三种供氮水平下控制水稻产量及其构成因子的分子遗传基础剖析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对资源和环境问题严峻性认识的不断加深,以节省资源、保护环境为前提的农业可持续发展热潮波及全球。作物遗传改良的目标和重点不仅仅是提高作物的产量潜力,而且还要高产、高效、优质、抗逆兼顾。
     水稻是我国主要的粮食作物之一,水稻的高产、稳产直接关系到我国乃至世界的粮食安全。近年来由于稻田长期大量施用氮肥,虽然水稻产量水平得到了较大幅度的提高,但随之而来的是水稻生产成本逐年提高,效益递减现象严重,同时氮肥的过度施用,还带来肥料利用率降低、环境污染等一系列问题,在过去几十年间,人们通过大量施用氮肥来提高粮食产量达到了一定的效果。但随着氮营养元素施用水平的提高,逐渐表现出氮肥施用量与产量的提高并不成正比例增长,反而有负增长的趋势。挖掘和利用水稻自身的潜力、培育和利用氮素利用效率高和耐低氮条件的水稻品种是解决这一问题最有效的途径。
     近年来,随着基因组学的发展和生物统计软件的完善,特别是分子标记技术在遗传育种领域的广泛应用,以连锁不平衡(linkage disequilibrium, LD)为基础的关联分析(association analysis)方法为水稻数量性状遗传的研究提供了新途径,也为作物的分子设计育种提供了新的思路,它与基于连锁作图的数量性状位点(quantitative trait loci, QTL)定位结果可相互验证、相互补充。
     本研究以一套水稻重组自交系群体(RILs)和一套中国栽培稻微核心种质为材料,分别在3种氮肥水平(N300、N150、NO)、两种生态环境(上海雨季、海南旱季)下对控制水稻产量及其构成因子等田间表型特性进行调查分析,并借助相应的分子连锁图谱和群体的基因型等信息,进行基于连锁作图的QTL定位分析和基于连锁不平衡的关联分析,以期探讨不同氮肥水平下控制水稻产量及其构成因子的分子遗传基础,为水稻氮高效育种提供有用的种质资源和标记信息,并应用于水稻氮高效分子聚合育种。主要结果如下:
     1.分别在N300、N150和NO三种氮肥水平下,对来源于HR5/ZS97的重组自交系群体(RIL,共188个株系),进行基于单株产量(GYPP)及产量构成因子(单株穗数PNPP、单穗实粒数GNPP、单穗总粒数FGPP和百粒重HGW)的联合QTL定位分析,共检测到57个主效QTL,涉及到41个染色体区间,其中N300、N150和NO水平下各检测到的主效QTL数分别为15个、23个和19个,每个QTL解释的表型变异都较小最大的QTL解释表型效应的13.3%。另外,在NO水平下检测到2个主效QTL(qGYPP-4b和qGNPP-12),分别解释表型变异的10.9%和10.2%。
     2.共检测到30对控制产量及其构成的上位性QTL,这30对上位性互作位点涉及除SFP以外的其他5个性状,包括11条染色体上的45个位点,其中N300、N150和NO水平下分别为11对、11对和8对,其中大部分上位性QTL互作位点发生在非主效QTL之间。
     3.相关分析和通径分析表明,在N300和N150条件下,SFP对YPP的贡献最大,直接通径系数分别为0.809和0.783,相应的相关系数为0.549**和0.605**。而在低氮条件下(N3),虽然SFP与YPP的相关系数最大(R=0.553**),但SFP主要是通过FGPP对YPP产生影响,FGPP对YPP的直接通径系数达0.816。
     4.基于全基因组218个多态性位点,考虑群体结构和亲缘关系,采用混合线性模型,在P≤0.01水平下,分别在E5(2008,上海)和E6(2009,海南)两环境下,N300、N150和NO三种氮肥水平下,对一套中国栽培稻微核心种质(160份材料)的田间产量相关性状:单株穗数(PNPP)、穗长(PL)、单穗实粒数(GNPP)、单穗总粒数(FGPP)、结实率(SFP)、百粒重(HGW)、单株产量(GYPP)、地上部生物学产量(SDW)和植株含氮量(NCP)等9个性状表型值与多态性位点进行关联分析。每次试验中各性状在全基因组范围内检测到6-26个显著关联的标记位点,分布于全部12条染色体上。这些显著关联位点中,大部分位于其他研究中定位到的QTL或基因所在区间。
     5.本研究通过关联定位和QTL分析,检测出大量的在三种氮肥水平下特异表达的位点/QTL,同时也检测到一些共同表达的QTL/位点。大多数QTL/位点只在一种氮肥水平下检测到,表明水稻产量及其构成因子在不同的氮肥条件下生长是受不同的基因调节控制的。同时也发现少数主效QTL/位点被定位在第1、2、3、5、7、10染色体上的相同区域,这些区域可能存在控制和调节水稻产量及其构成的关键基因。研究得到的这些材料标记信息和定位结果可应用于水稻氮高效分子聚合育种。
As people deeply aware the serious problem of resources and environments, the hotspot for sustainable development of agriculture based on conserving resources and protecting environments has spread around the world. The objectives and key points for crops genetic improvement are not only to enhance the yield potential, but also to balance the high-yielding, high efficiency, good quality and high resistance.
