功能聚合物界面构建及其在生命分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一多学科交叉的研究方向,功能聚合物界面的构建及其生物学应用越来越受到人们的关注,并已成为目前生命分析领域的研究热点,其主要原因是聚合物的性质可以通过不同的化学反应进行人为的调节和控制,从而构建适宜于不同研究对象和目的功能界面。目前,已经有许多聚合物界面被用于不同的生物学应用。然而,由于目前所用材料固有的一些缺点(如表面惰性而无法功能化,对生物样品的非特异性吸附等)严重制约了这些聚合物界面在生命分析中的进一步应用。研究发现新型聚合物材料的合成及其功能界面的构建是解决该问题的关键。鉴于此,本研究的主要内容是设计、合成具有一定生物功能的聚合物,并以其为基底,根据不同的研究目的构建其生物学界面,同时对所构建界面在生命分析中的应用进行探索。通过上述研究工作,取得了以下重要结论:
     1.通过点击化学和自由基聚合反应合成了一类新型的乙酰胆碱类仿生聚合物。合成的聚合物包括生物活性单元(乙酰胆碱类似物单元)和生物惰性单元(聚乙二醇单元)。为了进一步探索生物活性单元和生物惰性单元对神经元生长的影响,通过改变这两种单体的比例,合成5种不同的聚合物,并通过氢核磁共振谱(1H nuclear magnetic resonance,1H NMR)、傅里叶红外谱(Fourier-transform infrared spectroscopy, FT-IR)、凝胶渗透色谱(Gel permeation chromatography, GPC)和差示扫描量热仪(Differential scanningcalorimetry, DSC)测定了其物理性质。通过在这些聚合物所构建的膜界面上培养鼠海马神经元研究发现:调节聚合单体的比例会明显影响神经元的生长;鼠神经元在不同的聚合物表面显示出了不同的生长形态;在生物惰性单元与生物活性单元比例为1:60时,制备的聚合物膜表面可诱导神经元的再生,其能力类似于聚赖氨酸(poly-L-lysine, PLL)(一种培养神经细胞的常用基底材料)。这些乙酰胆碱类仿生聚合物可作为仿生材料在神经工程中具有一定的应用前景,特别是在调节海马神经元生长方面的应用。
     2.通过水相氧化反应和甲基丙烯酸二甲氨乙酯(Dimethylaminoethyl methacrylate,DMAEMA)为单体的表面自由基聚合(Surface-initiated atom transfer radical polymeri-zation, SI-ATRP)反应,成功制备了一种季铵化聚甲基丙烯酸二甲氨乙酯[Quaternizedpoly(dimethylaminoethyl methacrylate), QPDMAEMA]嫁接的聚二甲基硅氧烷[Poly(dimethylsiloxane),PDMS]表面。其步骤如下:首先在H2SO4/H2O2溶液中,将PDMS表面的Si-CH3转换为Si-OH。然后,通过硅烷化反应将引发剂固定在其表面,并通过原子转移自由基聚合将聚甲基丙烯酸二甲氨乙酯(PDMAEMA)接枝到PDMS表面。最后通过溴乙烷与PDMAEMA上的亚胺结合形成季铵化的PDMAEMA刷修饰的PDMS表面。采用全反射红外光谱(Attenuated total reflection FT-IR,ATR-FT-IR)、X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)、接触角测定等手段,对所制备的季铵化PDMAEMA修饰PDMS界面进行了表征与分析。研究结果显示,与没有修饰的PDMS表面以及PDMAEMA修饰的PDMS表面相比,季铵化的PDMAEMA修饰PDMS表面具有很好的湿润性、稳定性,同时具有显著的抗蛋白吸附、抗细菌粘附和细胞粘附的能力。
     3.通过单甲氧基聚乙二醇引发的乳酸开环聚合及随后点击化学嫁接含叠氮基的聚甲基丙烯酸磺基甜菜碱的反应,合成了一类新型的抗生物粘附的聚酯,即:聚乙二醇-聚乳酸-聚磺基甜菜碱[monomethoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(sulfobetaine methacrylate), MPEG-PLA-PSBMA]。聚合物的化学结构采用氢核磁共振谱(1H NMR)和傅里叶红外谱(FT-IR)进行了表征,其物理性质(如分子量、玻璃化温度和熔点)通过凝胶渗透色谱(GPC)和差示扫描量热仪(DSC)进行了测定。为了探索此类聚合物的亲水性及其抗生物粘附性能,采用物理涂层的方法制备了系列此类聚合物的膜表面,并通过接触角的测定研究了其亲水性和稳定性,通过不同蛋白的吸附、不同细胞和细菌的培养研究了其抗生物粘附能力。结果显示制备的两性的聚酯具有很好的可湿性和稳定性,以及优良的抗生物粘附能力。
     4.由于其无毒、无过敏和良好的生物相容性,脂肪族聚酯在功能生物材料中应用与研究引起了广泛的关注。但是由于脂肪族聚酯的疏水性和侧链功能基团的缺乏严重限制了其在生物医学领域的应用。为此,该研究也通过带末端炔基内酯的开环聚合及随后的点击化学嫁接合成了四种新型的具有不同功能基团的脂肪族聚酯:聚甲基丙烯酸磺基甜菜碱(polySBMA-)、聚甲基丙烯酸乙基磷酸胆碱[poly(2-methacryloyloxylethylphosphorylcholine), polyMPC-]、聚乙二醇[poly(ethylene glycol), PEG-]和季铵化的聚甲基丙烯酸二甲氨乙酯(QPDMAEMA-)嫁接的聚丙炔已交酯-聚已内酯[poly(propargylglycolide)-co-poly(ε-caprolactone), PPGL-co-PCL]。聚合物的化学结构通过氢核磁共振谱(1H NMR)和傅里叶红外谱(FT-IR)进行了表征,其物理性质(如分子量、玻璃化温度和熔点)通过凝胶渗透色谱(GPC)和差示扫描量热仪(DSC)进行了测定。为了探索这些聚合物的亲水性和抗生物粘附的性能,采用物理涂层的方法制备了系列这些聚合物膜表面,并对其亲水性、稳定性及抗蛋白、细胞及细菌粘附的能力进行了评价。结果显示,所制备的功能化脂肪族聚酯具有很好的亲水性、稳定性及抗蛋白、细胞粘附的性能,同时也具有抑制细菌粘附和生长的能力。
     综上所述,该研究成功合成了系列具有不同生物功能的聚合物,构建了系列聚合物表面,并初步探索了其在生命分析中的应用。该研究对于不同生物功能材料制备的方法与技术、不同生物功能材料的性质及其生物学应用进行了系统深入的研究。同时,对这些聚合物在生物医学领域的进一步应用进行了分析与讨论。
As a multi-disciplinary research direction, constructing the function interface haspenetrated in various field. Especially the interface sensing and its applications have attractedmore and more attention. Among construct functional polymer interface and biologicalapplications is the focus of current research. Mainly due to the properties of the polymer canbe artificial adjusted by different chemical reactions for the different objects. At present,many polymers have been used to construct functional interfaces for different biologicalapplications. However, the inherent shortcomings of these materials, such as surface inert, theviability of interface cell and nonspecific adsorption, serious constraint their furtherapplications in life analysis field. We found that synthesizing the new materials andconstructing the function interface was the key to solve this problem. Therefore, the maincontent of the present study was preparation of functional polymers and their applications inbiology. According to our present results, the conclusions were made as follows.
     1. In this study, a new type of acetylcholine-like biomimetic polymers for their potentialin biomaterial-modulated nerve regeneration application is synthesized using click chemistryand free radical polymerization. The structure of the synthesized polymers includes a“bioactive” unit (acetylcholine-like unit) and a “bioinert” unit [poly(ethylene glycol) unit]. Toexplore the effects of the bioactive unit and the bioinert unit on neuronal growth, differentratios of the two initial monomers poly(ethylene glycol) monomethyl ether-glycidylmethacrylate (MePEG-GMA) and dimethylaminoethyl methacrylate (DMAEMA) wereemployed and five different polymers were synthesized. Their chemical structures werecharacterized using1H nuclear magnetic resonance (1H NMR) and Fourier-transform infraredspectroscopy (FT-IR), and their physical properties (including molecular weight,polydispersity, glass transition temperature, and melting point) were determined using gelpermeation chromatography (GPC) and differential scanning calorimetry (DSC). Culturing ofthe primary rat hippocampal neurons on the polymeric surfaces show that the ratio of the twoinitial monomers utilized for polymer synthesis significantly affects neuronal growth. Rathippocampal neurons show different growth morphologies on different polymeric surfaces.The polymeric surface prepared with1:60(mol/mol) of MePEG-GMA to DMAEMA induces neuronal regenerative responses similar to that on poly-L-lysine, a very common benchmarkmaterial for nerve cell cultures. These results suggest that acetylcholine-like biomimeticpolymers are potential biomaterials for neural engineering applications, particularly inmodulating the growth of hippocampal neurons.
     2. A quaternized poly(dimethylaminoethyl methacrylate)-grafted poly(dimethylsiloxane)(PDMS) surface (PDMS-QPDMAEMA) was successfully prepared in this study viasolution-phase oxidation reaction and surface-initiated atom transfer radical polymerization(SI-ATRP) using dimethylaminoethyl methacrylate (DMAEMA) as initial monomer. PDMSsubstrates were first oxidized in H2SO4/H2O2solution to transform the Si-CH3groups on theirsurfaces into Si-OH groups. Subsequently, a surface initiator for ATRP was immobilized ontothe PDMS surface, and DMAEMA was then grafted onto the PDMS surface viacopper-mediated ATRP. Finally, the tertiary amino groups of PolyDMAEMA (PDMAEMA)were quaternized by ethyl bromide to provide a cationic polymer brush-modified PDMSsurface. Various characterization techniques, including contact angle measurements,attenuated total reflection infrared spectroscopy (ATR-FT-IR), and X-ray photoelectronspectroscopy (XPS), were used to ascertain the successful grafting of the quaternizedPDMAEMA brush onto the PDMS surface. Furthermore, the wettability and stability of thePDMS-QPDMAEMA surface were examined by contact angle measurements. Antifoulingproperties were investigated via protein adsorption, as well as bacterial and cell adhesionstudies. The results suggest that the PDMS-QPDMAEMA surface exhibited durablewettability and stability, as well as significant antifouling properties, compared with thenative PDMS and PDMS-PDMAEMA surfaces. In addition, our results present possible usesfor the PDMS-QPDMAEMA surface as adhesion barriers and antifouling or functionalsurfaces in PDMS microfluidics-based biomedical applications.
