亚洲玉米螟Cry1Ab抗性种群的生物学及其抗性遗传规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚洲玉米螟Ostrinia furnacalis(Guen(?)e)是我国转Cry1Ab杀虫蛋白基因Bt抗虫玉米的主要靶标害虫,大面积种植转单一基因的Bt玉米有可能会引发亚洲玉米螟对Bt杀虫蛋白的抗性。只有实施合理的抗性治理对策,才能使这一现代化技术成果得以持久的利用。深入研究抗性种群的生物学和遗传规律,是制定抗性治理计划、实施合理的抗性治理措施的基础。本论文从生物学和遗传学的角度,首次就亚洲玉米螟对Cry1Ab杀虫蛋白抗性的种群生物学和抗性遗传规律以及与Cry1Ac杀虫蛋白之间的交互抗性关系作了系统的研究。主要结果如下:
     通过饲料混合法以Cry1Ab杀虫蛋白对亚洲玉米螟进行室内汰选38代,与敏感种群相比,抗性种群的幼虫发育历期明显延长,平均蛹重明显下降。用表达Cry1Ab杀虫蛋白的MON810玉米对Cry1Ab抗性种群连续4代生测结果表明,亚洲玉米螟初孵幼虫不能在MON810玉米的心叶和苞叶上存活,但是能够在花丝上完成幼虫期并化蛹和繁殖后代,首次用转基因作物离体生测的方法发现了室内汰选的亚洲玉米螟抗性种群可以在MON810花丝上完成幼虫发育历期。在羽化期相同的条件下,抗、感种群雄蛾间交尾竞争力没有显著差异,抗、感雌蛾对敏感雄蛾的竞争力差异不显著,但对抗性雄蛾的竞争力,抗性雌蛾显著强于敏感雌蛾。当环境中抗性雄蛾的种群密度相对高时,发生抗性种群内交尾的概率要高,将增加亚洲玉米螟对Bt玉米产生抗性的风险。抗、感种群的交尾日活动节律一致。抗、感种群非滞育老熟幼虫的过冷却点没有显著差异;而抗性种群滞育幼虫的过冷却点显著高于敏感种群及F_1代约1~2℃。
     用饲料混合法测定了亚洲玉米螟Cry1Ab抗性种群、敏感种群及其正反交F_1和Cry1Ac抗性种群对Cry1Ab的毒力回归曲线;同时测定了Cry1Ab、Cry1Ac抗性种群以及敏感种群对Cry1Ac的敏感水平。从LC_(50)计算正反交的D_(LC)(抗性基因显性水平)分别为0.22和0.63,这表明目前亚洲玉米螟对杀虫蛋白Cry1Ab的抗性遗传为受母性影响的不完全隐性遗传。以Bt玉米花丝作为衡量标准,对抗性种群和对照种群及其F_1代进行生测,结果表明其有效显性为完全隐性遗传(D_(ML)=0)。MON810花丝中Coy1Ab蛋白表达量足以杀死杂合个体,符合高剂量加庇护所的要求。比较不同种群对Cry1Ab和Cry1Ac的毒力回归曲线和LC_(50)可以看出,以Cry1Ab汰选的对Cry1Ab产生了107倍抗性的Cry1Ab抗性种群,对Cry1Ac产生了10.4倍的抗性;以Cry1Ac汰选对Cry1Ac产生了14.0倍抗性的Cry1Ac抗性种群,对Cry1Ab产生了约6倍的抗性。这说明亚洲玉米螟对Cry1Ac和Cry1Ab存在着很强的交互抗性。Cry1Ab抗性种群去掉选择压后,在普通饲料上连续饲养3代后,幼虫发育历期开始下降,6代以后基本上与敏感种群一致,而且蛹重也有不断增加的趋势。MON810花丝生测表明,亚洲玉米螟对Cry1Ab杀虫蛋白的抗性不能稳定遗传,失去选择压后,其抗性会迅速丢失。
Asian corn borer, Ostrinia furnacalis Guenee, (ACB), is the primary insect pest targeted by transgenic Bt com in China. Bt corn can provide season long protection from this insect, but its success will be short-lived if ACB adapt to Bt corn. The primary strategy for delaying ACB resistance to Bt com is to provide refuges of non Bt corn and other host plants. However, the feasibility of refuge strategy depends on the biology of resistant colony and inheritance of resistance. We investigated the biology of a laboratory-selected CrylAb resistant colony of ACB and inheritance of resistance, which included the survival of resistant colony fed on diet incorporated with CrylAb protein and transgenic Bt corn event MON810, mating attractiveness between resistant and susceptible colonies, cold tolerance among resistant, susceptible and their hybrid progeny F1 colonies, resistant gene dominant level, mater effect, stability, and the cross resistance between CrylAb and Cryl Ac.