     Rice is one of the most important food crops in China. The high-yielding and stability of rice is closely related with food security in our country even in the world. In recent years, through the rice yield is increased by applying excess nitrogen fertilizer, the production costs are also increased year by year and the phenomenon of diminishing utility is serious. Moreover, the application of excessive nitrogen fertilizers in rice cultivation has reduced the efficiency of fertilizer nitrogen use and increased the production cost and environmental pollution. With the increase of nitrogen fertilizer application levels, the nitrogen fertilizer input rates do not rise steadily with the rice yield, but negatively increase with the rice yield. The reduction of nitrogen fertilizer application in fertile soils and increased productivity in sterile soils both require the improvement of the nitrogen use efficiency (NUE), including uptake and utilization efficiency. Therefore, the strategy for exploiting and using of the genotypic potential rice varieties with high NUE would be of economic benefit to farmers and help to reduce environmental contamination.
     Recently, with the improvements of genomics and bio-statistics analysis software, especially the application of molecular marker technique in genetics and breeding, the association analysis method based on linkage disequilibrium has provided a new access to genetically research quantitative traits in rice and offered a new idea for molecular design breeding in crops. The results from this method and from quantitative trait loci (QTL) can testify and complement each other.
     To understand the performance of yield and its components to different nitrogen fertilizer levels, a set of recombinant inbred lines (RILs) from a cross of Zhenshan97(indica) and HR5(indica) and a set of Chinese cultivated mini-core germplasm rice were planted in two different growing seasons (rainy season in Shanghai and dry season in Hainan) at three nitrogen fertilizer input levels (i.e. N300,300kg urea/ha, N150,150kg urea/ha and NO,0kg urea/ha) for detection of quantitative trait loci on grain yield and its related components consisting of grain yield per plant (GYPP), panicle number per plant (PNPP), grain number per panicle (GNPP), filled grains per panicle (FGPP), spikelet fertility percentage (SFP) and100-grain weight (HGW). Analysis on genetic components including main effects, epistatic effects of the quantitative trait locus (QTL) and QTL by environment interactions (Q×E) were carried out. The identification of genomic regions associated with yield and its components at different nitrogen levels will be useful to improve nitrogen use efficiency of rice by marker-assisted selection. The main results are as follows:
     1. A total of57main-effect QTLs for GYPP, PNPP, GNPP, FGPP and HGW were identified from the recombinant inbred line (RIL) population of HR5/ZS97(including188lines) under the three N levels (N300, N150and NO), which distributed at41chromosomal regions. Among them,15,23and19QTLs were identified under the N300, N150and NO, respectively. The contribution rate of a single QTL was small, with the maximum phenotypic variance of13.3%. Under the NO condition, two main-effect QTLs (qGYPP-4b and qGNPP-12) were declared, which explained10.9%and10.2%phenotypic variances, respectively.
     2. Additionally,30pairs of epistatic effect QTLs controlled yield and its components were detected, except for SFP, which involved in45loci on11choromosomes. Under the N300, N150and NO levels,11,11and8pairs were respectively detected, and most of them were found between two non-main effect QTLs.
     3. Correlation and path analysis indicated that SFP had the greatest contribution to GYPP at the N300and N150levels with the direct path coefficients of0.809and0.783, and correlation coefficients of0.549**and0.605**, respectively. Under the NO level, although the correlation coefficient of SFP and GYPP was the greatest (R=0.553**), SFP affected GYPP through FGPP, and FGPP contributed the most to GYPP (P=0.816).
