二种与高山红景天红景天甙生物合成相关基因的分离及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红景天甙是一种新型高效适应原性药物,提取于我国珍稀药用植物高山红景天(Rhodiola sachalinensis A.Bor)。由于野生红景天植物资源日渐濒危,且红景天中红景天甙含量极低,远不能满足市场的需求,因此,利用生物工程和基因工程手段提高红景天甙含量引起了研究者极大的兴趣。根据相关文献报道和本实验室对红景天甙和甙元酪醇生物合成途径研究的相关进展,本文采用cDNA末端快速克隆技术(RACE),以高山红景天为试材,分离得到与酪醇和红景天甙生物合成相关的两个基因,对其基因特性、基因功能进行了研究。
     酪醇在植物体内的合成目前尚不清楚。据我们实验室研究结果,酪醇的合成极有可能来自于生物碱合成途径中的酪氨酸代谢途径。本文首次从高山红景天中分离了在植物次生代谢中起关键作用的酪氨酸脱羧酶全长cDNA序列,命名为TyrDC1。对TyrDC1进行基因特性分析的基础上,构建了植物高效表达载体pCATyrDC1并利用农杆菌介导法转化回高山红景天,经过分子鉴定证明TyrDC1已经整合到高山红景天基因组DNA分子中并在转录水平表达。转TyrDC1基因高山红景天愈伤组织和植株的红景天甙含量HPLC测定结果表明,TyrDC1的过表达使红景天甙含量增加。
     酪醇糖基化后生成红景天甙是红景天甙生物合成途径中的最后一个关键步骤。这一关键反应是由UDP-葡萄糖基转移酶催化合成的。借鉴本试验室已有的工作基础,本文从高山红景天中克隆了UDP-葡萄糖基转移酶全长cDNA序列,命名为UGT3。对其基因特性、表达模式以及UGT3基因差异表达组织中红景天甙含量进行了分析,结果表明,UGT3在愈伤组织的红景天甙含量高于叶片的红景天甙含量。综上,通过对红景天甙生物合成途径上游、下游相关关键基因的分离、鉴定、研究为探索红景天甙生物合成代谢途径分子机制提供新的证据,为最终阐明红景天甙的生物合成代谢通路奠定了基础。
Herbs of Rhodiola rosea L genus consist of over 90 species in the world and nearly 73 species in China. Rhodiola sachalinensis A.Bor, a perennial herb, belonging to Rhodiola rosea L genus, is one of the rare herbs used as a medicinal material in Changbai Mountain area in North China. Rhodiola sachalinensis A.Bor is suggested to function as a promising environmental adaptogen related to aerospace industry, marine assignments, desert work, highlands projects, sports and other industries, i.e. as a biologically-active compound to increase resistance in humans to different stress-related disorders and a variety of other diseases. In addition, salidroside has been reported to act as an anti-inflammatory, anticancer, anti-viral, anti-aging, anti-oxygen deficiency, anti-fatigue, anti-radiation and double-regulation multi-functional compound. But Rhodiola sachalinensis A.Bor has been endangered due to its harsh ecology, difficulty in pollination and other characteristics of its reproductive system and severe damages to its dependent natural environment caused over utilization of the land, therefore natural herbs of the genus have been decreased sharply in number.
     At present, China plays an important role in the research of Rhodiola rosea L genus herbs.Study fieldscover chemical composition, pharma -cologic action. resource conservation and artificial cultivating, tissue culture and intermediate propagation, antifreeze protein, cell culture and bioconversion, RAPD analysis, classification and identification etc. salidroside and tyrosol,as functional substance of Rhodiola rosea L genus herbs,heve made important progressare its metabolic pathway, molecule mechanism and cloning of enzymes involving in biosynthesize of functional substance or rate-limiting enzyme, etc. In this paper, two gene sequences related to salidroside and tyrosol have been identified by cDNA RACE methods to isolate genes from R. sachalinensis, besides, the characteristic and functional of the two gene sequences have been further investigated here.