    There were 70% survival of larvae and 60% pupation rate when resistant colony fed on the diet incorporated with 100ng/g CryAb. The larval developmental time of resistant colony was significantly longer (5 days) than susceptible. The average pupal weight of resistant colony was 42.0% less than susceptible. When the resistant colony was exposed to the high dosage of CrylAb protein diet, the survival and the pupation decreased in a few generations and then increased. This indicated that ACB would evolve resistant to CrylAb when it was selected by the CrylAb protein.
    Bioassays with neonate of resistant and susceptible colonies infested on whorl leaves, fresh husks and silks of Bt corn Event MON810 for 4 generations, showed that the resistant colony could not survive more than 7 days on the whorl leaves and husks of Bt corn, but it could complete the development of larva and average pupation rate was 14.5%. This was the first report that laboratory-selected Bt resistant colony could complete the development of larva on fresh silk of Bt maize. The expression of CrylAb protein in the silk of Event MON810 was 585.46ng/g (fresh weight) according to enzyme-linked immunosorbent assays.
    Among four type of mating combinations (RR SS/RR, SS SS/RR, SS/RR SS, SS/RR RR), the inter-population mating was 43-62.5% in the combinations of RR SS/RR, SS SS/RR, and SS/RR SS, no significantly was observed between the inter-population and intro-population mating, i.e. the mating between resistant and susceptible moths was random. However, the inter-population mating was only 28.0% in the combinations of SS/RR RR, which was significantly lower than intro-population mating. This indicated that the resistant males were more attracted to the resistant females, i.e. the mating between the inter- and intro-population. In this case, when the population density of resistant males was higher, the mating within resistant population could be higher, and the resistant homozygous of offspring were increase. Both resistant and susceptible moths had the same daily mating activity rhythm. This indicates that if resistant and susceptible moths emerge synchronizing well, the daily mating activity rhythm would not affect th
    e random mating between resistant and susceptible colonies.
    The suppercooling points were tested for diapaused and non-diapaused larvae of resistant and susceptible colonies and their F1 progeny. There was no significant difference in suppercooling points and freezing points between resistant (-11.5 C) and susceptible (-11.4 C) colonies of non-diapaused
    
    
    
    larvae. The suppercooling point of diapause larvae from resistant colony was significant higher than those from susceptible and FI progeny of resistant and susceptible colonies. There were no significant different among susceptible and F1 progeny of resistant and susceptible colonies. Although the suppercooling point was only 1.5 C higher for resistant colony than susceptible, this could not impact the overwintering of resistant larvae.
    Susceptibility to the CrylAb protein was determined by dose mortality response for resi
引文
1.褚姝频,孟凤霞,沈晋良.Bt棉叶对棉铃虫抗虫性的时空变化及气象因素的影响.昆虫学报,2003,46(3):299~304
    2.崔金杰,夏敬源.转Bt基因棉花对棉铃虫抗性的时空动态.棉花学报,1999,11(3):141~146
    3.董双林,马丽华,夏敬源.棉铃虫幼虫对转Bt基因棉的行为学反应研究.植物保护学报,1997,24(4):373~374
    4.冯殿英,高志民,肖振山.棉田玉米螟生物学特性观察.中国棉花,1987,14(2):43~44
    5.何康来,王振营,文丽萍.Bt玉米在玉米害虫持续控制中的作用、风险问题及对策.面向21世纪的植物保护发展战略,2001,北京:中国科学技术出版社.344~349
    6.景晓红,康乐.昆虫耐寒性的测定和评价方法.昆虫知识,2004,41(1):7~10
    7.景晓红,康乐.昆虫耐寒性研究.生态学报,2002,22(12):2202~2207
    8.刘德钧,袁全昌.棉田玉米螟防治指标的研究.植物保护学报,1981,8:241~247
    9.刘东辉,汪飞,宋荣.新疆棉区转基因抗虫棉棉铃虫.新疆农业科学,2003,40(1):36~37
    10.刘宁.亚洲玉米螟不同地理种群生态适应性和种群遗传结构的RAPD分析:[中国农业科学院硕士学位论文].中国农业科学院研究生院,2003