     3. A new antifouling polyester monomethoxy-poly(ethylene glycol)-b-poly(l-lactide)-b-poly(sulfobetaine methacrylate)(MPEG-PLA-PSBMA) was obtained by ring-openingpolymerization of L-lactide, and subsequent click chemistry to graft the azideend-functionalized poly(sulfobetaine methacrylate)(polySBMA) moieties onto the alkyneend-functionalized MPEG-PLA (MPEG-PLA-alkyne). The chemical structure of the polymerwas characterized using1H nuclear magnetic resonance (1H NMR) and Fourier-transforminfrared spectroscopy (FT-IR), and its physical properties (including molecular weight, glasstransition temperature, and melting point) were determined using gel permeationchromatography (GPC) and differential scanning calorimetry (DSC). To investigate itshydrophilicity and stability, as well as its antifouling properties, the polymer was alsoprepared as a surface coating on glass substrates. The wettability and stability of this polyester was examined by contact angle measurements. Furthermore, its antifouling properties wereinvestigated via protein adsorption, cell adhesion studies, and bacterial attachment assays. Theresults suggest that the prepared zwitterionic polyester exhibits durable wettability andstability, as well as significant antifouling properties. The new zwitterionic polyesterMPEG-PLA-PSBMA could be developed as a promising antifouling material with extensivebiomedical applications.
     4. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-,poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternizedpoly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ε-caprolactone). The synthesis was conducted through ring-opening polymerization ofacetylene-functionalized lactones and grafting using click chemistry. The chemical structuresof the polyesters were characterized through nuclear magnetic resonance (1H NMR) andFourier-transform infrared spectroscopy (FT-IR), and their physical properties (includingmolecular weight, glass transition temperature, and melting point) were determined using gelpermeation chromatography (GPC) and differential scanning calorimetry (DSC). For studieson their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfacesof these polyesters was prepared by coating them onto glass substrates. The hydrophilicityand stability of these polyester surfaces were examined by contact angle measurements andattenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR). Theiranti-bioadhesive property was investigated through protein adsorption, as well as cellular andbacterial adhesion assays. The prepared polyesters showed good hydrophilicity andlong-lasting stability, as well as significant anti-fouling property. Thus, the newly preparedpolyesters could be developed as promising anti-fouling materials with extensive biomedicalapplications.
     In conclusion, in the present study we have successfully synthesized a series of polymerswith different biological function, constructed a series of poymer interface, and explored theirapplication in the life analysis. The study was carried out for different biological functionpolymers preparation methods and techniques, the properties of biological function polymersand its biological applications in-depth study of the system. At the same time, it analysis anddiscuss the further application of these polymers in the biomedical field.
引文
梅莉,路浩,刘宗平,何玉琴.2007.新生SD大鼠大脑皮质神经元原代培养方法的建立及其活性鉴定.中国兽医科学,37(3):264–268.
    Abraham GA, Queiroz AA, Roman JS.2002. Biomaterials23(7):1625–1638.
    Alberts B, Bray D, Lewis J.1994. Molecular biology of the cell.3rd ed, New York: Garland Publishing,Inc.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL.2003.Silk–based biomaterials. Biomaterials24(3):401–416.
    Amato I.1997. Candid cameras for the nanoworld. Science276(5321):1982–1985.
    Anderson KD.2004. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma21(10):1371–1383.
    Ang LPK, Cheng ZY, Beuerman RW, Teoh SH, Zhu X, Tan DTH.2006. The development of a serum-freederived bioengineered conjunctival epithelial equivalent using an ultrathin poly(ε-caprolactone)membrane substrate. InVest. Ophthalmol. Visual Sci.47(1):105–112.
    Antonio RW, Jian Y, Guillermo AA.2004. Biodegradable polyester elastomers in tissue engineering. ExpertOpin. Biol. Ther.4(6):801–812.
    Aramakis VB, Metherate R.1998. Nicotine selectively enhances NMDA receptormediated synaptictransmission during postnatal development in sensory neocortex. J. Neurosci.18(20):8485–8495.
    Bai H, Gou H, Xu J, Chen H.2010. Molding a silver nanoparticle template on polydimethylsiloxane toefficiently capture mammalian cells. Langmuir26(4):2924–2929.
    Battistioni C, Casaletto MP, Ingo GM, Kaciulis S, Mattogno G, Pandol L.2000. Surface characterization ofbiocompatible hydroxyapatite coatings. Surf. Interface Anal.29(10):773–781.
    Bech L, Meylheuc T, Lepoittevin B, Roger P.2007. Chemical surface modification of poly(ethyleneterephthalate) fibers by aminolysis and grafting of carbohydrates. J. Polym. Sci., Part A: Polym. Chem.45(11):2172–2183.
    Bernardini N, Tomassy GS, Tata AM, Tocco GA, Biagioni S.2004. Detection of basal andpotassium-evoked acetylcholine release from embryonic DRG explants. J. Neurochem.88(6):1533–1539.
    Bettinger CJ, Langer R, Borenstein JT.2009. Engineering substrate topography at the micro-and nanoscaleto control cell function. Angew. Chem. Int. Ed.48(30):5406–5415.
    Bi HY, Zhong W, Meng S, Kong JL, Yang PY, Liu BH.2006. Construction of a biomimetic Surface onmicrofluidic chips for biofouling resistance. Anal. Chem.78(10):3399–3405.
    Bonzani IC, Adhikari R, Houshyar S, Mayadunne R, Gunatillake P, Stevens MM.2007. Synthesis oftwo-component injectable polyurethanes for bone tissue engineering. Biomaterials28(3):423–433.
    Bosker WTE, Patzsch K, Cohen Stuart MA, Norde W.2007. Sweet brushes and dirty proteins. Soft. Mater.3(6):754–762.
    Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A.2007. The use of physicalhydrogels of chitosan for skin regeneration following third–degree burns. Biomaterials28(24):3478–3488.
    Bozukova D, Pagnoulle C, Pauw-Gillet MCD, Ruth N, Jér me R, Jér me C.2008. Imparting antifoulingproperties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycolmethyl ether acrylate). Langmuir24(13):6649–6658.
    Branch DW, Wheeler BC, Brewer GJ, Leckband DE.2001. Long-term stability of grafted polyethyleneglycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials22(10):1035–1047.
    Brash JL.2000. Exploiting the current paradigm of blood-material interactions for the rational design ofblood-compatible materials. J. Biomater. Sci. Polym. Ed.11(11):1135–1146.
    Brown L, Koerner T, Horton JH, Oleschuk RD.2006. Fabrication and characterization ofpoly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. LabChip6(1):66–73.
    Buddle M, Eberhardt E, Ciminello LH, Levin T, Wing R, DiPasqualea K, Kathleen M. Raley-Susman.2003.Microtubule-associated protein2(MAP2) associates with the NMDA receptor and is spatiallyredistributed within rat hippocampal neurons after oxygenglucose deprivation. Brain Res.978(1-2):38–50.
    Burdick JA, Ward M, Liang E, Young MJ, Langer R.2006. Stimulation of neurite outgrowth byneurotrophins delivered from degradable hydrogels. Biomaterials27(3):452–459.
    Byung-Moo M, Lee G, Kim SH, Nam YS, Lee TS, Park WH.2004. Electrospinning of silk fibroinnanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblastsin vitro. Biomaterials25(7-8):1289–1297.
    Cai Q, Wan YQ, Bei JZ, Wang SG.2003. Synthesis and characterization of biodegradablepolylactide-grafted dextran and its application as compatilizer. Biomaterials24(20):3555-3562.
    Caldwell KD.1997. In poly(ethylene glycol): chemistry and biological applications. Harris JM, Zalipski S,(eds.). American Chemical Society, Washington, DC, p400.
    Cao Y, Liu W, Zhou G, Cui L.2007. Tissue engineering and tissue repair in immunocompetent animals:Tissue construction and repair. Handchir. Mikrochir. P.39(3):156–160.
    Capelli R, Amsden JJ, Generali G, Toffanin S, Benfenati V, Muccini M, Kaplan DL, Omenetto FG,Zamboni R.2011. Integration of silk protein in organic and light-emitting transistors. Org. Electro.12(7):1146–1151.
    Carnahan MA, Middleton C, Kim J, Kim T, Grinstaff MW.2002. Hybrid dendritic-linear polyester-ethersfor in situ photopolymerization. J. Am. Chem. Soc.124(19):5291–5293.
    Chalfoun CT, Wirth GA, Evans GRD.2006. Tissue engineered nerve constructs: where do we stand? J.Cell Mol. Med.10(2):309–317.
    Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY.2008. A highly stable nonbiofouling surfacewith well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir24(10):5453–5458.
    Chang Y, Yandi W, Chen WY, Shih YJ, Yang CC, Chang Y, Ling, QD, Higuchi, A.2010. Tunablebioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containingzwitterionic polysulfobetaine. Biomacromolecules11(4):1101–1110.
    Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM.2000. Surveying for surfacesthat resist the adsorption of proteins. J. Am. Chem. Soc.122(34):8303–8304.
    Charnley M, Textor M, Acikgoz C.2011. Designed polymer structures with antifouling-antimicrobialproperties. React. Funct. Polym.71(3):329–334.
    Chen G, Ushida T, Tateishi T.2001. Development of biodegradable porous scaffolds for tissue engineering.Mater. Sci. Eng., C17(1–2):63–69.
    Chen S, Li L, Zhao C, Zheng J.2010. Surface hydration: principles and applications towardlow-fouling/nonfouling biomaterials. Polymer51(23):5283–5293.
    Chen S, Zheng J, Li L, Jiang SY.2005. Strong resistance of phosphorylcholine self-assembled monolayersto protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc.127(41):14473–14478.
    Chen Y, Mak AFT, Wang M, Li JS, Wong MS.2006. PLLA scaffolds with biomimetic apatite coating andbiomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity.Surf. Coat. Technol.201(3-4):575–580.
    Chen Y, Mak AFT, Wang M, Li JS, Wong MS.2008. In vitro behavior of osteoblast-like cells on PLLAfilms with a biomimetic apatite or apatite/collagen composite coating. J. Mater. Sci.: Mater. Med.19(6):2261–2268.
    Cheng X, Gupta A, Chen C, Tompkins RG, Rodriguez W, Toner M.2009. Enhancing the performance of apoint-of-care CD4+T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics.Lab Chip9(10):1357–1364.
    Cheng Z, Zhu X, Shi ZL, Neoh KG, Kang ET.2005. Polymer microspheres with permanent antibacterialsurface from surface-initiated atom transfer radical polymerization. Ind. Eng. Chem. Res.44(18):7098–7104.
