面向实际工程问题的粒子群优化算法应用技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机软、硬件的发展和广范应用,智能优化技术得到了迅速发展,并被广大科技人员引入工程优化领域来求解各种复杂工业过程问题,以期获得更大的经济效益和社会效益。大量的实践表明,经过优化方法的处理,对系统生产效率的提高、资源合理的配置、能耗降低以及经济效益的提升均有显著的效果。
     由于工程领域中的很多实际问题都可以归结为某个特定数学模型下的优化问题,因而高效的寻优算法对于工程问题的解决有着至关重要的影响。目前,智能优化方法作为替代传统优化方法一个有力工具已在社会生活的各个领域和工农业生产的各个部门发挥着巨大作用,比如机械系统中的结构优化设计、计算机图形学中的图像优化处理、流程工业中的系统优化、运输系统的优化调度、生产过程的最优排产、国土资源的优化配置以及最优开发等。
     粒子群优化算法(Particle Swarm Optimization,PSO算法)源于对鸟群和鱼群的群体运动行为的研究,是一种新颖的群体智能优化算法,是计算智能领域中的一个新的分支。它的主要特点是原理简单、调节参数少、收敛速度较快。该算法从提出之日起便引起众多学者的极大关注,并且在工程应用领域得到了广泛应用,取得了良好的效果。因此本论文围绕着粒子群优化算法及其应用,就如何提高PSO算法性能以及该算法在非线性方程组求解、多峰函数优化、路径优化、选址优化中的应用进行了深入的研究。
     为了解决上述问题,本文遵循文献综述—问题提出—算法应用的思路依次进行解决,具体研究工作如下:
     (1)文献综述部分对智能优化方法的产生、发展历史及各主要分支领域进行了详细论述。首先对计算智能这一概念的提出做了简要回顾,介绍了计算智能在数值优化领域中具有的突出优点。接着针对计算智能的三个主要分支领域:神经网络、进化计算、模糊系统分别进行了论述。然后重点介绍了进化计算领域中遗传算法、群体智能领域中粒子群优化算法并总结了粒子群算法在各工程领域的成功应用案例。
     (2)非线性方程组的求解问题一直是科学技术和工程应用中的常见问题。在基于最大熵法的材料定量织构分析中,对于一组数目庞大的非线性方程组的求解成为此方法得以顺利进行的关键因素。由于需要求解的变量众多并广泛分布在指数位置上,因此对此类变量的处理显得尤为困难,稍有不慎将带来数值计算“溢出”而导致整个求解过程的失败。对该类问题的传统求解方法一方面对方程组本身提出了较高的特性要求,另一方面,初始迭代值选取不当将会致使求解过程陷入局优而影响计算的正确性。本文尝试应用具有随机性和种群并行性的PSO算法来求解此类优化问题,为最大熵法在定量织构分析中提供了一种稳定求解手段。
     (3)电路板元器件的缺陷检测属于PCB质量控制领域中一项重要研究内容。本文针对基于机器视觉的检测方法,提出了一种多模版匹配的技术来检测PCB上具有多个方向的多元器件缺失问题,并将此类问题转化为多峰函数的优化问题,接着对比分析了各种进化算法在求解多峰函数中的不同策略。将最近提出的Species-PSO算法应用在PCB检测过程中,并着重考察了算法的不同参数设置对搜索效率的影响。为了进一步提高检测效率,提出了三种加速策略,即1)NCC—MTM存储表;2)重新初始化间隔;3)局域搜索过程。通过大量的计算仿真分析,证明了加速策略的有效性。最后与GA-MTM进行了对比测试,表明SpeciesPSO在搜索效率上优于GA-MTM.