     The mechanism of the last biosynthesis of salidroside in plants has been quite clear. Salidroside could be generated by uridine diphosphate glucose (UDPG) and tyrosol with the catalyzing of UDP-glucosyl- transferase. However, it is not clear about the mechanism of biosynthesis of tyrosol in plants. Biosynthesis step of alkaloids in secondary metabolite may be the key point to generate tyrosol.Tyrosine decarboxylase serves as one of the first enzyme which is associated with initial metabolism and a number of alkaloids biosynthesis, considered as the key enzynme and rate-limiting enzyme. In this research, tyrosine decarboxylase complete cDNA sequence was cloned from R. sachalinensis, named TyrDC1, with accession DQ471943 (Genbank). And the cDNA(1715 bp) had one open reading frame of 508 amino acids with 56,88kDa and pI 6.15. Bioinformatics analysis indicated that TyrDC1 is a new number of tyrosine decarboxylase in plants. TyrDC1 cDNA with known tyrosine decarboxylase in plants showed the range nearly between 46.91% (from Arabidopsis thaliana, NM_119010) to 54.61 %(from Parsley, M95685). Conserved region located in middle and region of variability in ends, in special C-terminal. The amino acid sequence of TyrDC1 contains typical TyrDC structural domain and there is no transmembrane domain in amino acids sequence. Northern hybridization analysis showed TyrDC1 transcript levels are high in inducing callus, and higher than normal callus, whereas no expression phenomenon is in leaves. HPLC determined salidroside content in different tissues in which TyrDC1 gene expression levels are not equal. The results found that salidroside content is higher in induced callus than in normal callus, which is greatly higher than in leaves. So it can be concluded that there are direct correlation between different tissues and salidroside content in inducing conditions. In the subsequent research, pCATyrDC1, a highly effective vector was constructed, containing TyrDC1 gene sequencer, and then it was transformed to R. sachalinensis mediated by agrobacterium . It was identified that TyrDC1 gene integrated in the genome of transgentic R. sachalinensis by PCR, Real Time PCR and Real Time RT-PCR methods, respectively. Salidroside was detected quantitatively in transgenic cultures of R.sachalinensis by HPLC. The results indicated that the salidroside contents of leaves of transgenic plants and transgenic calli increased 1.88- and 2.43-fold compared to the untransformed controls, respectively.
     Glycosyltransferase (EC 2.4.x.y) extensively exists in biosystem, which determines conforming of glucosidic bond. Another important protein associated with secondary metabolite in plants is UDP(uridine diphosphate)—glucosyl transferase (UDPGT, UGTs) . It regulates majority glycosides synthetic in secondary metabolism path, and acts as key enzyme in salidroside synthesis. In this study, UDPGT complete cDNA sequence was cloned from R. sachalinensis, named UGT3 with accession number EQ508689(Genbank). The 1547bp UGT3 cDNA sequence contained an open reading frame encoding a predicted translation product of 453 amino acids with a predicted molecular mass of 51.18kDa, pI 5.37. Bioinformatics analysis demonstrated UGT3 is a new number of UGTs family, and contains a typical UGTs structural domain between 6-453 amino acid. Meanwhile, a 3'terminal UGTs structural domain contains conserved HCGWNS amino acids, beginning at the 342 amino aceds. UGT3 and other UGTs in plants share 24.23% to 54.24% homology. Analysis of other biology characters showed that UGT3 is a matrix protein and exists in single copy in R. sachalinensis by Southern hybridization. Northern hybridization analysis revealed that UGT3 has higher expression in callus, while trace expression in leaves. HPLC determined salidroside in different tissues found that salidroside content are higher in callus than in leaves. So the conclusion can be drawn that there is direct correlation in different tissues.