    Cheung HY, Lau KT, Tao XM, David H.2008. A potential material for tissue engineering: Silkwormsilk/PLA biocomposite. Compos. Part B-Eng.39(6):1026–1033.
    Chiang YC, Chang Y, Higuchi A, Chen WY, Ruaan RC.2009. Sulfobetaine-grafted poly(vinylidenefluoride) ultrafiltration membranes exhibit excellent antifouling property. J. Membr. Sci339(1-2):151–159.
    Chiara P, Seunghwan L, Sung WC, Atsushi M, Nicholas DS.2008. A biomimetic alternative topoly(ethylene glycol) as an antifouling coating: resistance to nonspecific protein adsorption ofpoly(l-lysine)-graft-dextran. Langmuir24(16):8850–8856.
    Chini M, Crotti P, Macchia F.1990. Efficient metal salt catalyzed azidolysis of epoxides with sodium azidein acetonitrile. Tetrahedron Letts.31(39):5641–5644.
    Chong MSK, Lee CN, Teoh SH.2007. Characterization of smooth muscle cells on poly(ε-caprolactone)films. Mater. Sci. Eng., C27(2):309–312.
    Choong CSN, Hutmacher DW, Triffitt JT.2006. Co-culture of bone marrow fibroblasts and endothelialcells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering.Tissue Eng.12(9):2521–2531.
    Cooper BM, Chan-Seng D, Samanta D, Zhang X, Parelkar S, Emrick T.2009.Polyester-graft-phosphorylcholine prepared by ring-opening polymerization and click chemistry.Chem. Commun.7(0):815–817.
    Clough RL.2001. High-energy radiation and polymers: A review of commercial processes and emergingapplications. Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. Atoms185(1-4):8–33.
    Coronas V, Durand M, Chabot JG, Jourdan F, Quirion R.2000. Acetylcholine induces neuritic outgrowth inrat primary olfactory bulb cultures. Neuroscience98(2):213–219.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M.1987. Bacterial biofilms in natureand disease. Annu. Rev. Microbiol.41:435–464.
    Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ.2004. Controllable surface modification ofpoly(lactic-co-glycolic acid)(PLGA) by hydrolysis or aminolysis I: Physical, chemical, andtheoretical aspects. Biomacromolecules5(2):463–473.
    Czaja WK, Young DJ, Kawecki M, Malcolm Brown R.2007. The future prospects of microbial cellulose inbiomedical applications. Biomacromolecules8(1):1–12.
    Dag A, Durmaz H, Demir E, Hizal G, Tunga U.2008. Heterograft copolymers via double click reactionsusing one-pot technique. J. Polym. Sci. Part A Polym. Chem.46(20):6969–6977.
    Dang QF, Yan JQ, Lin H, Chen XG, Liu CS, Ji QX, Li JJ.2012. Design and evaluation of a highly porousthermosensitive hydrogel with low gelation temperature as a3D culture system for Penaeus chinensislymphoid cells. Carbohydr. Polym.88(1):361–368.
    Darcos V, Habnouni SE, Nottelet B, Ghzaoui AE, Coudane J.2010. Well-defined PCL-graft-PDMAEMAprepared by ring-opening polymerisation and click chemistry. Polym. Chem.588(1):280–282.
    Darr A, Calabro A.2009. Synthesis and characterization of tyramine-based hyaluronan hydrogels. J. Mater.Sci. Mater. Med.20:33–44.
    Davidson MR, Mitchell SA, Bradley RH.2005. Surface studies of low molecular weight photolysisproducts from UV-ozone oxidized polystyrene. Surf. Sci.581(2-3):169–177.
    Del Pozo JL, Patel R, Engl N.2009. Infection associated with prosthetic joints. J. Med.361(8):787–794.
    Delaquis PJ, Stanich K, Girard B, Mazza G.2002. Antimicrobial activity of individual and mixed fractionsof dill, cilantro, coriander and eucalyptus essential oils. Inter. J. Food Microbio.74(1–2):101–109.
    Deuel TF.1997. Principles of tissue engineering. In: Lanza RP, Langer R, Chick WL.(eds.). London:Academic Press. pp.133–149.
    Diaz-Quijada GA, Wayner DDM.2004. A simple approach to micropatterning and surface modification ofpoly(dimethylsiloxane). Langmuir20(22):9607–9611.
    Dietz GPH, Dietz B, B hr M.2007. Bcl-xLprotects cerebellar granule neurons against the late phase, butnot against the early phase of glutamate-induced cell death. Brain Res.1164:136–141.
    Djordjevic I, Britcher LG, Kumar S.2008. Morphological and surface compositional changes inpoly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasmatreatment. Appl. Surf. Sci.254(7):1929–1935.
    Dong HC, Huang JY, Koepsel RR, Ye P, Russell AJ, Matyjaszewski K.2011a. Recyclable antibacterialmagnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes.Biomacromolecules12(4):1305–1311.
    Dong R, Molloy RP, Lindau M, Ober CK.2010. Direct synthesis of quanternized polymer brushes and theirapplication for guiding neuronal growth. Biomacromolecules11(8):2027–2032.
    Dong ZX, Mao J, Yang MQ, Wang DP, Bo SQ, Ji XL.2011b. Phase behavior of poly(sulfobetainemethacrylate)-grafted silica nanoparticles and their stability in protein solutions. Langmuir27(24):15282–15291.
    Doris K, Zahida A, Anja B, Hartwig H, Hans-Josef Erli GM.2003. Surface modification ofpoly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials24(21):3663–3670.
    dos Santos JE, Dockal ER. Cavalheiro ETG.2005. Synthesis and characterization of Schiff bases fromchitosan and salicylaldehyde derivatives. Carbohydr. Polym.60(3):277–282.
    Durmaz H, Dag A, Altintas O, Erdogan T, Hizal G, Tunca U.2007. One-pot synthesis of ABC type triblockcopolymers via in situ click [3+2] and Diels-Alder [4+2] reactions. Macromolecules40(2):191–198.
    Dziubla TD, Torjman MC, Joseph JI, Murphy-Tatum M, Lowman AM.2001. Evaluation of porousnetworks of poly (2-hydroxyethyl methacrylate) as interfacial drug delivery devices. Biomaterials22(21):2893–2899.
    Edlund U, Kallrot M, Albertsson AC.2005. Single-step covalent functionalization of polylactide surfaces. J.Am. Chem. Soc.127(24):8865–8871.
    Edmondson S, Osborne VL, Huck WTS.2004. Polymer brushes via surface-initiated polymerizations.Chem. Soc. ReV.33(1):14–22.
    Emmenegger CR, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB.2009. Interaction of bloodplasma with antifouling surfaces. Langmuir25(11):6328–6333.
    Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu LC, Mikos AG,Patrick CW.2002. Bioactive poly (l-lactic acid) conduits seeded with schwann cells for peripheralnerve regeneration. Biomaterials23(3):841–848.
    Feng JJ, WangAJ, Fan J, X u JJ, Chen HY.2010. Hydrophilic biopolymer grafted on poly(dimethylsiloxane)surface for microchip electrophoresis. Anal. Chim. Acta658(1):75–80.
    Fixe F, Dufva M, Telleman P, Christensen CBV.2004. Functionalization of poly(methyl methacrylate)(PMMA) as a substrate for DNA microarrays. Nucleic. Acids. Res.32(1): e9-1–e9-8.
    Floriolli RY, von Langen J, Waite JH.2000. Marine surfaces and the expression of specific byssal adhesiveprotein variants mytilus. Mar. Biotechnol.2(4):352–363.
    Frazier RA, Matthijs G, Davies MC, Roberts CJ, Schacht E, Tendler SJB.2000. Characterization ofprotein-resistant dextran monolayers. Biomaterials21(9):957–966.
    Gabi M, Larmagnac A, Schulte P, Voros J.2010. Electrically controlling cell adhesion, growth andmigration. Colloids Surf. B79(2):365–371.
    Gabriel M, Amerongen GPV, Van Hinsbergh VWM, Amerongen AVV, Zentner A.2006. Direct grafting ofRGD-motifcontaining peptide on the surface of polycaprolactone films. J. Biomater. Sci., Polym. Ed.17(5):567–577.
    Gao HF, Matyjaszewski K.2007. Synthesis of molecular brushes by “Grafting onto” method:combinationof ATRP and click Reactions. J. Am. Chem. Soc.129(20):6633–6639.
    Gao J, Kim YM, Coe H, Zern B, Sheppard B, Wang YD.2006. A neuroinductive biomaterial based ondopamine. Proc. Natl. Acad. Sci. USA103(45):16681–16686.
    Gao JM, Niklason L, Langer R.1998. Surface hydrolysis of poly(glycolic acid) meshes increases theseeding density of vascular smooth muscle cells. J. Biomed. Mater. Res.42(3):417–424.
    Gatenholm P, Ashida T, Hoffman AS.1997. Hybrid biomaterials prepared by ozone-inducedpolymerization0.1. Ozonation of microporous polypropylene. J. Polym. Sci., Part A: Polym. Chem.35(8):1461–1467.
    Geckil H, Xu F, Zhang XH, Moon S, Demirci U.2010. Engineering hydrogels as extracellular matrixmimics. Nanomedicine5(3):469–484.
    Gilbert P, Moore LE.2005. Cationic antiseptics: diversity of action under a common epithet. J. Appl.Microbiol.99(4):703–715.
    Goda T, Matsuno R, Konno T, Takai M, Ishihara K.2008. Photografting of2-methacryloyloxyethylphosphorylcholine from polydimethylsiloxane: Tunable protein repellency and lubrication property.Colloids Surf., B63(1):64–72.
    Goddard JM, Hotchkiss JH.2007. Polymer surface modification for the attachment of bioactive compounds.Prog. Polym. Sci.32(7):698–725.
    Goddard JM, Hotchkiss JH.2008. Tailored functionalization of lowdensity polyethylene surfaces. J. Appl.Polym. Sci.108(5):2940–2949.
    Golander C-G.1992. In poly(ethylene glycol) chemistry: biotechnical and biomedical applications. HarrisJM.(ed.), Plenum Press. New York, p221.
    Gong YH, Zhu YB, Liu YX, Ma ZW, Gao CY, Shen JC.2007. Layer-by-layer assembly of chondroitinsulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance theirchondrogenesis. Acta Biomater.3(5):677–685.
    Goyal A, Kumar A, Patra PK, Mahendra S, Tabatabaei S, Alvarez PJJ, John G, Ajayan PM.2009.Macromol. Rapid Commun.30(13):1116–1122.