     4. Based on200polymorphic loci in whole genome and the population structure and their kinship, the relationships of nine phenotypic values including PNPP, PL, GNPP, FGPP, SFP, HGW, GYPP, SDW and NCP with polymorphic loci were analyzed by using the mixed linear model (MLM) under two environments (Shanghai in2008and Hainan in 2009) at the three different nitrogen levels. In each experiment,6to26significantly related loci for each trait were detected in whole genome, which distributed on all the12chromosomes. Among these related loci, most of them were located at the known chromosomal regions of mapped QTLs or genes.
     5. Numerous specially expressed loci/QTLs under the three nitrogen application levels and some co-expression loci/QTLs were declared by the association analysis and QTL mapping. Most of them were identified at one nitrogen application level, indicating that the traits of yield and its components are controlled by different genes under different nitrogen levels. Also, several main-effect QTLs/loci were located at the same regions on chromosomes1,2,3,5,7and10, suggesting that there are some key genes controlling or regulating rice yield and its components. On the whole, the identification of genomic regions associated with yield and its components at different nitrogen levels will be useful to improve NUE of rice by molecular marker-assisted approach. This information together with association results can be applied in breeding programs.
引文
1. 鲍士旦.土壤农化分析.北京:中国农业出版社,2000
    2. 程建峰,戴廷波,曹卫星,姜东.稻种资源苗期氮素营养效率的分类、鉴定与评价.作物学报,2005,31(12):1640-1647
    3. 程建峰,戴廷波,曹卫星,姜东,潘晓云.不同氮收获指数水稻基因型的氮代谢特征.作物学报,2007,33(3):497-502
    4. 程建峰,戴廷波,曹卫星,姜东,刘宜柏.不同类型水稻种质氮素营养效率的变异分析.植物营养与肥料学报,2007,13(2):175-183
    5. 程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报,2007,44(2):266-272
    6. 程建峰,蒋海燕,刘宜柏,戴廷波,曹卫星.氮高效水稻基因型鉴定与筛选方法的研究.中国水稻科学,2010,24(2):175-182
    7. 崔克辉,聂立孝,彭少兵.不同氮效率基因型水稻植株氨挥发速率及其与氮效率的关系.作物学报,2010,36(5):879-884
    8. 崔世友,缪亚梅,史传怀,余聪华.氮高效水稻育种研究及展望.中国农业科技导报,2006,8(6):47-51
    9. 邓若磊,谷俊涛,路文静,徐海荣,曹云飞,肖凯.水稻铵转运蛋自基因OsAMT1;4和OsAMT5的特征分析、功能和表达.中国农业科学,2007,40(11):2395-2402
    10.段英华,张亚丽,王松伟,沈其荣.铵硝比(NH4+/NO3-)对不同氮素利用效率水稻的生理效应.南京农业大学学报,2007,30(3):73-77
    11.樊剑波,沈其荣,谭炯壮,叶利庭,宋文静,张亚丽.不同氮效率水稻品种根系生理生态指标的差异.生态学报,2009,29(6):3052-3058
    12.方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,2001,7(2):159-165
    13.冯跃,曹立勇,吴伟明,沈希宏,占小登,翟荣荣,陈代波,程式华.水稻苗期不同阶段与低氮耐性相关的QTL分析.植物营养与肥料学报,2010,16(4):880-886
    14.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    15.高之仁.数量遗传学.重庆:四川大学出版,1986
    16.胡广隆,张冬玲,潘慧乔,李本,吴建涛,周雪崖,张群远,周雷,姚国新,李俊周,李金杰,张洪亮,李自超.关联分析定位水稻第4号染色体的芒性基因并结合连锁分析精细定位Awn4.1.科学通报,2010,55:2777-2781
    17.江立庚,戴廷波,韦善清,甘秀芹,徐建云,曹卫星.南方水稻氮素吸收与利 用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471
    18.江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径.中国水稻科学,2002,16(3):261-264
    19.金铭路,杨春刚,余腾琼,郭桂珍,汤翠凤,张俊国,阿新祥,曹桂兰,徐福荣,刘宪虎,戴陆园,张三元,韩龙植等.中国水稻微核心种质不同生育时期耐冷性鉴定及其相关分析.植物遗传资源学报,2009,10(4):54-56
    20.孔迎春,张燎.两种肥力水平下水稻苗高QTL的比较分析.武汉植物学研究,2005,23(2):121-124
    21.李生秀.植物营养与肥料学科的现状与展望.植物营养与肥料学报,1999,(50):1-12
    22.李庆逵.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997
    23.李育红,王州飞,管荣展,王建飞,张红生.水稻苗期氮素吸收利用效率的遗传分析.中国水稻科学,2006,20(4):379-383
    24.罗志祥,苏泽胜,施伏芝,阮新民,朴钟泽.氮肥高效利用水稻育种的现状与展望.中国农学通报,2003,19(1):66-67
    25.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland Buresh, Christian Witt提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103
    26.朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异.中国水稻科学,2003,17(3):233-238
    27.朴钟洋,韩龙植,高熙宗,陆家安,张建明.水稻氮素利用效率的选择效果.作物学报,2004,30(7):651-656
    28.阮新民,施伏芝,罗志祥,佘德红.水稻苗期氮高效品种评价与筛选的初步研究.中国稻米,2010,16(2):22-25