    11.刘柱东,李典谟,葛绍奎,齐晔.昆虫的母代效应.昆虫学报,2003,46(1):108~113
    12.鲁新,周大荣,李建平.亚洲玉米螟化性与抗寒能力的关系.玉米科学,1997,5(4):72~73,77
    13.宋彦英,周大荣,何康来.亚洲玉米螟无琼脂人工饲料的研究与应用.植物保护学报,1999,26:324~328
    14.王冬妍.转BtCrylAb基因抗虫玉米对亚洲玉米螟、棉铃虫、甜菜夜蛾、粘虫控制效果评价研究:[沈阳农业大学硕士学位论文].沈阳农业大学,2003
    15.王冬妍,王振营,何康来,丛斌.转Bt基因抗虫玉米在害虫综合治理中的作用及生态风险.植物保护学报,2003,30:97~106
    16.王冬妍,王振营,何康来,丛斌,文丽萍,白树雄.粘虫高龄幼虫对转Bt基因玉米的消化和利用.昆虫学报,2004,47(2):141~145
    17.王金福.黑缘红瓢虫亚种抗寒性研究.植物保护学报,1987,14(4):259~262
    18.王荫长,陈长琨,尤子平.小地老虎抗寒能力的研究.植物保护学报,1987,14(1):9~14
    19.王音,雷仲仁,问锦曾等.美洲斑潜蝇的越冬与抗寒性研究.植物保护学报,2000,27(3):33~36
    20.吴孔明,郭予元.新疆棉铃虫的抗寒性研究.昆虫学报,1997,40(增):20~24
    21.中国农作物病虫害委员会.旱粮病虫害:玉米螟.中国农作物病虫害(第二版).北京:中国农业出版社,1995,562~574
    22.周大荣,何康来,王振营,文丽萍,叶志华,高云霞,宋彦英.玉米螟综合防治技术.1995,金盾出版社,北京
    23. AGBIOS. Agriculture and B iotechnology Strategies Incorporated. 2001. Crop database, MON810. Essential Biosafety. (http://www.essentialbiosafety.info/dbase.php)
    
    
    24. Alstad D.N. and Andow D.A. Managing the evolution of insect resistance to transgenic plants. Science, 1995, 268:1894
    25. Amos Navon. Bacillus thuringiensis insecticides in crop protection-reality and prospects. Crop Protection, 2000, 19:669~676
    26. Anthony R.Ives. Evolution of Insect Resistance to Bacillus thuringiensis Transformed Plants. Science, 1996, 273:1412~1413
    27. Archer T.L., Schuster G., Patrick C., Cronholm G., Bynum E.D. Jr., and Morrison W.P. Whorl and stalk damage by European and Southwestern corn borers to four events of Bacillus thuringiensis transgenic maize. Crop Protection, 2000, 19:181~190
    28. Archer T.L., Patrick C., Schuster G., Cronholm G., Bynum E.D. Jr., and Morrison W.P. Ear and shank damage by corn borers and corn earworms to four events of Bacillus thuringiensis transgenic maize. Crop Protection, 2001,20:139~144
    29. Armstrong C.L., Parker G.B., Pershing J.C., Brown S.M., Sanders P.R., Duncan D.R., Stone T., Dean D.A., Deboer D.L., Hart J., Howe A.R., Morrish F.M., Pajeau M.E., Petersen W.L., Reich B.J., Rodriguez R., Santino C.G., Sato S.J., Schuler W., Sims S.R., Stehling S.T., Arochione L.J.,and Fromm M.E.. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thhuringiensis. Crop Sci., 1995, 35:550~557
    30. Bale J.S. Insect cold hardiness: a matter of life and death. Eur. J. Entomol., 1996, 93:369~382
    31. Ballester V., Granero F., Tabashnik B.E., Malvar T., and Ferré J. Integrative Model for Binding of Bacillus thuringiensis Toxins in Susceptible and Resistant Larvae of the Diamondback Moth (Plutella xylostella). Appl.Envir Microbiol., 1999, 65:1413~1419
    32. Barnes D., Hodson A.C. Low temperature tolerance of the European corn borer in relation to winter survival in Minnesota. J.. Econ. Entomol., 1956, 49(1): 20~27
    33. Baust J.G, Miller L.K. Seasonal variations in glycerol content and its influence on cold hardiness in the Alaskan carabid beetle Pterostichus brevicornis. Journal of Isect Physiology, 1970, 16: 979~900
    34. Bocrguet D., Genissel A., Raymond M. Insecticide Resistance and Dominance Levels. J. Econ. Entomol., 2000, 93(6): 1588~1595
    35. Bolin P.C., Hutchison W.D., Andow D.A. Long-term selection for resistance to Bacillus thuringiensis CrylAc endotoxin in a Minnesota population of European corn borel(Lepidoptera:Crambidae), J. Econ. Entomol., 1999, 93:1588~1595
    36. Burkness E.C., Hutchison W.D., Bolin P.C., Barrels D.W., Warnock D.F., and Davis D.W. Field efficacy of sweet corn hybrids expressing a Bacillus thuringiensis toxin for management of Ostrinia nubilalis (Lepidoptera:Crambidae) and Helicoverpa Zea (Lepidoptera:Noctuidae). J. Econ. Entomol., 2001, 94(1): 197~203
    37. Cannon R.J.C. Prospects and Progress for Bacillus thuringgensis-based pesticides. Pestic. Sci., 1993, 37:331~335
    
    