    Grafahrend D, Heffels K-H, Beer MV, Gasteier P, M ller M, Boehm G, Dalton PD, Grol J.2011.Degradable polyester scaffolds with controlled surface chemistry combining minimal proteinadsorption with specific bioactivation. Nat. Mater.10:67–73.
    Guan JJ, Gao CY, Feng LX, Shen JC.2001. Surface modification of polyurethane for promotion of celladhesion and growth1: Surface photo-grafting with N,N-dimethylaminoethyl methacrylate andcytocompatibility of the modified surface. J. Mater. Sci.: Mater. Med.12(5):447–452.
    Guan JJ, Gao GY, Feng LX, Sheng JC.2000. Surface photografting of polyurethane with2-hydroxyethylacrylate for promotion of human endothelial cell adhesion and growth. J. Biomater. Sci., Polym. Ed.11(5):523–536.
    Gumera CB, Wang Y.2007. Modulating neuronal responses by controlled integration of acetylcholine-likefunctionalities in biomimetic polymers. Adv. Mater.19(24):4404–4409.
    Guo BL, Gao QY.2007. Preparation and properties of a pH/temperature–responsive carboxymethylchitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydr. Res.342(16):2416–2422.
    Gupta MC, Deshmukh VG.1983. Radiation effects on poly(lactic acid). Polymer24(7):827–830.
    Hansen CL, Sommer MO, Quake SR.2004. Systematic investigation of protein phase behavior with amicrofluidic formulator. Proc. Natl. Acad. Sci. U.S.A.101(40):14431–14436.
    Harris JM.1997. Poly(ethylene glycol): chemistry and biological applications, american chemical society,Washington, DC, p489.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T.2007. Patterned biofunctional designs ofthermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermallyinduced detachment. Biomaterials28(25):3632–3643.
    He T, Yang Z, Chen R, Wang J, Leng Y, Sun H, Huang N.2012. Enhanced endothelialization guided byfibronectin functionalized plasma polymerized acrylic acid film. Mater. Sci. Eng., C32(5):1025–1031.
    He Y, Hower J, Chen SF, Bernards MT, Chang Y, Jiang SY.2008. Molecular simulation studies of proteininteractions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water.Langmuir24(18):10358–10364.
    Henares TG, Mizutani F, Hisamoto H.2008. Current development in microfluidic immunosensing chip.Anal. Chim. Acta611(1):17–30.
    Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R,Beygui RE, MacLellan WR.2008. Three-dimensional electrospun ECM-based hybrid scaffolds forcardiovascular tissue engineering. Biomaterials29(19):2907–2914.
    Higuchi A, Sugiyama K, Yoon BO, Sakurai M, Hara M. Sumita M, Sugawara S, Shirai T. Serum proteinadsorption and platelet adhesion on pluronic (TM)-adsorbed polysulfone membranes.2003.Biomaterials24(19):3235–3245.
    Hironobu M, Koepsel RR, Matyjaszewski K, Russell AJ.2007. Permanent, non-leaching antibacterialsurfaces--2: How high density cationic surfaces kill bacterial cells. Biomaterials28(32):4870–4879.
    Hoenich N. Cellulose for medical applications: Past, present, and future.2006. Bio. Resources1(2):270–280.
    Hoffman AS.1982. Advances in chemistry series. American Chemical Society. Washington, DC. p3.
    Holland NB, Qiu YX, Ruegsegger M, Marchant RE.1998. Biomimetic engineering of non-adhesiveglycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature392(6678):799–801.
    Homola J.2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chem.Rev.108(2):462–493.
    Hong JW, Studer V, Hang G, Anderson WF, Quake SR.2004. A nanoliter-scale nucleic acid processor withparallel architecture. Nat. Biotechnol.22(4):435–439.
    Huang J, Koepsel RR, Murata H, Wu W, Lee SB, Kowalewski T, Russell AJ, Matyjaszewski K.2008.Nonleaching antibacterial glass surfaces via "Grafting Onto": The effect of the number of quaternaryammonium groups on biocidal activity. Langmuir24(13):6785–6795.
    Huang JY, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K.2007. Antibacterial polypropylene viasurface-initiated atom transfer radical polymerization. Biomacromolecules8(5):1396–1399.
    Huang L, Nagapudi K, Apkarian RP, Chaikof EL.2001a. Engineered collagen—PEO nanofibers andfabrics. J. Biomater. Sci., Polym. Ed.12(9):979–993.
    Huang NP, Michel R, Voros J, Textor M, Hofer R, Rossi A. Elbert DL, Hubbell JA, Spencer ND.2001b.Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces:surface-analyticalcharacterization and resistance to serum and fibrinogen adsorption. Langmuir17(2):489–498.
    Hucknall A, Rangarajan S, Chilkoti A.2009. In pursuit of zero: Polymer brushes that resist the adsorptionof proteins. Adv. Mater.21(23):2441–2446.
    Ichimura K, Oh SK, Nakagawa M.2000. Light-driven motion of liquids on a photoresponsive surface.Science288(5471):1624–1626.
    Ikada Y, Jamshidi K, Tsuji H, Hyon SH.1987. Stereocomplex formation between enantiomericpoly(lactides). Macromolecules20(4):904–906.
    Ikemoto S, Mochizuki M, Yamada M, Takeda A, Uchinuma E, Yamashina S, Nomizu M, Kadoya Y.2006.Laminin peptide-conjugated chitosan membrane: application for keratinocyte delivery in wounded skin.J. Biomed. Mater. Res. A79(3):716–722.
    Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N.1998. Why do phospholipidpolymers reduce protein adsorption? J. Biomed. Mater. Res.39(2):323–330.
    Ishihara K, Ueda T, Nakabayashi N.1990. Preparation of phospholipid polymers and their properties aspolymer hydrogel membranes. Polym. J.22(5):355–360.
    Ivins KJ, Bui ET, Cotman CW.1998. beta-amyloid induces local neurite degeneration in culturedhippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis.5(5):365–378.
    Iwasaki Y, Ishihara K.2005. Phosphorylcholine-containing polymers for biomedical applications. Anal.Bioanal. Chem.381(3):534–546.
    Iwasaki Y, Takamiya M, Iwata R, Yusa S, Akiyoshi K.2007. Surface modification with well-definedbiocompatible triblock copolymers-Improvement of biointerfacial phenomena on apoly(dimethylsiloxane) surface. Colloids Surf., B57(2):226–236.
    Jiang S, Cao Z.2010. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and theirderivatives for biological applications. Adv. Mater.22(9):920–932.
    Jiang XW, Vogel EB, Smith MR, Baker GL.2008.“Clickable” polyglycolides: Tunable synthons forthermoresponsive degradable polymers. Macromolecules41(6):1937–1944.
    Jiao YP, Cui FZ.2007. Surface modification of polyester biomaterials for tissue engineering. Biomed.Mater.2(4): R24–R37.
    Jin H-J, Park J, Valluzzi R, Cebe P, Kaplan DL.2004a. Biomaterial films of bombyx mori silk fibroin withpoly(ethylene oxide). Biomacromolecules5(3):711–717.
    Jin L, Deng Y, Hu J, Wang C.2004b. Preparation and characterization of core-shell polymer particles withprotonizable shells prepared by oxyanionic polymerization. J. Polym. Sci. Part A Polym. Chem.42(23):6081–6088.
    Johnston EE, Ratner BD.1996. Surface characterization of plasma deposited organic thin films. J. Elec.Spectroscopy and Related Phenomena81(3):303–317.
    Jozwiak AB, Kielty CM, Black RA.2008. Surface functionalization of polyurethane for the immobilizationof bioactive moieties on tissue scaffolds. J. Mater. Chem.18(19):2240–2248.
    Kallrot M, Edlund U, Albertsson AC.2006. Surface functionalization of degradable polymers by covalentgrafting. Biomaterials27(9):1788–1796.
    Kallrot M, Edlund U, Albertsson AC.2007. Covalent grafting of poly(L-lactide) to tune the in vitrodegradation rate. Biomacromolecules8(8):2492–2496.
    Kato Y, Onishi H, Machida Y.2004. N-succinyl-chitosan as a drug carrier: water-insoluble andwater-soluble conjugates. Biomaterials25(5):907–915.
    Katti DS, Lakshmi S, Langer R, Laurencin CT.2002. Toxicity, biodegradation and elimination ofpolyanhydrides. Adv. Drug Deliv. Rev.54(7):933–961.
    Kenausis GL, V r s J, Elbert DL, Huang N, Hofer R, Ruiz-Taylor L, Textor M, Hubbell JA, Spencer ND.2000. Poly(l-lysine)-g-Poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanismand effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B104(14):3298–3309.
    Kim DH, Kim YS, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA.2009a.Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett.95(13):133701–133703.
    Kim DH, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES,Contreras D, Kaplan DL, Omenetto FG, Huang YG, Hwang KC, Zakin MR, Litt B, Rogers JA.2010.Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater.9(6):511–517.
    Kim G, Park S, Jung J, Heo K, Yoon J, Kim H, Kim IJ, Kim JR, Lee JI. Ree M.2009b. Novel brushpolymers with phosphorylcholine bristle ends: synthesis, structure, properties, and biocompatibility.Adv. Funct. Mater.19(10):1631–1644.
    Kim YJ, Kang IK, Huh MW, Yoon SC.2000. Surface characterization and in vitro blood compatibility ofpoly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge.Biomaterials21(2):121–130.
    Kirshenbaum K, Barron AE, Goldsmith RA, Armand P, Bradley EK, Truong KTV, Dill KA, Cohen FE,Zuckermann RN.1998. Sequence-specific polypeptoids: A diverse family of heteropolymers withstable secondary structure. Proc. Natl. Acad. Sci. USA95(8):4303–4308.
    Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolisd G, Erlid H-J.2003. Surface modification ofpoly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials24(21):3663–3670.
    Klemm D, Heublein B, Fink HP, Bohn A.2005. Cellulose: Fascinating biopolymer and sustainable rawmaterial. Angew. Chem., Int. Ed.44(22):3358–3393.
    Knop K, Hoogenboom R, Fischer D, Schubert US.2010. Poly(ethylene glycol) in drug delivery: Pros andcons as well as potential alternatives. Angew. Chem., Int. Ed.49(36):6288–6308.
    Kolodziej CM, Kim SH, Broyer RM, Saxer SS, Decker CG, Maynard HD.2012. Combination ofintegrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricatedpatterns. J. Am. Chem. Soc.134(1):247255.
    Kreuzer HJ, Grunze M.2001. Stretching of single polymer strands: A first-principles theory. Europhys. Lett.55(5):640–646.