     In summary, isolation and identification of key genes in salidroside biosynthesis have provided a research foundation for illustration of bio -synthetic metabolism path and this study will greatly benefit scale pro -duction of salidroside in medical industry in the future..
引文
[1] 董妍玲,潘学武.植物次生代谢产物简介.生物学通报,2002,37(11):17~19
    [2] 姜广奋,张荫麟.生物技术与药用植物开发.中草药,1994,25(12):651~653
    [3] 戴勋.植物次生代谢.昭通帅范高等专科学校学报,2002,24(5):34~38
    [4] 段传人,王伯初,徐世荣.环境应力对植物次生代谢产物形成的作用.重庆大学学报,2003,26(10):67~71
    [5] 杜近义,胡国斌,秦际威.植物次生代谢物的生态学意义.生物学杂志,1999,16(3):9~10
    [6] 李俊年,刘季科.植物化学防御与植食性哺乳动物的适应对策.兽类学报, 2000,20(3):225~232
    [7] Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry,2003, 64 (1): 3~19
    [8] 何水林.植保素代谢与植物防御反应.广州:广东科技出版社,2002,1~25
    [9] 王大力.豚草属植物的化感作用研究综述.生态学杂志,1995,14(4):48~53
    [10] Bouwmeester H J. Secondarymetabolite signaling in host-parasitic plant interactions. Curr. Op in. Plant Biol., 2003, 6 (4) :358~364
    [11] 刑勇,段小燕.植物的自毒作用.生物学教育,2002,27(11):6~7
    [12] Yeoman M M. In differentiation in viro, 4 th symposium british society cell biology. Cambridge: Cambridge Uni, 1981,432~465
    [13] 张弘.植物培养细胞的形态分化与次生代谢产物的生产.植物学通报,1994.11(1):12~19
    [14] Enyedi A J, Yalpani N, Silvennan P. Singnal molecules in systemic plant resistance to pathogens and pests. Cell, 1992,70:879~886
    [15] Rasking I. Salicylic, a new plant hormone. Plant Physiol, 1992, 99:799~803
    [16] 林忠平,胡鸢雷.植物抗逆性与水杨酸介导的信号传导途径的关系.植物学报,1997,39(2):185~188
    [17] 廖春燕,马国瑞,郑海龙,等.壳聚糖诱导植物抗病机制研究进展.东海海洋, 2001,19(2):23~31
    [18] 闰芝芬,魏建昆,周燮.冠毒素和茉莉酸对高粱幼苗耐水分胁迫的诱导效应.中国农学通报,1999,15(5):11~14
    [19] 顾德兴.次生物质和共同进化.生物学通报,1990,(8):13~14
    [20] Ikeda I, Masto Y, Sasaki E, et al. Tea catechins decrease micellar solubility and intestinal sbsorption of cholestezol in rats. Biochem Biophys Acta, 1992, 112 7(2): 141~147
    [21] Hu XF, Shen SG, Piao ZP, et, al. Review on antioxidative mechanism of tea ployphenols. J Tea Sci, 1999, 19:41~48
    [22] 石碧,狄莹.植物多酚.科学出版社,1999.171~180;285~290
    [23] 程水源、顾曼如、束怀瑞.影响银杏叶黄酮含量的因子及其评价.湖北农学学报,1999:19(2):110~112
    [24] 孙君明、丁安林、沈黎明.光照对大豆幼苗组织中异黄醒含量和分布的影响.植物学报,1998:40(11)1015~1021
    [25] Gianoli-E;Niemever-H-M,et al.Environmental effects of the accumulation of hydroxamic acid in wheat seedings; The importance of plant growth rate.Journal of Chemical Ecology. 1997; 23(2): 543~551
    [26] JAMES-P-D-A,et al. The effect of temperature, pH and growth rate on secondary. metabolism in streptomyces thermoriolaceus grown in a chemostat.JOURNAL OF GENERALMICROBIOLOGY, 1991:137(7): 1715~1720
    [27] 孙君明、丁安林.地理环境对大豆种子中异黄酮积累的影响趋势.大豆科学, 1997: 16(4): 298~303
    [28] Johnso-Robert-H.Reaponse of ponderosa pine growth and volatile terpene concentrations to manipulation of soil water and sunlight availability. Canadian-Journal-of Forest-Research. 1997: 27(11) 1794~1804
    [28] 梁伯播、周毓君.不同光质对萝卜离体根形态建成的影响.河北大学学报,1999,19(4):369~371
    [29] 冯敏、毛学文、陈荃.不同光质和培养基对毛地黄叶组织培养中强苷积累的效应研究.韶关大学学报,1994:15(4):70~73
    [30] Ratnayaka-Haarish.Increasmg sennoside yields is Tinnevelly senna (Cassia angustifolia ): effects of drought,foliar nitrogen spray and crop type. Plant-Medica, 1998:64(5): 438~442
    [31] 汪贵斌、曹福亮、郭起荣.淹水对银杏生长及生理的影响.植物生理学通讯,1998:20(2):237~241
    [32] Julkunen-Tiitto-R. Defensive efforts of salix myrsinifolia plantlets in photo mixomixotrophic culture conditions; The effects of sucrose, nitrogen and pH on the phytomass and secondarv phenolic accumulation. Ecoscience, 1996:3 (3): 297~303
    [33] Slininger-P-J. Shea-Wilbur-M-A. Liquid-culture pH, temperature and carbon (notnitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas 2-79 Arrlied. Microbiology and Biotechnology, 1995: 43(5)794~800