    38. Chaufaux J., Muller-Cohn J., Buisson C., Sanchis V., Lereclus D., Pasteur N.. Inheretanc of resistance to the Bacillus thuringiensis CrylC toxin in Spodoptera littoralis (Lepidoptera: Noctuidae). J.Econ. Entomol., 1997, 90:873-878
    39. Cohen E., Rozen H., Joseph T., Margulis L. Photoprotection of Bacillus thuringiensis vat. kurstaki from ultra-violet irradiation, J. Invertebr. Pathol., 1991, 57:343~351
    40. Crawley M.J., Brown S.L., Hails R.S., Kohn D.D., Rees M.. Biotechnology: transgenic crops in natural habits. Nature, 2001, 409:682~683
    41. Davis P.M., Onstad D.W. Seed mixtures as a resistance management strategy for European corn borer (Lepidoptera: Crambidae) infesting transgenic corn expressing CrylAb protein, J.Econ. Entomol., 2000, 93(3), 937~948
    42. Dunlde R.L., Shasha B.S. Response of starch encapsulated Bacillus thuringiensis containing UV screens to sunlight. Environ. Entomol., 1989, 18:1035~1041
    43. Ferré J., Real M.D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. PNAS, 1991, 88:5119~5123
    44. Ferré J., van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 2002, 47, 501~533
    45. Ferro D.H., Lyon S.M. Colorado potato beetle (Coleoptera: Chrysomelidae) larval mortality: operative effects of Bacillus thuringiensis subsp.san diego. J. Econ. Entomol., 1991, 84:806~809
    46. Ferro D.H., Yuan Q.C., Slocombe A.,Tutle A. Residual activity of insecticides under field conditions for controlling the Colorado potato beetl (Coleoptera: Chrysomelidae). J. Econ. Entomol., 1993, 86:511~516
    47. Forcada C., Alcácer E., Garcerá M.D., Martinez R. Differences in the midgut proteolytic activity of two Heliothis virescens strains,one susceptible and one resistant to Bacillus thuringiensis toxins. Arch. Insect Biochem. Phyusiol., 1996, 31:257~272
    48. Forcada C., Alcácer E., Garcerá M.D., Tato A., Martinez R.. Resistance to Bacillus thuringiensis CrylAc toxin in three strains of HeLiothis viresecens: proteolytic and SEM study of the larval midgut. Arch. Insect Biochem.Physiol., 1999, 42:51~63
    49. Fuxa J. Fate of released entomopathogens with reference to risk assessment of genetically engineered microorganisms. Bull. Entomol. Soc. Am., 1989, 35:12~24
    50. Gahan L.J., Gould E, Heckel D.G., Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 2001,293(5531), 857~860
    51. Gould F., Anderson A., Reynolds A., Bumgarner L., William M. Selection and Genetic Analysis of a Heliothis Virescens (lepidotera: Noctuidea) Strain with High levels of Resistance to Bacillus thuringiensis Toxins. J. Econ. Entomol., 1995, 88(6): 1545~1559
    52. Gould E, Martinez A., Anderson A., Ferré J., Silva F.J. and William J.M. Spectrum resestance to Bacillus thuringiensis toxins in Heliothis Virescens. PNAS, 1992, 89:7986~7990
    53. Groeters F.R., Tabashnik B.E., Finson N., Johnson M.W. Resistant to Bacillus thuringiensis
    
    affects mating success of the diamondback moth (Lep.: Plu.). J. Econ. Entomol., 1993, 86:1035~39
    54. Guthrie W.D., Onukogu F.A., Awadallah W.H., and Robbins J.C. European corn borer: evaluation of resistance in husk-silk tissue of inbred lines of com. J. Econ. Entomol., 1980, 73: 178~180
    55. Gdffitts J.S., Whitacre J.L., Stevens D.E., Aroian RV. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science, 2001, 293(5531): 860~864
    56. Hanson S.M., Craig G. B. Jr. Relationship Between cold hardiness and supercooling point in Aedes albopictus eggs. J.American Mosquito Control Association, 1995, 11:35~38