    29.单玉华,王余龙,山本由德,黄建晔,杨连新,张传胜.同类型水稻在氮素吸收及利用上的差异.扬州大学学报,2001,4(3):42-45
    30.童汉华,余新桥,梅捍卫,曹一平,章善庆,罗利军.水稻苗期氮素营养高效基因型的筛选.浙江农业科学,2007,5:537-541
    31.魏海燕.张洪程,马群,戴其根,霍中洋,许轲,张庆,黄丽芬.不同氮肥吸收利用效率水稻基因型叶片衰老特性.作物学报,2010,36(4):645-654
    32.魏海燕.张洪程,张胜飞,杭杰,戴其根,霍中洋,许轲,马群,张庆,刘艳阳.不同氮利用效率水稻基因型的根系形态与生理指标的研究.作物学报,2008,34(3):429-436
    33.魏海燕,张洪程,杭杰,戴其根,霍中洋,许轲,张胜飞,马群,张庆,张军.不同氮素利用效率基因型水稻氮素积累与转移的特性.作物学报,2008,34(1): 119-125
    34.魏兴华,汤圣祥,余汉勇,王一平,袁筱萍,徐群.中国水稻国外引种概况及效益分析.中国水稻科学,2010,24(1):5-11
    35.王碧茜,范晓荣,徐国华,沈其荣.不同氮效率水稻品种旗叶的衰老特征.南京农业大学学报,2010,33(2):8-12
    36.王东升,张亚丽,陈石,段英华,沈其荣.不同氮效率水稻品种增硝营养下根系生长的响应特征.植物营养与肥料学报,2007,13(4):585-590
    37.王荣焕,王天宇,黎裕.关联分析在作物种质资源分子评价中的应用,植物遗传资源学报,2007,8(3):366-372
    38.王雨,孙永建,陈灯银,余四斌.水稻染色体片段代换系对氮、磷胁迫反应差异及其QTL分析.作物学报,2009,35(4):580-587
    39.闻玮玮.中国水稻微核心种质的关联分析.[博士论文],武汉:华中农业大学,2009
    40.徐富贤,熊洪,谢戎,张林,朱永川,郭晓艺,杨大金,周兴兵,刘茂.水稻氮素利用效率的研究进展及其动向.植物营养与肥料学报,2009,15(5):1215-1225
    41.夏冰,刘清波,邓念丹.不同基因型水稻氮素的吸收和利用效率研究综述.作物研究,2008,22(4):288-292
    42.杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究.土壤学报,1992,29(1):73-79
    43.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33(4):523-530
    44.叶利庭,樊剑波,徐晔红,赵海娟,图尔迪,沈其荣,张亚丽.不同氮效率水稻的生长特性.南京农业大学学报,2010,33(3):77-81
    45.张云桥,吴荣生,蒋宁,刘桂华.水稻的氮肥利用效率与品种类型的关系.植物生理学通讯,1989,(2):45-47
    46.张玉山.水稻重要性状的QTL分析和主效QTL近等基因系的构建.[博士论文],武汉:华中农业大学,2006
    47.钟代彬,陆雅海,郭龙彪,罗利军,王一平,梅捍卫,余新桥,应存山.氮高效水稻种质资源的初步筛选研究.作物品种资源科学,2001,2(4):16-20
    48.朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,1992
    49.张亚丽,樊剑波,段英华,王东升,叶利庭,沈其荣.不同基因型水稻氮利用效率的差异及评价.土壤学报,2008,45(2):267-273
    50.周江明,赵琳,董越勇,徐进,边武英,毛杨仓,章秀福.氮肥和栽植密度对水稻产量及氮肥利用率的影响.植物营养与肥料学报,2010,16(2):274-281
    51.曾建敏,崔克辉,黄见良,贺帆,彭少兵.水稻生理生化特性对氮肥的反应及与氮利用效率的关系.作物学报,2007,33(7):1168-1176
    52. Agrama HA, Zakaria AQ Said FB, Tuinstra M. Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breeding,1999,5:187-195
    53. Agrama HA, Eizenga GC, Yan W. Association mapping of yield and its components in rice culture. Mol Breeding,2007,19:341-356
    54. Bao JS, Corke H, Sun M. Nucletotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor Appl Genet, 2006,113:1171-1183
    55. Bernardo R. Molecular markers and selection for complex traits in plant:learning from the last 20 years. Crop Sci,2008,48:1649-1664
    56. Bertin P, Gallais A. Physiological and genetic basis of nitrogen use efficiency in maize:I. QTL detection and coincidences. Maydica,2000,45:67-80
    57. Brown AHD. Core collections:A practical approach to genetic resources management. Genome,1989,31(5):818-824
    58. Browbent FE, Dataa SK, Laureles EV. Measures of nitrogen utilization efficiency in rice genotypes. Agron J,1987,79:786-791
    59. Brondani C, Rangel N, Brondani V. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa L.) using microsatellite markers. Theor Appl Genet,2002,104:1192-1203
    60. Chen QS, Yi KK, Huang G, Wang XB, Liu FY, Wu YR, Wu P. Cloning and expression pattern analysis of nitrogen starvation-inducde genes in rice. Acta Bot Sin, 2003,45(8):974-980
    61. Cho YI, Koh HJ. Genotypic variation of physiological nitrogen use efficiency and its relationship with agronomic characters in rice. Korean J Breed,2005,37: 311-318
    62. Cho YI, Jiang WZ, Chin JH. Identification of QTLs associated with physiogical nitrogen use efficiency in rice. Mol & Cells,2007,21(1):72-79
    63. Conway GR, Pretty JN. Fertilizer risks in developing countries. Nature,1988,334: 207-208
    64. Collins NC, Tardien F, Tuberosa R. Quantitative trait loci and crop performance under abiotic stress:where do we stand? Plant Physiol,2008,147:469-486