     (4)针对钢铁企业的板坯轧制计划问题的解非均衡性问题,提出了基于任务均衡的多旅行商模型进行求解。再介绍了旅行商和多旅行商问题以及求解方法,然后针对多旅行商问题的四种模型及求解方法分别进行阐述。接着重点讨论了一类特殊的多旅行商问题—即任务均衡的的多旅行商问题。对任务均衡的多旅行商问题提出了一种模型描述方法,并采用“两阶段法”进行求解。最后以TSPLIB中测试数据进行仿真计算。
     (5)选址问题是一类被广泛研究的组合优化问题。本文首先回顾了选址问题的历史,接着介绍了各种不同类型的选址问题,然后重点讨论了无容量约束选址问题的模型及各种求解方法。随着计算硬件的不断发展,多核心处理器正逐步替代单核心处理器进入普通消费者人群,如何能够更好地利用多核心处理器的计算能力是摆在每位从事科学计算工作者面前的课题之一。本文尝试将基于OpenMP技术的并行计算策略引入多种群的PSO算法来求解无容量约束的选址问题,与传统串行算法相比:并行计算在规模更大测试问题能够表现出明显的优势。
Artificial intelligence optimization techniques, abbreviated as AIOT, are booming dramatically with the fast development and extensive application of computer hardware together with software. Many researchers and engineers has introduced artificial intelligence optimization technique (AIOT) into the field of engineering optimization to solve and optimize complex industrial production process in order to obtain both the maximum economic efficiency and social benefits. Lots of research and practice have proved that production efficiency and economic benefits can be significantly increased through the application of optimization techniques including the reasonable allocation of resources and energy consumption reduction
     Since many engineering problems can be induced as an optimization problem under certain mathematical model, highly efficienct optimization algorithem greatly influence the quality of the solution. From a great variety of practical industrial applications, artificial intelligence optimization has been proved to be an efficient optimization tool over conventional optimization methods.By now, AIOT has played a very important role not only in all the aspects of social area but also in the industrial and agricultural production departments, e.g., structural optimization in designing mechanical systems, computer based image processing, optimization of planning and scheduling system in process industry, transportation scheduling optimization, optimization of resource configuration and territorial development.
     The idea of Particle Swarm Optimization (PSO) is derived from the observation of bird fish and flocks movments. PSO is a novel swarm intelligence optimization algorithm and thus boosts the new branch of computational intelliegence. It is chiefly characterized by its simplicity of implementation, fast converfence speed and few parameters to manipulation. Its emergency has provoked a wide range of responses in the field of academic world and indutrial application. This dissertation mainly concerns on the applicaton of PSO algorithm in the area of modern industry and performance enhancement in the solution of nonlinear equation system, multimodal optimization, route optimization and location optimization.
     The research work mainly consists of three parts and is organized by the sequence of general description of artificial intelligence optimization technique (AIOT), problem demonstration, and presenting algorithm application. Research contents in details are shown as followings:
     (1) Origination, development history and main subfields of AIO technique are treated minutely in this part. First, a brief review of AIO, including the concept and initiation, is introduced and its prominent advantage is also described in the filed of numeric optimization. Then, three categories of AIO are presented, namely artificial neural network, evolutionary computation, and fuzzy system, respectively. Furthermore, genetic algorithms in evolutionary computation area, particle swarm optimization in swarm intelligence emphasized. Then successful applications of PSO in different engineering areas are summarized
     (2) Solution to the noneliear equation systems has always been the common obstacle in scientific research and engineering application. How to obtain a satisfactory solution to large quantities of noneliear equation in a reasonable computation time plays the key role in the process of texture analysis based on maximum entropy method. As all the solution variables exits on the exponential form, mishandling to them could results in the "overflow" phenomenon. On the one hand, classic numerical solution to such problem requires the equation to satisfay characteristic. On the other hand, initial iterative value is also difficult to determine before optimizing process by classic method. This research develops an stochastical and parallel searching PSO algorithm to solve such optimization problems and provide a robust computation technique for maximum entropy method in texure analysis.