    57. He K.L. Zhou D.R., and Wang Z.Y. Progress of maize resistance research to the Asian corn borer in China. In China Association of Agricultural Science Societies [eds], Prospects of maize genetics and breeding for the 21st century. Proceedings of an International Maize Genetics and Breeding Symposium, 15~17 September 2000, Changchun, China
    58. He K.L., Wang Z.Y., Wen L.E, Bai S.X., Zhou D.R., Zhu Q.H. Field evaluation of the Asian corn borer control in hybrid of transgenic maize Event MON810.Agricultural Sciences in China, 2003a, 2(12): 1290~1295
    59. He K.L., Wang Z.Y., Zhou D.R., Wen L.E, Song Y.Y., Yao Z.Y. Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol., 2003b, 96(3): 935~940
    60. Heckel D.G., Gahan L.J., Liu Y.B., and Tabashnik B.E. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. PNAS, 1999, 96:8373~8377
    61. Heckel D.G., Gahan L.C., Gould E, Anderson A. Identification of a linkage group with a major effect on resistance to Bacillus thiurngiensis CrytlAc cndotoxin in the tobacco budworm(Lepidoptcra: Noctuidae). J. Econ. Entomol., 1997, 90:75~86
    62. Hcrrero S., Oppert B., and Ferr J. Different mechanisms of resistance to Bacillus thuringiensis toxins in the Indianmeal moth. Appl. Envir. Microbiol., 2001, 67(3): 1085~1089
    63. Huang E, Bushman L.L., Higgins R.A., McGaughey W.H. Inheritance of resistance to Bacillus thuringiensis toxin(Dipel ES) in the European corn borer. Science, 1999a, 284:965~967
    64. Huang F., Higgins R.A., and Buschman L.L. Heritability and stability of resistance to Bacillus thuringiensis in Ostrinia nubilalis (Lepidoptera: Pyralidae). Bull. Entomol. Res. 1999b, 89: 449~454
    65. Huang E, Higgins R.A. and Bushman L.L. Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp.kurstati under seletion pressure in European corn borer (lepidoptera, pyralidae). J. Econ. Entomol., 1997, 90:1137~1143
    66. Huang F., Buschman L.L., Higgins R.A., and Li H. Survival of Kansas Dipel-resistant European corn borer (Lepidoptera: Crambidae) on Bt and Non-Bt corn hybrids. J. Econ. Entomol., 2002, 95: 614~621
    
    
    67. Hudon M., Leroux E.J. and Harcourt D.G Seventy years of European corn bore (Ostrinia nubilalis) research in North Amedca.Agric. Zool. Rev., 1989, 3:53~96
    68. Hyde J., Matin M.A., Preckel P.V., Dobbins C.L., Edwards C. R. An economic analysis of non-Bt corn refuges. Crop Protecion, 2001, 20:167~171
    69. Jones K. Peffomance of Nu COTN with bollgard ~(TM)[C]. Pro Belt Cotton conf, 1996, 46~48
    70. Koziel M.G., Beland G.L., Bowman C., Carozzi N.B., Crenshaw R., Crossland L., Dawson J., Desal N., Hill M., Kadwell S., Launis K., Lewis K., Maddox D., McPherson K., Meghji M.R., Merlin E., Rhodes R., Warren G.W., Wright M., and Evola S.V. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus Thuringiensis. Bio/Technology, 1993,11: 194~200
    71. Lauer J. and Wedberg J. Grain yield of initial Bt com hybrid introductions to farmers in the northen corn belt. Journal of Production Agriculture, 1999, 12(3): 373~376
    72. Lee M.K., Rajamohan F., Gould E, Dean D.H. Resistance to Bacillus thuringiensis CrylA δ-endotoxion in a labolatory-selected Heliothis virescens strain in related to receptor alteration. Appl. Envir. Microbiol., 1995, 61:3836~3842
    73. Lee R.E.Jr. Insect cold hardiness: to freeze or not to freeze. Bioscience, 1989, 39:308~313
    74. Liu Y.B., Tabashnik B.E. Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proceedings of the Royal Society of London: Series B: Biological sciences, 1997, 264:605
    75. Liu Y.B., Tabashnik B.E., Masson L., Escriche B., Ferré J. Binding and toxicity of Bacillus thuringiensis protein CrylC to susceptible and resistant diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 2000, 93:1~6
    76. Liu Y.B., Tabashnik B.E., Pusztai-Carey M. Field-evolved resistance to Bacillus thuringiensis toxin Crylc in diamondback moth. J.. Econ. Entomol., 1996, 89:798~804