    [34] Dixon RA, Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7:1085~1097
    [35] Winkel-Shirtey B. Evdence for enzyme complexe in the phenylp ropanoid and flavomoid pathway. Physiol Plant, 1999.107:142~149
    [36] McMullen MD, Byme PF, Snook ME, et al. Quantitative trait loci and metabolic pathways. Proc Natl Acad Sci USA, 1998, 95:1996~2000
    [37] Rasmussen S, Dixon RA. Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell, 1999, 11:1537~1551
    [38] Burbulis IE, Winkel-Shireley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthestic pathway. Proc Natl Acad Sci USA, 1999, 96: 12929~12934
    [39] He XZ, Dixon RA. Genetic manipulation of isoflvone 7-O-methyl-transferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell, 2001, 12: 1689~1702
    [40] Hrazdina G. Compartmentation in aromatic metabolism. In: Ibrahirn RK. Recent Advances in Phytochemistry. New York: Plenum Press, 1992:1~33
    [41] Winkel-Shirley B. Flavonoids biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol, 2001,126: 485~493
    [42] Dixon R.A, Chen F, Guo D, Parvathl K. The biosynthesis of mono-lignois: a"metabolic grid", or independent pathways to guaiacyl and syringyl units. Phytoehemistry, 2001, 57:1069~1084
    [43] Madyastha KM, Ridgway J E, Dwyer J G. Subeellular localization of acytochrome P-450-dependent monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol, 1999, 72:303~313
    [44] Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. A nnu Rev Plant Physiol Plant Mol Biol, 1995, 46:521~547
    [45] Hartmut K. Lichtenthaler. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 47~65
    [46] Narita JO, Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during repening. Plant Cell, 1989, 1: 181~190
    [47] Choi D, Ward BL, Bostock RM. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme a reductase genes in reponse to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell, 1992, 4: 1333~1344
    [48] Facchini PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. A nnu Rev Plant Physiol Plant Mol Biol, 2001, 52:29~66
    [49] Kosuge T, Gilehrist DG. Aromatic amino acid biosynthesis and its regulation. Biochem Plants, 1980, 5:507~531
    [50] Dixon R. Natural products and plant disease resistance. Nature, 2001, 411(14): 843~847
    [51] Back KW. Structure-function comparsions of sesquiterpene cyelases isolated from Nicotiana tabacum and Hyoseyamus muticus. PhD dissertation of University of Kentucky, 1995.1~10
    [52] Hashimoto T, Nakajima K, Ongena G,et al. Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus niger. Plant Physiol, 1992, 100: 836~845
    [53] Portsteffen A, Drager B, Nahrstedt A. Two tropinone reducing enzymes from Datura stramonium transformed root cultures. Phytochemistry, 1992, 31:1135~1138
    [54] Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature, 1990, 343: 425~430
    [55] Gondet L, Weber T, Maillot-Vemier P, et al. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun, 1992, 186: 888~893
    [56] He SL, Lin WX, Chen RK, et al. The induction of UV on sesquiterpene cyclase and squalene synthase in Capsicum annuum. J A gri Biotechnol, 1999, 7: 377~381
    [57] He SL, Zheng J G, Chen R K. Sesquite rpene cyclase gene expression in leaves of Capsicum annuum by some abiotic elicitors. Chin J Appl Environ Biol, 2002, 8: 61~65
    [58] Vogeli U, Chappell J. Induction of sesquiterpene cyclase and suppression of squalene synthase activities in plant cell cultures treated with fungal elicitor. Plant Physiol, 1988, 88:1291~1296
    [59] Keller H, Czernic P, Ponchet M, et al. Sesquiterpene cyclase is not a determining factor for elicitor and pathogen-induced capsidiol accumulation in tobacco. Planta, 1998, 205:467~476