    65. Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang QF. Molecular dissection of the genetic relationship of source, sink and transport tissue with yield traits in rice. Theor Appl Genet,2003,106:649-658
    66. David LR, Jeffry MT, Yoshihiro M, Larissa MW, Sherry RW, John D, Stephen K, Major MG, Edward SB. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA,2001,25:11479-11484
    67. De Datta, Buresh RJ. Integrated nitrogen management in irrigated rice. Adv Soil Sci, 1989,10:143-169
    68. De Datta SK, Broadbent FE. Nitrogen N-use efficiency of 24 rice genotypes on N-deficient soil. Field Crop Res,1990,23:81-92
    69. De Datta SK, Broadbent FE. Development changes related to nitrogen-use efficiency in rice. Field Crop Res,1993,34:47-56
    70. David LR, Jeffry MT, Yoshihiro M, Larissa MW, Sherry RW, John D, Stephen K, Major MG, Edward SB. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA,2001,25:11479-11484
    71. Eizenga GC, Agrama HA, Lee FN, Yan W, Jia Y. Identifying novel resistance gene in newly introduced blast resistance rice germplasm. Crop Sci,2006,46:1870-1878
    72. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrance protein. Theor Appl Genet,2006,112:1164-1171
    73. Fang P, Wu P. QTL×N-level interaction for plant height in rice (Oryza sativa L.). Plant & Soil,2001,236:237-242
    74. Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol,2003,54:357-374
    75. Frankel OH. Genetic perspectives of germplasm conservation. Cambridge: Cambridge University Press,1984
    76. Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot,2004,55:295-306
    77. Garris AJ, McCouch SR, Kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics,2003,165(2):759-769
    78. Gerloff GG. Plant efficiencies in the use of nitrogen, phosphorus and potassium. In: Wright MJ (Ed.) Plant adaptation to mineral stress in problem soils. Process of the Beltsville, Maryland Workshop, Cornell University Agricultural Experiment Station, Ithaca,1976:161-173
    79. Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, W. Zhang F, Christie P, Goulding KWT, Vitousek PM, Zhang FS. Significant acidification in major Chinese croplands. Science,2010,19:1008-1010
    80. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants:Present status and future prospects. Plant Mol Biol,2005,57:461-485
    81. Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol,2001, 125:1258-1270
    82. Hardy OJ, Vekemans X. SPAGeDi:a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes,2002, 2:618-620
    83. Hirel B, LeGouis J, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants:towards a more central role genetic variability and quantitative genetics with integrated approaches. J Exp Bot,2007,58:2369-2387
    84. Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang AH Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang T, Zhou TY, Jing YF, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li JY, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet,2010,42(11):961-967
    85. Insightful Corporation. S-plus 6.0 for Windows, User's Guide. Seattle, WA, USA
    86. Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R. Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot,2001,52:1827-1833
    87. Jiao Y, Wang Y, Xue D, Wang J, Yan MX, Liu GJ, Ding GJ, Zeng DL, Lu ZF, Zhu XD, QQ, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet,2010,42(6):541-544
    88. Jing L, Yan L, Xiao P, Sun M, Corke H, Bao JS. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet,2010,121:475-487