    77. Liu Y.B., Tabashnik B.E., Dennehy T.J., Patin A.I., Bartlett A.C. Development time and resistance to Bt crops. Nature, 1999, 400:519
    78. Losey J.E., Rayor L.S., and Carter M.E. Transgenic pollen harms monarch larvae. Nature, 1999, 399: 214.
    79. Lozzia G.C., Furlanis C., Manachini B., Rigamonti I.E. Effects of Bt corn on Rhopalosiphum padi L. (Rhynchota Aphididae) and on its predator Chrysoperla carnea stephen(Neuroptera Chrysopidae). Bollettino-di-Zoologia-Agraria-e-di-bachicoltura, 1998, 30(2): 153~164
    80. Macintosh S., Stone T., Jokerst S., Fuchs R. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. PNAS, 1991, 88(20): 8930~8933
    81. Martinez-Ramirez A.C., Gould F., Ferré J. Histopathological effects and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure CrylA crystal proteins from Bacillus thuringiensis. Biocontrol Sci. Technol., 1999, 9:239~246
    82. Martinez-Ramírez A.C., Escriche B., Real M.D., Silva EJ. & Ferré J. Inheritance of Resistance to a Bacillus thuringiensis Toxin in a Field Population of Diamondback Moth (Plutella xylostella).
    
    Pestic. Sci., 1995, 43:115~120
    83. Mason C.E., Rice M.E., Calvin D.D., van Duyn J.W., Showers W.B., Hutehison W.D., Witkowski J.F., Higgins R.A., Onstad D.W., and Dively G.P. European corn borer, ecology and management. North Central Regional Extension Publication No. 327, 1996, Published by Iowa State University, Ames, Iowa.
    84. McDonald J.R., Head J., Bale J.S., Waiters K.F.A. Cold tolerance, overwintering and extablishement potential of Thrips palmi. Physiological Entomology, 2000, 25(2): 159~166
    85. MeGaughey W. H., Beeman R.W. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol., 1988, 81:28
    86. MeGaughey W.H. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science, 1985, 229:193~194
    87. McGaughey Willian H. and Whalon Mark E. Managing Insect Resistance to Bacillus thuringiensis Toxins. Science, 1992, 258:1451~1455
    88. Metz T.D., Roush R.T., Tang J.D., Shelton A.M., and Earle E.D. Tansgenic broccoli expressing a Bacillus thuringiesis Insecticidal crystal protein: implications for pest resistance management strategies. Mol. Breed., 1995, 1:309~317
    89. Moat William J., Pusztai-carey Marianne, Faasen Henkvan, Bosch, Dirk Roger Frutos, cecile Rang Keluo.. Development of Bacillus thuringiensis Crylc Resistance by Spodoptera exigu a (hubner) (Lepidoptera; Noctuidae). Appl. Envir. Microbiol., 1995, 61(6) :2086~2092
    90. Mousseau T.A., Fox C.W. The adaptive significance ofmatermal effects. TREE, 1998, 13:403~407
    91. Muller-Cohn J., Chaufaux J., Buisson C., Gilois N., Sanchis V., Lereclus D. Spokoptera littoralis (Lepidoptera: Noetuidae) resistance to CrylC and Cross-resistance to other Bacillus thuringiensis Crystal toxins. J. Econ. Entomol., 1996, 89:791~797
    92. Nafus D. and I. Schreiner. Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep: Pyralidae). Tropical Pest Management, 199 l, 37:41~56
    93. Navon A., Klein M., Braun S. Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana, and Spodoptera littoralis larvae based on standardized diets. J. Invertebr. Pathol, 1990, 55:387~393
    94. Navon A. Control of lepidopteran pests with Bacillus thuringiensis. In: Bacillus thuringiensis,an Environmental Biopesticide: Theory and Practice. Edit by Entwistle P.F.et al. Wiley, New York, USA, 1993, pp: 125~146
    95. Oppert B., Kramer K.J., Johnson K., Upton S., McGaughey W.H. Luminal proteinases from Plodia interpunctella and the Hydrolysis of Bacillus thuringiensis CrylAe protoxin. Insect Biochem. Mol .Biol., 1996, 26:571~583