    [60] Capell T, Christou P. Progress in plant metabolic engineering. Curr Opin Btotechnol, 2004, 15:148~154
    [61] Muir SR, Collins GJ, Robinson S, et al. Overexpression of petunia chalcone isomerase in tomato results in fruits containing increased levels of flavonols.Nat Biotechnnl, 2001, 19:470~474
    [62] Verhoeyen ME, Bovy A, Collins G, et al. Increasing amioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot, 2002, 53: 2099~2106
    [63] Jung W, Yu O, Lau S, et al. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol, 2000, 8:208~212
    [64] Yang ZR, Mao x, Yang ZF et al. Cytochrome genes and their application in plant improvement. Hereditas, 2003, 25(2): 237~240
    [65] Facchini PJ, Huber Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54 (2): 121~138
    [66] Canel C, Lopes-Cardoso M I, Whitmer S,et al. Effects of over-expression of strictosidme synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus rosues. Planta, 1998, 205: 414~419
    [67] Ham R, Bleseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15:325~335
    [68] Hain R, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 1993,361:153~156
    [69] Tian WZ, Ding L, Cao SY, et, al. Rice transformation with a phytoalexin gene and bioassay of the transgenic plants. Bot Sci Acta, 1998, 40(9): 803~808
    [70] 梁辉,郑近,段霞瑜,等.用基因枪法获得抗白粉病转芪合酶基因小麦.科学通报,1999,44(24):2244~2248
    [71] Tattersall DB, Bak S, Jones PR, et al. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science, 2001, 12: 595~601
    [72] Ye X, Al-Babili S, Kloti A, et al. Engineering proitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) flee endosperm. Science, 2000, 287:303~305
    [73] Hunphreys J M ,Hemm M R .Chapple C. New routes for lignin biosynthesis defined by biochenucal characterization of recombinant ferulate 5-hydroxylase,a multifunctional cytochrome P450-dependent monooxy genase. Proc Natl Acad Sci USA, 1999,96:10045~10050
    [74] Grema-Pettenati J ,Coffner D. Lignin genetic engineering revisited.Plant Science, 1999,145:51~65
    [75] Bate N J, Orr J, Ni W, et al. Quantitative relationship between phenylalanine ammonialyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Nail Acad Sci USA ,1994.91:7608~7612
    [76] Sewalt V J H ,Ni W ,Blount J W ,et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenyla Yamazaki ineamnnnia-lyase or cinnamate 4-hydroxylase. Plant Physiol,1997, 115:41~50
    [77] Lee D, Meyer K, Chapple C , et al. Antisense suppression of 4-coumarate: eoenzyrne A ligase activity in Arabidipsis leads to altered lignin subunit composition. Plant Cell, 1997,9:1985~1998
    [78] Hu W J, Kawaoka A ,Tsai C J,et al. Compartmentalized expression of two structurally and functionally distinct 4- coumarate :CoA ligase genes in aspen(Populus tremuloides).Proc Nail Acad Sci USA, 1998,95:5407~5412
    [79] Chabannes M, Barakate A, Lapierre C, et al. Strong decrease in lignin content without significant alternation of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnanryl alcohol dehydrogenase (CAD) in tobacco plants.The Plant J,2001,28(3):257~270
    [80] Vom Endt D, Kijne J W, Memelink J. Transcription factors controlling plant Secondary metabohsm: what reguales the regulators? Phytochemistry, 2002, 61:107~114
    [81] Grotewold E,Chamberlin M,Snook M ,et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell,1998, 10:721~740
    [82] Bruce W . Folkerts O , Garnaat C ,et al .Expression profiling of the Maize flawnoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. P Yamazaki t Cell,2000,12:65~79
    [83] 明海泉,夏光成,张瑞钧,等.红景天研究进展.中草药,1988,19(5):37~42
    [84] 于庆海,郭月英,吴春福,等.高山红景天抗不良刺激的药理研究.沈阳药学院学报,1989,6(4):235~237
    [85] 中国科学院中国植物志编委会.中国植物志.科学出版社,1984,(34):161~199
    [86] 徐宝军,郑毅男,李向高,等.红景天属植物研究新进展冲药材,2000,23(9): 580~584