    Kuo WH, Wang M-J, Chien H-W, Wei T-C, Lee C, Tsai W-B.2011. Surface modification withpoly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, andplasma coagulation. Biomacromolecules12(12):43484356
    Kweon DK, Song SB, Park YY.2003. Preparation of water–soluble chitosan/heparin complex and itsapplication as wound healing accelerator. Biomaterials24(9):1595–1601.
    Ladd J, Zhang Z, Chen S, Hower JC, Jiang SY.2008. Zwitterionic polymers exhibiting high resistance tononspecific protein adsorption from human serum and plasma. Biomacromolecules9(5):1357–1361.
    Lam CNC, Kim N, Hui D, Kwok DY, Hair ML, Neumann AW.2001. The effect of liquid properties tocontact angle hysteresis. Colloids Surf., A189(1-3):265–278.
    Lan S, Veiseh M, Zhang M.2005. Surface modification of silicon and gold-patterned silicon surfaces forimproved biocompatibility and cell patterning selectivity. Biosens. Biolelectron.20(9):1697–1708.
    Lauder JM.1993. Neurotransmitters as growth regulatory signals: role of receptors and second messengers.Trends Neurosci.16(6):233–240.
    Lee BS, Lee JK, Kim WJ, Jung YH, Sim SJ, Lee J, Choi IS.2007. Surface-initiated, atom transfer radicalpolymerization of oligo(ethylene glycol) methyl ether methacrylate and subsequent click chemistry forbioconjugation. Biomacromolecules8(2):744–749.
    Lee CC, Sui G, Elizarov A, Shu CJ, Shin YS, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC,Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng HR.2005a. Multistep synthesis ofa radiolabeled imaging probe using integrated microfluidics. Science310(5755):1793–1796.
    Lee CR, Grodzinsky AJ, Spector M.2001. The effects of cross–linking of collagen–glycosaminoglycanscaffolds on compressive stiffness, chondrocyte–mediated contraction, proliferation, and biosynthesis.Biomaterials22(23):3145–3154.
    Lee HB, Kim SS, Khang G.1995. The Biomedical Engineering Handbook. CRC press, PolymericBiomaterials. p581.
    Lee JH, Go AK, Oh SH, Lee KE, Yuk SH.2005b. Tissue anti-adhesion potential of ibuprofen-loadedPLLA–PEG diblock copolymer films. Biomaterials26(6):671–678.
    Lee KB, Yoon KR, Woo SI, Choi IS.2003. Surface modification of poly(glycolic acid)(PGA) forbiomedical applications. J. Pharm. Sci.92(5):933–937.
    Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ.2004. Permanent, nonleachingantibacterial surfaces.1. Synthesis by atom transfer radical polymerization. Biomacromolecules5(3):877–882.
    Lee SD, Hsiue GH, Kao CY, Chang PCT.1996. Artificial cornea: Surface modification of silicone rubbermembrane by graft polymerization of pHEMA via glow discharge. Biomaterials17(6):587–595.
    Lenoir S, Pagnoulle C, Detrembleur C, Galleni M, Jerome R.2006. New antibacterial cationic surfactantsprepared by atom transfer radical polymerization. J. Polym. Sci. A: Polym. Chem.44(3):1214–1244.
    Leong KW, Brott BC, Langer R.1985. Biodegradable polyanhydrides as drug carrier matrices.Characterization, degradation and release characteristics. J. Biomed. Mater. Res.19(8):941–955.
    Lewandrowski K, Wise D, Trantolo D, Gresser J, Yaszemtski M, Altobelli D. Eds.2002. In tissueengineering and biodegradable equivalents. Marcel D. Inc.: New York, Chapter6, pp111–122.
    Lewis LA.2000. Phosphorylcholine-based polymers and their use in the prevention of biofouling, ColloidsSurf., B18(3-4):261–275.
    Li DL, Luo YW, Zhang BZ, Li BG, Zhu SP.2007. RAFT grafting polymerization of MMA/St from surfaceof silicon wafer. Acta Polym. Sin.8:699–704.
    Li L, Chen S, Zheng J, Ratner BD, Jiang SY.2005. Protein adsorption on oligo (ethyleneglycol)-terminated alkanethiolate self-assembled monolayers:the molecular basis for nonfoulingbehavior. J. Phys. Chem. B109(7):2934–2941.
    Liu SX, Kim JT, Kim S.2008. Effect of polymer surface modification on polymer-protein interaction viahydrophilic polymer grafting. J. Food Sci.73(3): E143–E150.
    Liu W, Li L, Wang XM, Ren L, Wang X, Wang JC, Tu Q, Huang X, Wang J.2010. An integratedmicrofluidic system for studying cell-microenvironmental interactions versatilely and dynamically.Lab Chip10(13):1717–1724.
    Loo SCJ, Ooi CP, Boey YCF.2004. Radiation effects on poly(lactide-co-glycolide)(PLGA) andpoly(L-lactide)(PLLA). Polym. Degrad. Stab.83(2):259–265.
    Luk Y-Y, Kato M, Mrksich M.2000. Self-assembled monolayers of alkanethiolates presenting mannitolgroups are inert to protein adsorption and cell attachment. Langmuir16(24):9604–9608.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA.2008. Nanoparticle size and surfaceproperties determine the protein corona with possible implications for biological impacts. Proc. Natl.Acad. Sci. U.S.A.105(38):14265–14270.
    Luo Y, Shoichet MS.2004. A photolabile hydrogel for guided three-dimensional cell growth and migration.Nat. Mater.3(4):249–253.
    Luo YF, Wang YL, Niu XF, Fu CH, Wang SJ.2007. Synthesis, characterization and biodegradation ofbutanediamine-grafted poly(DL-lactic acid). Eur. Polym. J.43(9):3856–3864.
    Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA.2007. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the21stcentury. Adv. Colloid Interface Sci.134(35):167–174.
    Lynch I, Dawson KA.2008. Protein-nanoparticle interactions. Nano Today3(1-2):40–47.
    Ma H, Hyun J, Stiller P, Chilkoti A.2004."Non-fouling" oligo(ethylene glycol)-functionalized polymerbrushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater.16(4):338341.
    Ma P.2004. Scaffolds for tissue fabrication. Mater. Today7(5):30–40.
    Madduri S, Papalo zos M, Gander B.2010. Trophically and topographically functionalized silk fibroinnerve conduits for guided peripheral nerve regeneration. Biomaterials31(8):2323–2334.
    Mahoney MJ,Anseth KS.2006. Three-dimensional growth and function of neural tissue in degradablepolyethylene glycol hydrogels. Biomaterials27(10):2265–2274.
    Mailliot C, Bussière T, Caillet-Boudin M, Delacourte A, Buée L.1998. Alzheimerspecific epitope of AT100in transfected cell lines with tau: toward an efficient cell model of tau abnormal phosphorylation.Neurosci. Lett.255(1):13–16.
    Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL.2001. Smooth muscle cell growth inphotopolymerized hydrogels with cell adhesive and proteolytically degradable domains: syntheticECM analogs for tissue engineering. Biomaterials22(22):3045–3051.
    Marler JJ, Guha A, Rowley J, Koka R, Mooney D, Upton J, Vacanti JP.2000. Soft-tissue augmentation withinjectable alginate and syngeneic fibroblasts. Plast. Reconstr. Surg.105(6):2049–2058.
    Martwiset S.2006. Nonfouling characteristics of dextran-containing surfaces. Langmuir22(19):8192–8196.
    Mathieson I, Bradley RH.1995. Effects of ultra-violet ozone oxidation on the surface-chemistry ofpolymer-films. Adv. Eng. Mater.99(1):185–191.
    Mathieson I, Bradley RH.1996. Improved adhesion to polymers by UV/ozone surface oxidation. Int. J.Adhes. Adhes.16(1):29–31.
    Mathiowitz E, Saltzma WM, Domb A, Langer R.1988. Polyanhydride microspheres as drug carriers. II.Microencapsulation by solvent removal. J. Appl. Polym. Sci.35(3):755–774.
    Mathrowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K,Montgomery S, Bassett M, Morrell C.1997. Biologically erodible microspheres as potential oral drugdelivery systems. Nature386(6623):410–414.
    Mattson MP, Kater SB.1989. Excitatory and inhibitory neurotransmitters in the generation anddegeneration of hippocampal neuroarchitecture. Brain Res.478(2):337–348.
    Mc Lean, KM, Johnson G, Chatelier RC, Beumer GJ, Steele G, Griesser HJ.2000. Method ofimmobilization of carboxymethyl-dextran affects resistance to tissue and cell colonization. ColloidsSurf. B18(3-4):221–234.
    McArthur SL, McLean KM, Kingshott P, St John HAW, Chatelier RC, Griesser HJ.2000. Effect ofpolysaccharide structure on protein adsorption. Colloids Surf. B17(1):37–48.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM.2000.Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis21(1):27–40.
    Mcgary CW.1960. Degradation of poly(ethylene oxide). J. Polym. Sci.46(147):51–57.
    Merrill EW.1987. Destination and correspondences among surfaces contacting blood. Ann. NY. Acad. Sci.516:196–203.
    Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH.1995. Comparison of the proteolyticsusceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide andpeptoid oligomers. Drug Dev. Res.35(1):20–32.
    Mochizuki M, Kadoya Y, Wakabayashi Y, Kato K, Okazaki I, Yamada M, Sato T, Sakairi N, Nishi N,Nomizu M.2003. Laminin-1peptide-conjugated chitosan membranes as a novel approach for cellengineering. FASEB J.17(3):875–877.
    Montheard JP, Chatzopoulos D, Chappard D.1992.2-Hydroxyethyl methacrylate (hema): chemicalproperties and applications in biomedical fields. J. Macromol. Sci. C.32(1):1–34.
    Mrabet B, Nguyen MN, Majbri A, Mahouche S, Turmine M, Bakhrouf A, Chehimi MM.2009. Anti-foulingpoly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surf.Sci.603(16):2422–2429.
    Mrksich M, Whitesides GM.1997. In poly(ethylene glycol): chemistry and biological applications. Harris,JM, Zalipski S,(eds.). American Chemical Society, Washington, DC p.361.
    Murphy KA, Eisenhauer JM, Savin DA.2008. Synthesis, selfassembly and adsorption of PEO-PLA blockcopolymers onto colloidal polystyrene. J. Polym. Sci., Part B: Polym. Phys.46(3):244–252.
    Murphy WL, Schuler LA, Alarid ET, Beebe DJ.2009. Biological implications ofpolydimethylsiloxane-based microfluidic cell culture. Lab Chip9(15):2132–2139.