     (3) Defect dection in printed circuit board industry is the major reseach problem in quality control procedure.Based on machine vision detecting method, this paper proposes a multi template matching method to locate multiple components with multi-direction, and the problem is transformed to a multimodal function optimization problem. Then various strategies embedding in evolutionary algorithms for solving multimodal problems are compared and analyzed. The newly developed species based particle swarm optimization is introduced in the PCB inspection procedure. In order to improve the inspection efficiency, three acceleration strategies are proposed. The three methods are called NCC-MTM store table, re-initialization procedure, and local search respectively. From experimental test, the acceleration strategies are proved to be efficient in locating multi components. Finally, a comparison of GA-MTM and Species-PSO are conducted to show that Species-PSO exceeds GA-MTM in computation time.
     (4) A balanced assignment multiple travelling salesman model is proposed to solve the production plan problem of hot rolling slab batch scheduling in steel company. First, a brief introduction to TSP and MTSP problem and corresponding solutions are demonstrated, and then four MTSP models are presented. A specific MTSP model which requires balanced workload is presented and a two stage solution method is introduced to solve the balance problem. Finally, simulation verification is performed by using TSPLIB data.
     Location problem is a widely studied combination optimization problem. This work first reviews the history of location problem and then introduces major variants of such problems. The model and various solution techniques for uncapacitated facility location problem are emphasized in description. As the computer hardware is upgrading fast, how to fully utilize the super performance of modern multi-core processor is a big problem with high priority for scientific researchers. This dissertation proposed OpenMP based parallzation method for solving UFLP by a multi swarm particle swarm optimization. Compared with serial executive PSO, the parallelized OpenMP based multi swarm optimization excels in computation time especially in larger scale benchmark problem.
引文
1.运筹学教材编写组.运筹学[M].北京:清华大学出版社,2000.
    2. Holland J H. Outline for a logical theory of adaptive systems [J]. Journal of the ACM, 1962,9 (3):297-314.
    3. Holland J H. Adaptation in Natural and Artificial Systems:An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence [M]. MIT Press,1st MIT Press edition,1992. University of Michigan Press,1st edition,1975.
    4. KirkPatriek S, Gelatt J C D, Vecchi M P. Optimization by simulated annealing [J]. Science,1983,220 (4):671-680.
    5. KirkPatriek S. Optimization by simulated annealing:quantitative studies [J]. Journal of Statistical Physics,1984,34 (5):975-986.
    6. Glover F. Tabu Search-Part I ORSA [J]. Journal on Computing,1989,1(3):190-206.
    7. Glover F. Tabu Search-Part II ORSA [J]. Journal on Computing,1990,2(1):4-32.
    8. Dorigo M, Maniezzo V, Colomi A. The Ant System:Optimization by a colony of co-operating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B. 1996,26 (1):1-13.
    9.朱淼良.计算机视觉[M].杭州:浙江大学出版社,1997.
    10. McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity [M]. In Bulletin Mathematical Physics,1943,5:115-133.
    11. Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York:Plenum Press,1981.
    12. Fraser A S. Simulation of genetic systems by automatic digital computers [J]. Australian Journal of Biological Science,1957,10:484-499.
    13. Fraser A S. Simulation of genetic systems by automatic digital computers [M], In Kempthorne O Ed. Biometrical Genetics. Macmillan, New York, NY,1960.
    14. De Jong K. An analysis of the behavior of a class of genetic adaptive systems [D]. MI: University of Michigan,1975.
    15. Nedjah N, Mourelle L D M, Alba E. Parallel Evolutionary Computations [M]. Berlin: Springer-Verlag,2006.
    16. Hart W E. Krasnogor N. Smith J E. Recent Advances in Memetic Algorithms [M]. Berlin:Springer-Verlag,2005.
    17. Knowles J, Come D. Memetic algorithms for multiobjective optimization:issues, methods and prospects [M]. In Krasnogor N, Smith J E, Hart W E Ed. Recent Advances in Memetic Algorithms, Springer-Verlag, Berlin,2004.