    [87] 丁树利.滋补强壮中草药红景天属植物研究.国外医药,植物药分册,1992, 7(5):198~202
    [88] 贾国夫.红景天的研究概况及展望.四川草原,1998,3:38~39
    [89] 徐怀德.药食同源新食品加工.中国农业出版社,2002:189~190
    [90] 李建新,刘松艳,李绪文,等.高山红景天茎叶的三萜成分研究.东北师范大学学报,1997,(4):53~55
    [91] 陈纪军,陈金素,陈泗英,等.德钦红景天的化学成分.云南植物研究,1999, 21(4):525~530
    [92] 王曙,王锋鹏.大花红景天化学成分的研究.药学学报,1992,27(2):117~120
    [93] 张所明,王景山,张惠迪,等.藏药大株红景天化学成分研究.中国中药杂志, 1991,16(8):483
    [94] 张坚,康胜利,王晋,等.狭叶红景天氨基酸和微量元素的分析.青海医药杂志,1995,25(8):55
    [95] 康胜利,张坚,王晋,等.狭叶红景天化学成分的研究.中国中药杂志,1992, 17(2):100~101
    [96] 彭江南,马成禹,葛永潮.狭叶红景天的化学成分.中国中药杂志,1994, 19(11):676~677
    [97] 邱林刚,陈金瑞,蒋思平,等.喜马红景天的化学成分.云南植物研究,1989, 11(2):219~222
    [98] 马忠武,何关福,吴莉莉,等.帕里红景天的化学成分研究.植物学报,1995, 37(7):574~580
    [99] 娄红祥.菱叶红景天化学成分研究.沈阳药学院学报,1990,7(2):145
    [100] 邱林刚,王叶富,陈金瑞,等.圣地红景天的成分研究.天然产物研究与开发,1991,31:6~10
    [101] 彭江南,葛永潮,李晓晖.长鞭红景天的化学成分的研究.药学学报,1996, 31(10):798~800
    [102] 彭江南,马成禹,葛永潮.大花红景天的化学成分.中草药,1995,26(4): 177~179
    [103] Dement eva-LA,Iaremenko-KV. Effect of a Rhodiola on the tumor Processin an experiment.VoPr-onkol, 1987,33(7): 131~133
    [104] Salikhova RA,A I eksandroval V, MazurikVK et al .Effect of Rhodiola rosea on the yield of mutation alteration and DNA repair in bonmamw cells. Patol Fiziol Eksp, 1997(4): 22~24
    [105] 赵文.藏产红景天对两种肿瘤生长的抑制作用及其免疫学机制.癌变、突变、 畸变,1999,11(6):28~29
    [106] Udintsev-SN, Shakhov-VP.Decrease in the growth rate of Ehrfch's tumor and Pliss'lymphosarcoma with partial hepatectomy. Vopr-Onkol, 1989,35(9) 1068~1072
    [107] 王秀清.高山红景天酪醇对柯萨奇Bs病毒感染小鼠脾脏NK细胞活性及血清酶学变化的影响.医学研究通讯,1997.26(9):7~10
    [108] 朴花.高山红景天多糖对小鼠的免疫调节作用.延边大学医学学报,2000,23(4):251~255
    [109] 阎奇.硫酸化高山红景天多糖对感染病毒小鼠血液SOD和IPO的影响.中国中医基础医学杂志,1997,3(6):28~31
    [110] 孙非.高山红景天酪醇对病毒性心肌炎小鼠免疫功能及抗氧化酶活性的影响.中国药理学报,2000,16(1):120~122
    [111] 韩健,杨克艳.藏产红景天强身剂延缓衰老临床效果观察.西藏科技,1999,1: 52~53
    [112] 蒋礼年,张逢秋.大花红景天口服液药理学研究.中国中医药信息杂志,1999, 6(7):28~29
    [113] 黄增艳,范书铎.库页红景天对鼠抗疲劳作用机理的实验研究.中国医科大学学报,1998,27(2):123~126
    [114] 陈亚东,曹秀兰,田长有,等.高山红景天对小鼠耐缺氧、抗疲劳及耐低温作用的影响.中国中医药科技,2002,9(3):157~158
    [115] 曹晓哲,邢传平,杨生岳,等.缺氧和营养不良对大鼠膈肌超微结构的影响及红景天保护作用的电镜研究.高原医学杂志,1998,8(2):28~29
    [116] 高琳.红景天对高海拔地区健康人记忆功能的影响.高原医学杂志,1997,7(1):44~47
    [117] Petkov, V.D, Yonkov D, Mosharoff A. Effects of alcohol aqueous extract from Rhodiola rosea L.roots on learning and memory.Acta Physiol Pharmacol Bulg, 1986,12 (1): 3~16
    [118] Saratikov A.S., Krasnov E.A.,Marina T.F. .The Influence of Rhodiola on the Central Nervous System.Medicinal Plant.1987,150:78~82
    [119] 赵文.藏产红景天混合提取物对BALB/c小鼠免疫功能的影响.实验动物科学与管理,1998,15(2):2~5
    [120] 金永日,睢大员,于晓风等.红景天茎叶提取物的抗衰老作用研究.中国老年学杂志,2001,21(5):228~230
    [121] 尹桂山,邹静琴,王桂香.红景天根乙醇浸液的营养延缓衰老作用研究.营养学报,1992,14(1):98~100
    [122] 崔旭.红景天复方制剂对家蝇寿命及脑组织自由基代谢的影响.白求恩医科大学学报,1995,21(4):347~350
    [123] 姜义,宵雪媛,关桂梅.红景天甙对x射线照射小鼠的预防作用.中华放射医学防护杂志,1995,15(3):214~216
    [124] 贾正平.狭叶红景天水提物的辐射保护作用.兰州医学院学报,1997,23 (3):17~20
    [125] 明海泉.红景天甙的合成及药理作用.医学通报,1986,(6):373~375
    [126] 房家智,张晓艳,陆瑛,等.红景天甙酮对大鼠离体工作心脏心功能的影响.白求恩医科大学学报,1996,22(1):4~6
    [127] 王晓松.红景天甙、酮对大鼠心血管功能的影响.白求恩医科大学学报, 1996,22(1):7~9
    [128] 姜平,张杰,刘鹤强,等.狭叶红景天治疗高原红细胞增多症的探讨:附17例病例近期疗效分析.高原医学杂志,1990,123(2):50~52
    [129] MaimesKuLova LA, Maslov-LN. The anti-arthydlmia action of an estract of Rhodiola rosea and of n-tyrosol in modes of experimental arrhymias.Eksp-Klin Farmakol, 1998, 61(2): 37~39
    [130] Lislxnanov-IuB, Naumova AV, Afanasev SA, et al. Contribution of the opioid system to realization ofinotnopic effects of Rhodiola-extincts.in ischemic and reperfusion heart damage in vitro. Eksp-KlimFarmakol, 1997, 60(3): 34~38
    [131] 刘亚玲.红景天对免烫伤后多器官功能障碍综合征的治疗作用.第四军医大学学报,2002,23(10):924~928
    [132] 徐敝.本红景天的适应原样药理研究冲国药理通讯,1988,5(3):45~46
    [133] 安丰.四川红景天属植物的生药学研究.中国中药杂志,1993,18(8):456~459
    [134] 王西芳.红景天属植物的生药学研究.陕西中医药学院学报,1994,17(2): 26~28
    [135] 钱彦丛.红景天研究新进展.中药材,1995,18(10):499~501