    Nair LS, Laurencin CT.2006. Polymers as biomaterials for tissue engineering and controlled drug delivery.Adv. Biochem. Engin/Biotechnol.102:47–90.
    Nakagawa M, Ichimura K.2000. Photocontrollability of liquid crystal alignment by a self-assembledmonolayer formed from azobenzenecontaining tetracation through coulombic interactions. Mol. Cryst.Liq. Cryst.345(1):599–604.
    Nakamatsu J, Torres FG, Troncoso OP,2006. Processing and characterization of porous structures fromchitosan and starch for tissue engineering scaffolds. Biomacromolecules7(12):3345–3355.
    Nam YS, Yoon JJ, Lee JG, Park TG.1999. Adhesion behaviours of hepatocytes cultured onto biodegradablepolymer surface modified by alkali hydrolysis process. J. Biomater. Sci., Polym. Ed.10(11):1145–1158.
    Nasongkla N, Shuai XAH, Weinberg BD, Pink J, Boothman DA, Gao J.2004. cRGD‐functionalizedpolymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed.43(46):6323–6327.
    Natalia OG, David DG.2005. Growth and survival signals controlling sympathetic nervous systemdevelopment. Annu. Rev. Neurosci.28:191–222.
    Nath N, Chilkoti A.2002. Creating “smart” surfaces using stimuli responsive polymers. Adv. Mater.14(17):1243+.
    Navarro M, Benetti EM, Zapotoczny S, Planell JA, Vancso GJ.2008. Buried, covalently attached RGDpeptide motifs in poly (methacrylic acid) brush layers: the effect of brush structure on cell adhesion.Langmuir24(19):10996–11002.
    Nguyen L, Rigo JM, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G.2001.Neurotransmitters as early signals for central nervous system development. Cell Tissue Res.305(2):187–202.
    Nie N, Tu Q, Wang JC, Chao F, Liu R, Zhang YR, Liu WM, Wang JY.2012. Synthesis of copolymers usingdendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesionactivity. Colloids Surf. B97:226–235.
    Nishio Y.2006. Material functionalization of cellulose and related polysaccharides via diversemicrocompositions. Adv. Polym. Sci.205:97–151.
    Opsteen JA, van Hest JCM.2005. Modular synthesis of block copolymers via cycloaddition of terminalazide and alkyne functionalized polymers. Chem. Commun.41(1):57–59.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM.2001a. A survey of structure-propertyrelationships of surfaces that resist the adsorption of protein. Langmuir17(18):5605–5620.
    Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM.2001b. Self-assembledmonolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells.Langmuir17(20):6336–6343.
    Pamula E, Dryzek E.2008. Structural changes in surface-modified polymers for medical applications. ActaPhys. Pol., A113(5):1485–1493.
    Park JH, Cho YW, Chung H, Kwon IC, Jeong SY.2003. Synthesis and characterization of sugar-bearingchitosan derivatives: aqueous solubility and biodegradability. Biomacromolecules4(4):1087–1091.
    Park SN, Park JC, Kim HO, Song MJ, Suh H.2002. Characterization of porous collage/hyaluronic acidscaffold modified by1–ethyl–3–(3–dimethylaminopropyl)carbodiimide cross–linking. Biomaterials23(4):1205–1212.
    Parrish B, Rebecca B, Breitenkamp, Emrick T.2005. PEG-and peptide-grafted aliphatic polyesters by clickchemistry. J. Am. Chem. Soc.127(20):7404–7410.
    Pasche S, De Paul SM, V r s J, Spencer ND, Textor M.2003. Poly(l-lysine)-graft-poly(ethylene glycol)assembled monolayers on niobium oxide surfaces: A quantitative study of the influence of polymerinterfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir19(22):9216–9225.
    Pasche S, Voros J, Griesser HJ, Spencer ND, Textor M.2005. Effects of ionic strength and surface chargeon protein adsorption at PEGylated surfaces. J. Phys. Chem. B109(37):17545–17552.
    Patch JA, Barron AE. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimeticoligomers.2002. Curr. Opin. Chem. Biol.6(6):872–877.
    Peng YF, Han BQ, Liu WS, Xu XJ.2005. Preparation and antimicrobial activity of hydroxypropyl chitosan.Carbohydr. Res.340(11):1846–1851.
    Perincek SD, Duran K, Korlu AE, Bahtiyari MI.2007. Ultraviolet technology. Tekstil Konfeksiyon17(4):219–223.
    Piehler J, Brecht A, Hehl K, Gauglitz G.1999. Protein interactions in covalently attached dextran layers.Colloids Surf. B13(6):325–336.
    Popelka S, Machova L, Rypacek F.2007. Adsorption of poly(ethylene oxide)-block-polylactide copolymerson polylactide as studied by ATR-FTIR spectroscopy. J. Colloid Interface Sci.308(2):291–299.
    Prijck KD, Smet ND, Coenye T, Schacht E, Nelis HJ.2010. Prevention of Candida albicans biofilmformation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine.Mycopathologia170(4):213–221.
    Prime KL, Whitesides GM.1991. Self-assembled organic monolayers model systems for studyingadsorption of proteins at surfaces. Science252(5010):1164–1167.
    Qin W, Bauman WA, Cardozo C.2010. Bone and muscle loss after spinal cord injury: organ interactions.Ann. N Y Acad. Sci.1211:66–84.
    Qiu Y, Zhang T, Ruegsegger M, Marchant RE.1998. Novel nonionic oligosaccharide surfactant polymersderived from poly(vinylamine) with pendant dextran and hexanoyl groups. Macromolecules31(1):165–171.
    Rana D, Matsuura T.2010. Surface modifications for antifouling membranes. Chem. Rev.110(4):2448–2471.
    Rana S, Lee SY, Cho JW.2010. Synthesis and characterization of biocompatible poly(ethyleneglycol)-functionalized polyurethane using click chemistry. Polym. Bull.64(4):401–411.
    Ranjan R, Brittain WJ.2007. Tandem RAFT polymerization and click chemistry: An efficient approach tosurface modification. Macromol. Rapid Commun.28(21):2084–2089.
    Ratner BD, Tyler BJ, Chilkoti A.1993. Analysis of biomedical polymer surfaces: polyurethanes andplasma-deposited thin films. Clin. Mater.13(1-4):71–84.
    Ratner BD.1993. The blood compatibility catastrophe. J. Biomed. Mater. Res.27(3):283–287.
    Ratner BD.2007. The catastrophe revisited: Blood compatibility in the21st century. Biomaterials28(34):5144–5147.
    Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, Schuler LA, Alarid ET,Beebe DJ.2009. Biological implications of polydimethylsiloxane-based microfluidic cell culture. LabChip9(15):2132–2139.
    Reich LJ, Stivala SS.1969. Autoxidation of poly(alkylene glycols) in solution. Appl. Polym. Sci.13(5):977–988.
    Reyes CD, Petrie TA, Burns KL, Schwartz Z, Garcia AJ.2007. Biomolecular surface coating to enhanceorthopaedic tissue healing and integration. Biomaterials28(21):3228–3235.
    Riva R, Lussis P, Lenoir S, Jér me C, Jér me R, Lecomte P.2008. Contribution of “click chemistry” to thesynthesis of antimicrobial aliphatic copolyester. Polymer49(8):2023–2028.
    Riva R, Schmeits S, Stoffelbach F, Jerome C, Jerome R, Lecomte P.2005. Combination of ring-openingpolymerization and ‘‘click’’ chemistry towards functionalization of aliphatic polyesters. Chem.Commun.(42):5334–5336.
    Rodriguez Emmenegger C, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB.2009. Interaction ofblood plasma with antifouling surfaces. Langmuir25(11):6328–6333.
    Roerig B, Nelson DA, Katz LC.1997. Fast synaptic signaling by nicotinic acetylcholine and serotonin5-HT3receptors in developing visual cortex. J. Neurosci.17(21):8353–8362.
    Rosen JE, Gu FX.2011. Surface functionalization of silica nanoparticles with cysteine: a low-foulingzwitterionic surface. Langmuir27(17):10507–10513.
    Ruegsegger MA, Marchant RE.2001. Student research award in the doctoral degree candidate category,27th annual meeting of the Society for Biomaterials, St. Paul, MN, April24–29,2001-Reduced proteinadsorption and platelet adhesion by controlled variation of oligomaltose surfactant polymer coatings. J.Biomed. Mater. Res.56(2):159–167.
    Ryu GH, Yang WS, Roh HW, Lee IS, Kim JK, Lee GH, Lee DH, Park BJ, Lee MS, Park JC.2005. Plasmasurface modification of poly(D,L-lactic-co-glycolic acid)(65/35) film for tissue engineering. Surf.Coat. Technol.193(1-3):60–64.
    Saad B, Hirt TD, Welti M, Uhlscgmid GK, Neuenschwander P, Suter UW.1997. Development ofdegradable polyesterurethanes for medical applications: in vitro and in vivo evaluations. J. Biomed.Mater. Res.36(1):65–74.
    Sabitha G, Babu RS, Rajkumar M, Yadav JS.2002. Cerium (III) chloride promoted highly regioselectivering opening of epoxides and aziridines using NaN3in acetonitrile: a facile synthesis of1,2-azidoalcohols and1,2-azidoamines. Org. Lett.4(3):343–345.
    Saifuddin U, Vu TQ, Rezac M, Qian HH, Pepperberg DR, Desai TA.2003. Assembly and characterizationneurotransmitter-immobilized of biofunctional surfaces for interaction with postsynaptic membranereceptors. J. Biomed. Mater. Res. A.66A (1):184–191.
    Samanta S, Chatterjee DP, Manna S, Mandal A, Garai A, Nandi AK.2009. Multifunctional hydrophilicpoly(vinylidene fluoride) graft copolymer with supertoughness and supergluing properties.Macromolecules42(8):3112–3120.
    Santiago LY, Nowak RW, Rubin JP, Marra KG.2006. Peptide surface modification of poly(caprolactone)with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials27(15):2962–2969.
    Sarasam A, Madihally SV.2005. Characterization of chitosan-polycaprolactone blends for tissueengineering applications. Biomaterials26(27):5500–5508.
    Schantz JT, Hutmacher DW, Ng KW, Khor HL, Lim TC, Teoh SH.2002. Evaluation of a tissue-engineeredmembrane-cell construct for guided bone regeneration. Int. J. Oral Maxillofacial Implants17(2):161–174.
    Schense JC, Bloch J, Aebischer P, Hubbell JA.2000. Enzymatic incorporation of bioactive peptides intofibrin matrices enhances neurite extension. Nat. Biotechnol.18(4):415–419.
