Dietrich A, Hahlbrock K. A phenylalanine ammonia-lyase gene from Parsley: Structure, regulation and identification of elicitor and light responsive-cis-acting elements. EMBOJ, 1989, 8: 1641~1648
    [138]Whetten R W, Sederoff R R. Phenylalanine ammonia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clones. Plant Physiology, 1992, 98: 380~386
    [139]Ro D K, Douglas C J. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. Biol Chem, 2004, 279: 2600~2607
    [140]Kao Y Y, Harding S A, Tsai C J. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol, 2002 130: 796~807
    [141]Tanaka Y. Structure and characterization of a cDNA for phenylalanine ammonia-lyase from cutinjured roots of sweet potato. Plant Physiology, 1989, 90: 1403~1407
    [142]Minami E. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Europe Journal of Biochemistry, 1989, 185: 18~25
    [143]Nagai N, Kitauchi F, Shimosaka M, et al. Cloning and sequencing of a full-length cDNA coding from phenylalanine ammonia-lyase from tobacco cell culture. Plant Physiology, 1994, 104: 1091-1092
    [144]Lee SW. Truncated phenylalanine ammonia-lyase expression in tomato(Lycopersicon esculentum). Journal of Biology and Chemistry,1999, 267: 11824~11830
    [145]Cramerm C L, Edwards K. Phenylalanine ammonia-lyase gene organization and structure. Plant Molecular Biology, 1989 (12): 367
    [146]Diallinas G, Kanellis A K. A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Molecular Biology, 1994, 26 (1): 473~479
    [147]Goeri G. Stress responses in alfalfa(Medicago sativa L.).Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants. Plant Molecular Biology, 1991, 17(3): 415~429
    [148]Matsumoto S. Molecular cloning of phenylalanine ammonia-lyase cDNA and classifica (B-66 ion of varieties and cultivars of tea plants (Camellia sininsis) using the rice PAL cDNA probe. Theoretical and Applied Genetics, 1994, 89 (6): 671~675
    [149]Leyva A, Jarillo A, Salinas J, et al. Low temperature induces the accumulat ion of Phenylalanine ammonia-lyase and chalcone synthasem RNA of Arabidopsis thaliana in a light-dependent manner. Plant Physiology, 1995, 108: 39~46
    [150]Logemann E, Parniske M, Hahlbrock K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA, 1995, 92: 5905~5909
    [151]Kervinen T, Peltonen S, Teeri T H, et, al. Differential expression of phenylalanine ammonia-lyase genes in barley induced by fungal infection and elicitors. New Phytol, 1998, 139: 293~300
    [152]Mauch-Mani B, Slusarenko A J. Production of salicylic acid precursorsis amajor function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 1996, 8: 203~212
    [153]Lawtin M A. Elicitormodulation of pheylalanine in phaseolus vulgaris. Biochemistry and Biophysiology Acta, 1980, 633: 162~169
    [154]Susanne Reinold, Klaus Hahlbrock. Biphasic temporal and spatial induction patterns of defense-related mRNA and protein in fungus-infected parsley leaves. Plant Physiology, 1996, (112): 131~140
    [155]O’Donnell PJ, Truesdale MR, Calvert CM, et, al. A novel tomato gene that rapidly responds to wound-and pathogen-related signals. Plant J, 1998, 14: 137~142
    [156]马凌波, 张大兵, 沈明山等. 甜菊(Stevia rebaudina)糖基转移酶基因的克隆及序列分析.厦门大学学报(自然科学版), 2002, 41: 531~535
    [157]吴维春. 长白山珍贵药用植物高山红景天. 吉林科学技术出版社, 1987: 12~16
    [158]迪芬巴赫C W著. PCR技术实验指南. 黄培堂译. 科学出版社. 2000: 234~236
    [159]陈玉婷, 谷燕莉, 李佳. HPLC测定红景天药材主流品种及同属5种植物的红景天苷含量. 北京中医药大学学报, 2003, 26: 48~51
    [160]Shibata H, Sawa T, Oka S, et, al. Steviol and stevio-glycoside: glucosyltransferase activities in Stevia rebaudina Bertoni-purification and partial characterization. Archives of Biochemistry and Biophysics, 1995, 321: 390-396
    [161]Landtaga J, Baumertb A, Degenkolbc T, et al. Accumulation of tyrosol glucoside in transgenic potato plants expressing a parsley tyrosine decarboxylase. Phytochemistry, 2002: 683~689
    [162]刘传斌, 金郁, 李宁等. 不同来源高山红景天材料中有效成分的HPLC分析. 天然产物研究与开发, 1997, 11: 18-22
    [163]Rizhsky L ,Liang H ,Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143~1151
    [164]Rosler J, Krekel F, Amrhein N, et al. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol, 1997, 113: 175~179
    [165]李和平, 廖玉才. 两个紧密连锁的小麦苯丙氨酸解氨酶基因的分离与鉴定. 遗传学报, 2003, 30: 907~912
    [166]Joos H J, Hahlbrock K. Phenylalanine ammonia-lyase in potato(Solanum tuberosum)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700