    [136] 胡挺松,陆一鸣,马兰青,等.红景天属4种植物RAPD分析与分类鉴定.中草药,2004,35(11):1286~1289
    [137] 黄德昌,岳安云.高原人参…红景天生态气候条件浅析.气象,1994,20(3):241
    [138] 朱建雯,谭敦炎,陈敬峰.高山红景天种群分布格局的研究.干旱区研究, 1999,16(2):16~191
    [139] 祖元刚,唐艳.高山红景天有性生殖过程及濒危原因的生态学分析.植物研究,1998,18(3):336~3401
    [140] 刘世强.高山红景天愈伤组织的诱导和植株再生的研究.辽宁农业科学.1991,5:17~22
    [141] 罗明,谭敦炎,张玉霞,等.高山红景天的组织培养.新疆农业科学,1996,3: 123~125
    [142] 马兰青,胡挺松,郭万里,等.大花红景天的组织培养与植株再生.中国植 物学会70周年年会论文集,2003,495~496
    [143] 胡挺松,马兰青,郭万里,等.长鞭红景天的组织培养和快速繁殖.植物生理学通讯,2004,40(3):333
    [144] 许建峰,赵岩,韩爱明,等.高山红景天愈伤组织的诱导及培养研究.应用与环境生物学报,1995,1(1):19~25
    [145] 姜明兰,钟文田,韩洪,等.组织培养生产高山红景天有效成分的研究 I.高山红景天愈伤组织的诱导与培养.沈阳农业大学学报,1994,25(4):355~359
    [146] 秦佳梅,张弓,张卫东,等.红景天叶片诱导再生植株.中国野生植物资源, 1999,18(1):45
    [147] 刘志伟。红景天保健面包的研制.中国粮油学报,2002,17(5):23~27
    [148] 龚晨睿,李宇红,马良.红景天复合制剂抗疲劳作用研究.卫生研究, 2002,31(5):397~398
    [149] 顾艳丽.红景天提取工艺及其剂型的研究.沈阳药科大学硕士学位论文,2003
    [150] 徐宝军,郑毅男,王永奇.天然产物增白作用的初步筛选.日用化学工业,2001 (4):65~66
    [151] 武艺,李爱馥,陈俊龙,等.红景天人参制剂抗皮肤老化电镜扫描观察[J].中华医学美容杂志,1999,5(4):172~175
    [152] 许建峰,韩爱明,冯朴荪,等.高山红景天愈伤颗粒组织悬浮培养动力学及工艺的研究.生物工程学报,1996,12(4):460~465
    [153] 许建峰,刘传斌,方晓丹,等.高山红景天细胞悬浮培养中pH值对红景天甙胞外释放及细胞活性的影响.植物学报,1997,39(11):1022~1029
    [154] 韩爱明,许建峰,方晓丹,等.影响高山红景天细胞悬浮培养中细胞生长和红景天甙积累的几个因素.植物生理学通讯,1997,33(1):33~36
    [155] 许建峰,韩爱明,冯朴荪,等.高山红景天细胞悬浮培养生长和营养成分摄 取动力学及其计量关系.应用与环境生物学报,1997,3(2):100~105
    [156] 谢健,许建峰,冯朴荪,等.高山红景天致密愈伤组织颗粒内氧传递特性与细胞活性的研究.生物工程学报,1998,14(2):158~163
    [157] 许建峰,谢健,冯朴荪,等.气升式反应器培养高山红景天愈伤组织颗粒的动力学与氧传递特性研究.化学反应工程与工艺,1998,14(3):305~312
    [158] 许建峰,谢健,李宁,等.高山红景天致密愈伤组织颗粒悬浮培养结构化动力学模型.大连理工大学学报,1999,39(1):43~48
    [159] 许建峰,苏志国,冯朴荪.利用高山红景天培养细胞生物转化外源酪醇生产红景天甙的研究.植物学报,1998,40(12):1129~1135
    [160] Landtaga J, Baumertb A, Degenkolbe T, et al. Accumulation of tyrosol glucoside in transgenic potato plants expressing a parsley tyrosine decarboxylase. Phytochemistry, 2002,60:683~689
    [161] 布坎南 B B,格鲁依森姆 W,琼斯 R L.植物生物化学与分子生物学.瞿礼嘉,顾红雅,白书农等主译.科学出版社.2004:1052~1060
    [162] Lan-Qing Ma, Dong-Yao Gao, You-Nian Wang,et al. Effects of Overexpression of Endogenous Phenylalanine ammonia-lyase (PALrsl) on Accumulation of Salidroside in Rhodiola sachalinensis. Plant Biology, (accepted)
    [163] Martin-Tanguy J, Sun LY,Burtin D et al. Attenuation of the Phenotype Causeed by the Root-Inducing,Left-Hand, Transferred DNAand Its role Gene.Piant Physiol,1996,111 (1):259~267
    [164] Negrel J,Javelle F.L-Tyrosine beta-naphthylamide is a potent competitive inhibitor of tyramine N-hydroxycinnamoyl transferase in vitro.Phytochemistry. 2001 56(6):523~527
    [165] Borg-Olivier SA, Tarlinton D, Brown KD. Defective regulation of the phenylalanine biosynthetic operon in mutants of the phenylalanyl-tRNA synthetase operon. J Bacteriol,1987,169(5):1949~1953
    [166] Negrel J, Javelle F, Paynot M.Biochemical Basis of Resistance of Tobacco Callus Tissue Cultures to Hydroxyphenylethylamines.Plant Physiol, 1993,103 (2): 329~334
    [167] Kawalleck P, Keller H,Hahlbroek K, et al.A pathogen responsive gene of parsley encodes tyrosine decarboxylase. Biol Chem, 1993,268(3):2198~2194
    [168] Trezzini G F, Horriehs A,Sommssich I E.Isolation of putative defense-related genes from Arabidopsis thaliana and expression in fungal elicitor treated cells.Plant Mol Biol, 1993,21(2):385~390
    [169] Facchini, P.J., Yu, M., Penzes-Yost, C.Decreased cell wall digestibility in canola transformed with chimeric tyrosine decarboxylase genes from opium poppy.Plant Physiol. 1999,120(3):653~664
    [170] Christou P, Barton K.ACytokinin Antagonist Activity of Substituted Phenethylamines in Plant Cell Culture.Plant Physiol. 1989,89 (2):564~568
    [171] Kawalleck P, Keller H,Hahlbrock K, et al.A pathogen responsive gene of parsley encodes tyrosine decarboxylase.Biol Chem, 1993,268:2198
    [172] Facchini P J,De Luca V.Differential and tissue specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. Biol Chem,1994, 269:266~284