    Schilp S, Kueller A, Rosenhahn A, Grunze M, Pettitt ME, Callow ME, Callow JA.2007. Settlement andadhesion of algal cells to hexa (ethylene glycol)-containing self-assembled monolayers withsystematically changed wetting properties. Biointerphases2(4):143150.
    Schoof H, Apel J, Heschel I, Rau G.2001. Control of pore structure and size in freeze–dried collagensponges. J. Biomed. Mater. Res.58(4):352–357.
    Sen Gupta A, Wang S, Link E, Anderson EH, Hofmann C, Lewandowski J, Kottke-Marchant K, MarchantRE.2006. Glycocalyx-mimetic dextran-modified poly(vinyl amine) surfactant coating reduces plateletadhesion on medical-grade polycarbonate surface. Biomaterials27(16):3084–3095.
    Shi Q, Su Y, Chen W, Peng J, Nie L, Zhang L, Jiang Z.2011. Grafting short-chain amino acids ontomembrane surfaces to resist protein fouling. J. Membr. Sci.366(1-2):398–404.
    Shin H, Jo S, Mikos AG.2003. Biomimetic materials for tissue engineering. Biomaterials24(24):4353–4364.
    Siegward ME, Eda MK, Gunther SS.1995. Acetylcholine-induced retraction of an identified axon in thedeveloping leech embryo. J. Neurosci.15(2):1419–1436.
    Snyder SH.2006. Turning off neurotransmitters. Cell125(1):13–15.
    Sodergard A.2004. Perspectives on modification of aliphatic polyesters by radiation processing. J. Bioact.Compat. Polym.19(6):511–525.
    Sodhi RNS.1996. Application of surface analytical and modification techniques to biomaterial research. J.Elec. Spectroscopy and Related Phenomena81(3):269–284.
    Spasova M, Mespouille L, Coulembier O, Paneva D, Manolova N, Rashkov I, Dubois P.2009. Amphiphilicpoly(d-or l-lactide)-b-poly(n,n-dimethylamino-2-ethyl methacrylate) block copolymers: controlledsynthesis, characterization, and stereocomplex formation. Biomacromolecules10(5):1217–1223.
    Statz AR, Meagher RJ, Barron AE, Messersmith PB.2005. New peptidomimetic polymers for antifoulingsurfaces. J. Am. Chem. Soc.127(22):7972–7973.
    Stevens CF.2003. Neurotransmitter release at central synapses. Neuron40(2):381–388.
    Su Y-L, Cheng W, Li C, Jiang Z.2009. Preparation of antifouling ultrafiltration membranes withpoly(ethylene glycol)-graft-polyacrylonitrile copolymers. J. Membr. Sci.329(1-2):246–252.
    Suggs LJ, Payne RG, Yaszemski MJ, Alemany LB, Mikos AG.1997. Synthesis and characterization of ablock copolymer consisting of poly (propylene fumarate) and poly (ethylene glycol). Macromolecules30(15):4318–4323.
    Sui GD, Wang JY, Lee CC, Lu WX, Lee SP, Leyton JV, Wu AM, Tseng HR.2006. Solution-phase surfacemodification in intact poly(dimethylsiloxane) microfluidic channels. Anal. Chem.78(15):5543–5551.
    Sun H, Onneby S.2006. Facile polyester surface functionalization via hydrolysis and cell-recognizingpeptide attachment. Polym. Int.55(11):1336–1340.
    Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P, Wang J.2011. High-throughput microfluidic system forlong-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosens.Bioelectron.26(5):1993–1999.
    Sun Y, Ding X, Zheng Z, Cheng X, Hu X, Peng Y.2007. Surface initiated ATRP in the synthesis of ironoxide/polystyrene core/shell nanoparticles. Eur. Polym. J.43(3):762–772.
    Tan W, Krishnaraj R, Desai TA.2001. Evaluation of nanostructured composite collagen–chitosan matriciesfor tissue engineering. Tissue Eng.7(2):203–210.
    Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, Yamamuro T.1994. Apatite coatedon organic polymers by biomimetic process-Improvement in its adhesion to substrate by NaOHtreatment. J. Appl. Biomater.5(4):339–347.
    Tanaka M, Mochizuki A, Shiroya T, Motomura T, Shimura K, Onishi M, Okahata Y.2001. In situ studieson protein adsorption onto a poly(2-methoxyethylacrylate) surface by a quartz crystal microbalance.Colloids Surf., A193(1-3):145–152.
    Tanaka M, Mochizuki A, Shiroya T, Motomura T, Shimura K, Onishi M, Okahata Y.2002. Study onkinetics of early stage protein adsorption on poly(2-methoxyethylacrylate)(PMEA) surface. ColloidsSurf., A203(1-3):195–204.
    Tanaka M, Motomura T, Kawada M, Anzai T, Kasori Y.2000. Blood compatible aspects ofpoly(2-methoxyethylacrylate)(PMEA)-relationship between protein adsorption and platelet adhesionon PMEA surface. Biomaterials21(14):1471–1481.
    Tangpasuthadol V, Pongchaisirikul N, Hoven VP.2003. Surface modification of chitosan films. Effects ofhydrophobicity on protein adsorption. Carbohydr. Res.338(9):937–942.
    Tata AM, Cursi S, Biagioni S, Tocco GA.2003. Cholinergic modulation of neurofilament expression andneurite outgrowth in chick sensory neurons. Neurosci. Res.73(2):227–234.
    Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL.2005. A microfluidic cultureplatform for CNS axonal injury, regeneration and transport. Nat. Methods.2(8):599–605.
    Taylor AM, Rhee SW, Tu CH, Cribbs DH, Cotman CW, Jeon NL.2003. Microfluidic multicompartmentdevice for neuroscience research. Langmuir19(5):1551–1556.
    Terada S, Suzuki K, Nozaki M, Okano T, Takemura N.1997. Anti-thrombogenic effects of2-hydroxyethylmethacrylate-styrene block copolymer and argatroban in synthetic small-calibervascular grafts in a rabbit inferior vena cava model. J. Reconstr. Microsurg.13(1):9–16.
    Terasaka S, Iwasaki Y, Shinya N, Uchida T.2006. Fibrin glue and polyglycolic Acid nonwoven fabric as abiocompatible dural substitute. Neurosurgery58(2):134–138.
    Thissen H, Gengenbach T, du Toit R, Sweeney DF, Kingshott P, Griesser HJ, Meagher L.2010. Clinicalobservations of biofouling on PEO coated silicone hydrogel contact lenses. Biomaterials31(21):5510–5519.
    Tong YW, Shoichet MS.2001. Enhancing the neuronal interaction on fluoropolymer surfaces with mixedpeptides or spacer group linkers. Biomaterials22(10):1029–1034.
    Tsarevsky NV, Bencherif SA, Matyjaszewski K.2007. Graft copolymers by a combination of ATRP andtwo different consecutive click reactions. Macromolecules40(13):44394–445.
    Tsuji H.2005. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, andapplications. Macromol. Biosci.5(7):569–597.
    Tu Q, Li L, Zhang YR, Wang JC, Liu R, Li ML, Liu WM, Wang XQ, Ren L, Wang JY.2011. The effect ofacetylcholine-like biomimetic polymers on neuronal growth. Biomaterials32(12):3253–3264.
    Tugulu S, Arnold A, Sielaff I, Johnsson K, Klok HA.2005. Protein-functionalized polymer brushes.Biomacromolecules6(3):1602–1607.
    Tugulu S, Silacci P, Stergiopulos N, Klok HA.2007. RGD-Functionalized polymer brushes as substratesfor the integrin specific adhesion of human umbilical vein endothelial cells. Biomaterials28(16):2536–2546.
    Ueno H, Mori T, Fujinaga T.2001. Topical formulations and wound healing applications of chitosan. Adv.Drug Delivery Rev.52(2):105–115.
    Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR.2000. Monolithic microfabricated valves andpumps by multilayer soft lithography. Science288(5463):113–116.
    Vamvakaki M, Billingham NC, Armes SP.1999. Synthesis of controlled structure water-soluble diblockcopolymers via oxyanionic polymerization. Macromolecules32(6):2088–2090.
    Varma HK, Sreenivasan K, Yokogawa Y, Hosumi A.2003. In vitro calcium phosphate growth over surfacemodified PMMA film. Biomaterials24(2):297–303.
    Vepari C, Kaplan DL.2007. Silk as a biomaterial. Prog. Polym. Sci.32(8–9):991–1007.
    Verma A, Stellacci F.2010. Effect of surface properties on nanoparticle-cell interactions. Small6(1):12–21.
    Vu TQ, Chowdhury S, Muni NJ, Qian HH, Standaert RF, Pepperberg DR.2005. Activation of membranereceptors by a neurotransmitter conjugate designed for surface attachment. Biomaterials26(14):1895–1903.
    Wang J, Sui G, Mocharla VP, Lin RJ, Phelps ME, Kolb HC, Tseng HR.2006. Integrated microfluidics forparallel screening of an in situ click chemistry library. Angew. Chem. Int. Ed.118(32):5402–5407.
    Wang JF, Liu WM, Tu Q, Wang JC, Song N, Zhang YR, Nie N, Wang JY.2011a. Folate-decorated hybridpolymeric nanoparticles for chemically and physically combined paclitaxel loading and targeteddelivery. Biomacromolecules12(1):228–234.
    Wang YC, Kao SH, Hsieh HJ.2003. A chemical surface modification of chitosan by glycoconjugates toenhance the cell biomaterial interaction. Biomacromolecules4(2):224–231.
    Wang YY, Lu LX, Shi JC, Wang HF, Xiao ZD, Huang NP.2011b. Introducing RGD peptides on PHBVfilms through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules12(3):551–559.
    Warner SC, Waite JH.1999. Expression of multiple forms of an adhesive plaque protein in an individualmussel, Mytilus edulis. Mar. Biol.134(4):729–734.
    Waschinski CJ, Tiller J.2005. Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules6(1):235–243.
    Wen F, Chang S, Toh YC, Teoh SH, Yu H.2007. Development of poly(lactic-co-glycolic acid)-collagenscaffolds for tissue engineering. Mater. Sci. Eng. C27(2):285–292.
    Werner C, Jacobasch HJ, Reichelt G.1995. Surface characterization of hemodialysis membranes based onstreaming potential measurements. J. Biomater. Sci. Polymer Edn7:61–76.
    Westcott NP, Yousaf MN.2008. Synergistic microfluidic and electrochemical strategy to activate andpattern surfaces selectively with ligands and cells. Langmuir24(6):2261–2265.
    Whitesides GM.2006. The origins and the future of microfluidics. Nature442(7101):368–373.