    96. Oppert Brenda, Kramer Karl J., Beeman Richard W., Johnson Donovan, and MeGaughey William H. Proteinase-mediated Insect Resistance to Bacillus thuringiensis Toxins. J. Biol. Chem., 1997, 272:23473~23476
    97. Perez C.J., Shelton A.M. Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus
    
    thuringiensis Bediner in Central America. J. Econ. Entomol., 1997, 90:87~93
    98. Pilcher C.D., Obrycki J.J., Rice M.E. and Lewis L.C. Preimaginal development, survival and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environ. Entomol., 1997, 26(2): 446~454
    99. Rahardja U., Whaion M.E. Inheritance of resistance to Bacillus thuringiensis subsp, tenebrionis Cry3A δ-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ. Entomol., 1995, 88:21~26
    100. Ramos L.M., McGuire M.R., Galan Wong L.J. Utilization of several biopolymers for granular formulations of Bacillus thuringiensis. J. Econ. Entomol., 1998, 91:1109~1113
    101. Riebe J.F. The development and implementation of strategies to prebent resistance to Bt-expressing crop: an industry perspective, J. Plant Pathol., 1999, 21:101~105
    102. Sayyed Ali H., Haward R., Herrero S., Ferré J., and Wright D. J. Genetic and Biochemical Approach for Characterization of Resistance to Bacillus thuringiensis Toxin CrylAc in a Field Population of the Diamondback Moth. Plutella xylostella. Appl. Envir. Microbiol., 2000a, 66: 1509~1516
    103. Sayyed A.H., Ferré J., Wright D.J. Mode of inheritance and stability of resistance to Bacillus thuringiensis var kurstaki in a diamondback moth (Plutella xylostella) population from Malaysia. Pest Manag. Sci., 2000b, 56:743~748
    104. SchnepfE., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., and Dean D. H. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev., 1998, 62(3): 775~806
    105. Shelton A.M., Robertson J.L., Tang J.D., Perez C., Eigenbrode S.D., Preisler H.K., Wilsey W.T., and Cooley R.J. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol., 1993, 86:697~705
    106. Sim S.R., Stone T.B. Genetic basis of tobacco budworm resistance to an engineered Pseudomonas fluorescens expressing the endotoxin of Bacillus thuringiensis kurstaki, J. Invertebr Pathol, 1991, 57:206~210
    107. Sjursen H., Sφmme L. Seasonal changes in tolerance to cold and in desiceation in Phauloppia sp (Acari, Oribatida) from Finse, Norway. J. Insect Physiol, 2000, 46:1387~1396
    108. Stokstad Erik. First light on Genetic Roots of Bt Resistance. Science, 2001, 293:778
    109. Sφmme L. The history of cold hardiness research in terrestrial arthropods. Cryo Letters, 2000, 21(5): 289~296
    110. Sφmme L. The physiology of cold hardiness in terrestrial arthropods. Eur. J. Entomol., 1999, 96: 1~10
    111. Tabashnik B.E., Cushing N.L., Finson N., and Johnson M.W. Field development of resistance to Bacillus thuringiensis in diamondback moth. J. Econ. Entomol., 1990, 83:1671~1676
    112. Tabashnik B.E. Determining the mode of inheritance of pesticide resistance with backcross experiments, J.Econ. Entoraol., 1991, 84:703~712
    
    
    113. Tabashnik B.E. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 1994, 39:47~79
    114. Tabashnik B.E., Finson N., Johnson M.W., Heckel D. Prolonged selection affects stability of resistance to Bacillus thuringienisis in diamondback moth (Lepidoptera: Plutellidae). J .Econ. Entomol., 1995, 88:219~224
    115. Tabashnik B.E., Malvar T., Liu Y.B., Finon N., Borthakur D. et al. Cross-resistance of diamondback moth indicates altered interactions with domain Ⅱ of Bacillus thuringiensis toxins. Appl. Envir. Microbiol., 1996, 62:2839~2844
    116. Tabashnik B.E., Schwartz J.M., Finson N., Johnson M.W. Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol, 1992, 85: 1046.