    89. Jing Q, Bouman BAM, Henhsdijk H, Keulen HV, Cao W. Exploring options to combine high yields with high nitrogen use efficiency in irrigated rice in China. Eur JAgron,2007,26:166-177
    90. Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA,2009,106(9): 3041-3046
    91. Koutroubas SD, Ntanos DA. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crop Res,2003,83:251-260
    92. Ladha JK, Kirk GJD, Bennett J, Peng S, Reddy CK, Reddy PM, Singh U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crop Res,1998,56:41-71
    93. Lian XM, Xing YZ, Yan H, Xu CG, Li XH, Zhang QF. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet,2005,112:85-96
    94. Lian XM, Wang SP, Zhang JW, Feng Q. Zhang LD, Fan DL, Li XH, Yuan DJ, Han B, Zhang QF.10422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol,2006,60(5):612-631
    95. Li JX, Yu SB, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF. Analyzing quantitutive trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet,2000,101:248-254
    96. Li XB, Yan WG, Li XB, Yan WG, Agrama H, Hu BL, Jia LM, Jia M, Jackson A, Moldenhauer K, McClung A, Wu DX. Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Genetica, 2010,138:1221-1230
    97. Lincoln SE, Daly MJ, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report,3rd edn. Cambridge: Whitehead Institute
    98. Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis(Rubiaceae). Am J Bot,1995,82: 1420-1425
    99. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F. Quantitative trait analysis of nitrogen efficiency in Arabidopsis. Plant Physiol,2003,131:345-358
    100.McCouch SR, Cho YG, Yano M, Paul E, blinstrub M, Morishima H, Kinoshita T. Suggestion for QTL nomenclature. Rice Genet Newsl,1997,14:11-13
    101.Miura K, Ideda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet,2010,42(6):545-549
    102. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T. Mappig of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot,2001,52:1209-1217
    103. Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet,2004,110:1-11
    104. Olsen KM, Purugganan. Molecular evidence on the origin and evolution of glutinous rice. Genetics,2002,162:941-950
    105.Palaisa K, Morgante M, Tingey T, Rafalski A. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Nal Acad Sci USA,2004,29:9885-9890
    106.Piao ZZ, Cho Y I, Koh HJ. Inheritance of physiological nitrogen use efficiency and relationship among its associated characters in rice. Korean J Breeding,2001,33(4): 332-337
    107.Pritchard J K, Stephen M, Donnelly P. Inference on population structure using multilocus genotype data. Genetics.2000,155:945-959
    108. Salvi S, Tuberosa R. To clone not to clone plant QTLs:Present and future challenges. Trands Plant Sci,2005,10(6):267-304
    109.Samonte SOBP, Wilson LT, Medley JC, Pinson SRM, McClung AM, Lales JS. Nitrogen utilization efficiency:Relationship with grain yield, grain protein, and yield-related traits in rice. Agronomy J,2006,98:168-176
    110.Senthilvel S, Vinod KK, Malarvizhi P, Maheswaran M. QTL and QTL× Environment effects on agronomic and nitrogen acquisition traits in rice. J Integr Plant Biol,2008,50(9):1108-1117
    111. Seo JH, Lee HJ, Lee SH. Improvement of nitrogen efficiency by N application at early tillering stage in direct-seeded rice. Korean J Crop Sci,2005,50:16-21
    112.Senapathy S, Vinod KK, Malarvizhi P, Maheswaran M. QTL and QTL×Environment effects on agronomic and nitrogen acquisition traits in rice. J Integr Plant Biol,2008,50:1108-1117
    113. Sonoda Y, Ikeda A, Saiki S, Wiren N, Yamaya T, Yamaguchi J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol,2003,44:726-734.