    Wirsen A, Sun H, Albertsson AC.2005a. Solvent free vapour phase photografting of acrylamide ontopoly(methyl methacrylate). Polymer46(13):4554–4561.
    Wirsen A, Sun H, Albertsson AC.2005b. Solvent-free vapor-phase photografting of acrylamide ontopoly(ethylene terephthalate). Biomacromolecules6(5):2697–2702.
    Wirsen A, Sun H, Emilsson L, Albertsson AC.2005c. Solvent free vapor phase photografting of maleicanhydride onto poly(ethylene terephthalate) and surface coupling of fluorinated probes, PEG, and anRGD-peptide. Biomacromolecules6(4):2281–2289.
    Wong I, Ho CM.2009. Surface molecular property modifications for poly(dimethylsiloxane)(PDMS)based microfluidic devices. Microfluid. Nanofluid.7(3):291–306.
    Wozniak MA, Modzelewska K, Kwong L, Keely PJ.2004. Focal adhesion regulation of cell behavior.Biochim. Biophys. Acta.1692(2-3):103–119.
    Wu Y, Huang Y, Ma H.2007. A facile method for permanent and functional surface modification ofpoly(dimethylsiloxane). J. Am. Chem. Soc.129(29):7226–7227.
    Xu C, Taylor P, Ersoz M, Fletcher PDI, Paunov VN.2003. Microcontact printing of DNA-surfactant arrayson solid substrates. J. Mater. Chem.13(12):3044–3048.
    Xu Y, Takai M, Ishihara K.2009. Protein adsorption and cell adhesion on cationic, neutral, and anionic2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials30(28):4930–4938.
    Yamada Y, Hozumi K, Aso A, Hotta A, Toma K, Katagiri F, Kikkawa Y, Nomizu M.2012. Laminin activepeptide/agarose matrices as multifunctional biomaterials for tissue Engineering. Biomaterials33(16):4118–4125
    Yamada Y, Hozumi K, Katagiri F, Kikkawa Y, Nomizu M.2010. Biological activity of lamininpeptide-conjugated alginate and chitosan matrices. Biopolymers94(6):711–720.
    Yameen B, Alvarez M, Azzaroni O, Jonas U, Knoll W.2009. Tailoring of poly (ether ether ketone) surfaceproperties via surface-initiated atom transfer radical polymerization. Langmuir25(11):6214–6220.
    Yang LFH, Blease TG, Thompson RIG.1996. A study of the mechanism of the oxidative thermaldegradation of poly(ethylene oxide) and poly(propylene oxide) using1H-and13C-NMR. Eur. Polym. J.32(5):535–547.
    Yang LY, Li L, Tu Q, Ren L, Zhang YR, Wang XQ, Zhang ZY, Liu WM, Xin LL, Wang JY.2010.Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay oftheir protein adsorption and cytocompatibility. Anal. Chem.82(15):6430–6439.
    Yang Y, Chen X, Ding F,2007a. Biocompatibility evaluation of silk fibroin with peripheral nerve tissuesand cells in vitro. Biomaterials28(9):1643–1652.
    Yang Y, Ding F, Wu J, Hu W, Liu W, Liu J, Gu X.2007b. Development and evaluation of silk fibroin–basednerve grafts used for peripheral nerve regeneration. Biomaterials28(36):5526–5535.
    Yang YF, Hu HQ, Li Y, Wan LS, Xu ZK.2011. Membrane surface with antibacterial property by graftingpolycation. J. Membr. Sci.376(1-2):132–141.
    Yeo WS, Mrksich M.2006. Electroactive self-assembled monolayers that permit orthogonal control overthe adhesion of cells to patterned substrates. Langmuir22(25):10816–10820.
    Yin H, Pattrick N, Zhang X, Klauke N, Cordingley, Haswell HCSJ, Cooper JM.2008. Quantitativecomparison between microfluidic and microtiter plate formats for cell-based assays. Anal. Chem.80(1):179–185.
    Yoon JJ, Song SH, Lee DS, Park TG.2004. Immobilization of cell adhesive RGD peptide onto the surfaceof highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method.Biomaterials25(25):5613–5620.
    Yoshimoto K, Nishio M, Sugasawa H, Nagasaki Y.2010. Direct observation of adsorption-inducedinactivation of antibody fragments surrounded by mixed-peg layer on a gold surface. J. Am. Chem.Soc.132(23):7982–7989.
    Yousaf MN, Houseman BT, Mrksich M.2001. Turning on cell migration with electroactive substrates.Angew. Chem. Int. Ed.40(6):1093+.
    Yu HY, Liu LQ, Tang ZQ, Yan MG, Gu JS, Wei XW.2008a. Surface modification of polypropylenemicroporous membrane to improve its antifouling characteristics in an SMBR: Air plasma treatment. J.Membr. Sci.311(1-2):216–224.
    Yu HY, Xu ZK, Lei H, Hu MX, Yang Q.2007. Photoinduced graft polymerization of acrylamide onpolypropylene microporous membranes for the improvement of antifouling characteristics in asubmerged membrane-bioreactor. Sep. Purif. Technol.53(1):119–125.
    Yu LMY, Leipzig ND, Shoichet MS.2008b. Promoting neuron adhesion and growth. Mater. Today11(5):36–43.
    Yu TT, Shoichet MS.2005. Guided cell adhesion and outgrowth in peptide-modified channels for neuraltissue engineering. Biomaterials26(13):1507–1514.
    Yuk SH, Cho SH, Lee SH.1997. pH/Temperature-responsive polymer composed of poly ((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules30(22):6856–6859.
    Zang JY, Beckman EJ, Piesco NP, Agrawal S.2000. A new peptide-based urethane polymer: synthesis,biodegradation, and potential to support cell growth in-vitro. Biomaterials21(12):1247–1258.
    Zhai G, Shi ZL, Kang ET, Neoh KG.2005. Surface-initiated atom transfer radical polymerization on poly(vinylidene fluoride) membrane for antibacterial ability. Macromol. Biosci.5(10):974–982.
    Zhang BY, He WD, Li WT, Li LY, Zhang KR, Zhang H.2010a. Preparation of block-brushPEG-b-P(NIPAM-g-DMAEMA) and its dual stimulus-response. Polymer51(14):3039–3046.
    Zhang F, Kang ET, Neoh KG, Wang P, Tan KL.2001. Modification of Si(100) surface by the grafting ofpoly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. J. Biomed. Mater. Res.56(3):324–332.
    Zhang JY, Doll BA, Beckman EJ, Hollinger JO.2003. Three-dimensional biocompatible ascorbicacid-containing scaffold for bone tissue engineering. Tissue Eng.9(6):1143–1157.
    Zhang QL, Xia F, Sun TL, Song WL, Zhao TY, Liu MC, Jiang L.2008a. Wettability switching betweenhigh hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsivepolymer. Chem. Commun.10:1199–1201.
    Zhang TH, Marchant RE.1994. Novel polysaccharide surfactants-synthesis of model compounds anddextran-based surfactants. Macromolecules27(25):7302–7308.
    Zhang Y, Ren L, Tu Q, Wang X, Liu R, Li L, Wang J-C, Liu W, Xu J, Wang J.2011a. Fabrication ofreversible poly(dimethylsiloxane) surfaces via host-guest chemistry and their repeated utilization incardiac biomarker analysis. Anal. Chem.83(24):9651–9659.
    Zhang Z, Chao T, Chen S, Jiang SY.2006. Superlow fouling sulfobetaine and carboxybetaine polymers onglass slides. Langmuir22(24):10072–10077.
    Zhang Z, Feng X, Xu F, Liu X, Liu BF.2010b."Click" chemistry-based surface modification ofpoly(dimethylsiloxane) for protein separation in a microfluidic chip. Electrophoresis31(18):3129–3136.
    Zhang Z, Ni J, Chen L, Yu L, Xu JW, Ding JD.2011b. Biodegradable and thermoreversible PCLA PEGPCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials32(21):4725–4736.
    Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang SY.2008b. Blood compatibility of surfaces withsuperlow protein adsorption. Biomaterials29(32):4285–4291.
    Zhang ZY, Wang JC, Tu Q, Nie N, Sha J, Liu WM, Liu R, Zhang YR, Wang JY.2011c. Surfacemodification of PDMS by surface-initiated atom transfer radical polymerization of water-solubledendronized PEG methacrylate. Colloids Surf. B88(1):85–92.
    Zhao C, Zheng J.2011. Synthesis and Characterization of poly(n-hydroxyethylacrylamide) for long-termantifouling ability. Biomacromolecules12(11):40714079.
    Zheng J, Li L, Chen S, Jiang SY.2004. Molecular simulation study of water interactions with oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir20(20):8931–8938.
    Zhou F, Zheng Z, Yu B, Liu W, Huck WTS.2006. Multicomponent polymer brushes. J. Am. Chem. Soc.128(50):16253–16258.
    Zhou Z, Yu P, Geller HM, Ober CK.2012. The role of hydrogels with tethered acetylcholine functionalityon the adhesion and viability of hippocampal neurons and glial cells. Biomaterials33(8):2473–2481.
    Zhu HG, Ji J, Shen JC.2004a. Construction of multilayer coating onto poly-(DL-lactide) to promotecytocompatibility. Biomaterials25(1):109–117.
    Zhu JM.2010. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.Biomaterials31(17):4639–4656.
    Zhu YB, Gao CY, Guan JJ, Shen JC.2004b. Promoting the cytocompatibility of polyurethane scaffolds viasurface photo-grafting polymerization of acrylamide. J. Mater. Sci.: Mater. Med.15(3):283–289.
    Zhu YB, Gao CY, He T, Shen JC.2004c. Endothelium regeneration on luminal surface of polyurethanevascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials25(3):423–430.
    Zhu YB, Gao CY, Liu XY, Shen JC.2002a. Surface modification of polycaprolactone membrane viaaminolysis and biomacromolecule immobilization for promoting cytocompatibility of humanendothelial cells. Biomacromolecules3(6):1312–1319.
    Zhu YB, Gao CY, Shen JC.2002b. Surface modification of polycaprolactone with poly(methacrylic acid)and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials23(24):4889–4895.
    Zhu YB, Leong MF, Ong WF, Chan-Park MB, Chian KS.2007. Esophageal epithelium regeneration onfibronectin grafted poly(L-lactide-co-caprolactone)(PLLC) nanofiber scaffold. Biomaterials28(5):861–868.
    Zuckermann RN, Kerr JM, Kent SBH, Moos WH.1992. Efficient method for the preparation of peptoids[oligo (N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc.114(26):10646–10649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700