    117. Tabashnik Bruce E., Richard T. Roush, Elizabeth D. Earle, Anthony M. Shelton, Fangneng Huang, Lawrent Buschman, Randall Higgins, and William McGaughey. Resistance to Bt toxins. Science, 2000, 287:41
    118. Tabashnik B.E., Liu Y.B., Malvar T., Heckel D.G., Masson L., Ballester V., Granero E, Ménsua J.L., and Ferré J. Global variation in the genetic and biochemical basis of diamondback moth resistance to B. thuringiensis. PNAS, 1997, 94:12780~12785
    119. Tang J.D., Collins H.L., Roush R.T., Metz T.D., Earle E.D., Shelton A.M. Survival, weight gain, and oviposition of resistant and susceptible Plutella xylostella(Lepidoptera: Plutellidae) on broccoli expressing CrylAc toxin of Bacillus thuringiensis. J. Econ. Entomol., 1999, 92:47~55
    120. Tang J.D., Collins H.L., Roush R.T., Metz T.D., Earle E.D., Shelton A.M. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies, J. Econ. Entommol.., 1999, 94:240~247
    121. Tang J.D., Gilboa S., Roush R.T., Shelton A.M. Inheritance, stability, and lack of fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepdoptera: Plutellidae) from Florida. J. Econ .Entomol., 1997, 90:732~741
    122. Valaitis A.P., Lee M.K., Rajamohan F.et al. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CrylAc delta-endotoxin of Bacillus thuringiensis, Insect Biochem. Mol. Biol, 1995, 25:1143~1151
    123. van Rie J., W.H.MeGaughey, Johnson D.E., Barnett B.D., VanMeuaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science, 1990, 247:572~574
    124. Williams W.P., Buckley P.M., Sagers J.B., and Hanten J.A. Evaluation of transgenic corn for resistance to corn earworm (Lepidoptera: Noctuidae), fall armyworm (Lepidoptera: Noetuidae) and southwestern corn borer (Lepidoptera: Crambidae) in a laboratory bioassay. J. Agric. Entomol., 1998, 15:105~112
    125. Williams W.P., Sagers J.B., Hanten J.A., Davis F.M., and Buckley P.M. Transgenic corn evaluated for resistance to fall arrnyworm and southwestern corn borer. Crop. Sci., 1997, 37: 957~962
    126. Wold S.J., Burkness E.C., Hutchison W.D., and Venette R.C. In-field monitoring of beneficial
    
    insect populations in transgenic corn expressing a Bacillus thuringiensis toxin. Journal of Entomological Science, 2001, 36(2): 177~187
    127. Wright D.J., Iqbal M., Granero E, Ferré J. A change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp.kurstaki and B. thuringiensis subsp.aizawai. Appl. Envir. Microbiol, 1997, 63: 1814~1819
    128. Zachariassen K.E. Physiology of cold tolerance in insects. Physiol. Rev., 1985, 65:827~832
    129. Zhao J.Z., ChangHui R., MeiGuang L., XianLin E, LinJun R., XiangQing M.. Monitoring and management of Helicoverpa armigera resistance to transgenie Bt cotton in Northern China. Resistant Pest Management, 2000, 11(1): 28~31
    130. Zhao JianZhou, Collins H.L., Tang J.D., Jun C., Earle E.D., Ronsh R.T., Herrero S., Eseriche Ferré B., Shelton A.M. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of CrylC. Appl. Envir. Microbiol, 2000, 66(9): 3784~3789

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700