    [173] Samanani N,Facchini P J.Cloning and characterization of a tyrosine/dopa decarboxy cDNA from the meadow rue. Thalictrum flawm ssp. GenBank accession number AF314150
    [174] 杨瑞仪,曾庆平.马兜铃酪氨酸脱竣酶基因克隆、测序及同源性分析.广州中医药大学学报,2005,22(2):152~159
    [175] Facchini P J,Park S U.Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry, 2003,64:177
    [176] Maldonado-Mendoza, I.E., LoA pez-Meyer, M., Galef, J.R., et al.Molecular analysis of a new member of the opium poppy tyrosine/3,4 -dihydroxyphenyl alanine decarboxylase gene family.Plant Physiol, 1996,110(1):43~49
    [177] Peter J. Facchini, Alison G. Johnson.Uncoupled Defense Gene Expression and Antimicrobial Alkaloid Accumulation in Elicited Opium Poppy Cell Cultures. Plant Physiol. 1996 111:687~697
    [178] 王克夷.糖基转移酶研究进展.生物化学与生物物理学进展,1994,21:9~13
    [179] Ford CM, Boss PK, Hoj PB. Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 1998, 273: 9224~9233.
    [180] Ralston E J, English J J,Dooner H K. Sequence of three bronze alleles of maize and correlation with the genetic flue structure. Genetics, 1988, 119:185~197
    [181] Matin C R, Prescott A, Mackay S, et al. Control of anthocyanin biosynthesis flowers of Antirrhinum majus. Plant J, 1991.1:37~49
    [182] Moehs C.P, Allen P V, Friedman M, et al. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J, 1997,11,227~236.
    [183] Wise R P, Rohde W, Salamini F. Nucleotide sequence of the Bronze-1 homologous gene from Hordeum vulgare. Plant Mol Biol, 1990, 14:277~279
    [184] Yamazaki M, Gong Z, Fukuchi-Mizutani M, et al. Molecular cloning and biochemical characterzation of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin.The Journal of Biology Chemistry, 1999, 274:7405~7411
    [185] Tanaka Y, Yonekura K, Fukuchi-Mizutani M, et al. Molecular and characterizetion of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol, 1996, 37:711~716
    [186] Brugliera F, Holton T A, Stevenson T W, et al. Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J, 1994, 5: 81~92
    [187] Lan-Qing Ma,Ben-Ye Liu, Dong-Yao Gao,at el.Molecular cloning and overexpression of a noveUDP-glucosyltransferase elevating salidroside levelsin Rhodiola sachalihehsis.Plant Cell Rep D0I 10.1007/s00299-007-0317-8
    [188] Joe Ross, Yi Li, Eng-Kiat Lim, et al. Higher plant glycosyltransferases. Genome Biology 2001, 2(2): 3004.1~3004.6
    [189] Kapitonov D, Yu R K. Conserved domains of glycosyltransferases. Glycobiology, 1999, 9:961~978
    [190] Li Y, Baidauf S, Lim EK, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem, 2001, 276: 4338~4343
    [191] 吴维春.长白山珍贵药用植物高山红景天.吉林科学技术出版社,1987: 12~16
    [192] 迪芬巴赫C W著.PCR技术实验指南.黄培堂译.科学出版社.2000:234~236
    [193] Sandmeier E,Hole T, Christen P.Multiple evolutionart origin of pyridoxat-5' -phosphate-dependent amino acid decarboxylases. Eur J Biochem,1994, 221:997
    [194] Xu J.F., Liu C.B., Han A.M,et al. Strategies for the improvement of salidroside production in cell suspension cultures of Rholiola sachalinensis. Plant Cell Report. 1998,17:288~293
    [195] Vogt T, Jones PR. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 2000, 5:380~386
    [196] Lim EK, Doucet CJ, Li Y ,et al.The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. Riol Chem 2002,277:586~592
    [197] Shibata H, Sawa T, Oka S, et al. Steviol and stevioglycoside: glucosyltransferase activities in Stevia rebaudina Bertoni-purification and partial characterization. Archives of Biochemistry and Biophysics, 1995, 321:390~396
    [198] Lee, H.I, Raskin I. Purification, cloning, and expression of a pathogen inducible UDP-glucose: salicylic acid glucosyltransferase from tobacco. Biol Chem, 1999, 274:36637~36642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700