    114. Sun H, Huang QM, Su J. Highly effective expression of Glutamine Synthetase Genes GS1 and GS2 in transgenic rice plants increase nitrogen-deficiency tolence. J Plant Physiol Mol Biol,2005,31 (5):492-498
    115.Tong HH, Mei HW, Yu XQ, Xu XY, Li MS, Zhang SD, Luo LJ. Identification of related QTLs at late developmental stage in rice (Oiyza sativa L.) under two nitrogen levels. Acta Genet Sin,2006,33(5):456-467
    116.Tong HH, Chen L, Li WP, Mei HW, Yu XQ, Xu XY, Zhang SD, Luo LJ. Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Mol Breeding,2011,28(4):495-509
    117.Tomoyuki Yamaya, Mitsuhiro Obara, Hiroyuki Nakajima, Shohei Sasaki, Toshihiko Hayakawa, Tadashi Sato. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot,2002,53(370):917-925
    118. Tu JM, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol,2006,17:1-6
    119. Tung CW, Zhao KY, Mark W, M Ali, Jung J, Kimball J, Tyagi W, Thomson M, McNally K, Leung H, Kim H, Ahn SN, Reynold A, Scheffler B, Eizenga G, McChung A, Bustamante C, McCouch S. Development of a research platform for dissecting phenotype genotype association in rice (Oryza spp.). Rice,2010,3: 205-217
    120. Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet,1999,99:1255-1264
    121. Wei X, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM. DTH8 suppresses folwering in rice, influencing plant height and yield potential simultaneously. Plant Physiol,2010,153:1747-1758
    122. Wen WW, Mei HW, Feng FJ, Yu SB, Huang ZC, Wu JH, Chen L, Xu XY, Luo LJ. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.) Theor Appl Genet,2009,119: 459-470
    123. Wissuwa M, Wegner J, Ae N, Yano M. Substitution mapping of Pup1:A major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet,2002,105:890-897
    124. Wu P, Tao QN. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. Plant Nutri,1995,18(3):487-500
    125. Wu P, Zhang G, Huang N. Identification of QTL controlling quantitative characters in rice using RFLP markers. Euphytica,1996,89:349-354
    126. Xiao J, Li JX, Yuan LP. Tanksley SD. Identification of QTLs affecting traits of agronomic importance in a recombinant inbreed population derived from a subsepcific rice cross. Theor Appl Genet,1996,92:230-244
    127. Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang QF. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet,2002,105:248-257
    128.Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot,2002,53:917-92
    129. Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A major QTL, Ghd8, plays pleiotropic roles in regulating grain rpoductivit, plant height, and heading date in rice. Molecular Plant,2010,4(2): 319-330
    130. Yu SB, Li JX, Xu CG, Tan YF, Gao YF, Li XH, Zhang QF. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997, 94:9226-9231
    131. Yu JM, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet,2006,38:203-208
    132. Zhang HL. Zhang DL, Wang MX, Sun JL, Qi YW, Li JJ, Wei XH, Han LZ, Qiu ZG, Tang SX, Li ZC. A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet,2011,122:49-61
    133. Zhang QF. Strategies for developing green super rice. Proc Natl Acad Sci USA,2007, 104(42):16402-16409
    134. Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic line of rice. Theor Appl Gent,2006,113:361-368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700