    18. Fogel L J. Evolutionary Computation:Toward a New Philosophy of Machine Intelligence [M]. Piscataway:IEEE Press,1995.
    19. Fogel L J, Owens A J, Walsh M J. Artificial Intelligence through Simulated Evolution [M]. New York:Wiley,1966.
    20. Rechenberg I. Evolutionsstrategie:Optimierung technischer Systeme nach Prinzipien der biologischen Evolution [M]. Germany:Frommann-Holzboog Verlag, Stuttgart, 1973.
    21. Rechenberg I. Evolution strategy [M]. In Zurada J, Marks II RJ, Robinson C Ed. Computational Intelligence - Imitating Life. IEEE Press, Piscataway, NJ,1994.
    22. Bonabeau E, Dorigo M, Theaulaz G. Swarm Intelligence:From Natural to Artificial Systems [M]. New York:Oxford University Press,1999.
    23. Engelbrecht A P. Fundamentals of Computational Swarm Intelligence [M]. New York: Wiley,2005.
    24. Kennedy J, Eberhart R C, Yuhui S, Shi Y. Swarm Intelligence [M]. San Francisco: MorganKaufmann,2001.
    25. Dorigo M, Stutzle T. Ant Colony Optimization [M]. Cambridge:MIT Press,2004.
    26. Hendtlass T, Randall M. A survey of ant colony and particle swarm meta-heuristics and their application to discrete Optimization Problem [C]. In Proceedings of the Inaugural Workshop on Artificial Life,15-25, Adelaide, Australia,2001.
    27. Dorigo M, Maniezzo V, Colorni A. The Ant System:An Autocatalytic Optimizing Process [R]. Technical Report No.91-016. Politecnico di Milano, Italy.
    28. Kennedy J, Eberhart R C. Particle swarm optimization [C]. In Proceedings of the IEEE International Conference on Neural Networks,1995:1942-1948.
    29. Hepper F, Grenander U. A stochastic nonlinear model for coordinated bird flocks [M]. In Krasner S Ed. The Ubiquity of Chaos, AAAS Publications, Washington DC,1990.
    30. Reynold C W. Flock, herds and schools:a distributed behavioral model [J]. Computer Graphics,1987,21 (4):25-34.
    31. Wilson E O. Sociabiology:the new synthesis [D]. Belknap Press, Cambridge, MA, 1975.
    32. Shi Y, Eberhart R. A Modified Particle Swarm Optimizer [C]. In IEEE International Confernence on Evolutionary Computation, Piscataway:NJ, IEEE Service Center, 1998:69-73.
    33. Voss S, Martello S, Osman I H, Rucairol C. Metaheuristics:Advances and Trends in Local Serch Paradigms for Optimization [M]. Kluwer Academic Publishers,1999.
    34. Shi Y, Eberhart R C. Empirical study of particle swarm optimization [C]. In proceeding of Congress on Evolutionary Computation, Washington DC,1999, 1945-1950.
    35. Clerc M, Kennedy J. The Particle Swarm-Explosion, Stability and Convergence in a Multidimensional Complex Space [J]. IEEE Transactions on Evolutionary Computation,2002,6 (1):58-73.
    36. Kennedy J, Eberhart R C.A Discrete Binary Version of the Particle Swarm Algorithm [C]. In Proceeding Conference on Systems, Man, and Cybernetics,1997.
    37. Kennedy J, Spears W M. Matching algorithms to Problems:an experimental test of The Particle swarm and some genetic algorithms on the multimodal Problem generator [C]. In Intentional Conference on Evolutionary Computation,1998.
    38. Mohan C K, Al-kazemi B. Discrete particle swarm optimization [C]. In Proceedings of the Workshop on Particle Swarm Optimization,2001.
    39. Bean J C. Genetic Algorithms and Random Keys for Sequencing and Optimization [J]. ORSA Journal of Computing,1994,6 (2):154-160.
    40. Liu B, Wang L, Jin Y H, Huang D X. An Effective PSO-Based Memetic Algorithm for TSP [C]. In International Conference on Intelligent Computing,2006:1151-1156.
    41.陈建桥,葛锐,魏俊红.基于粒子群算法的复合材料层合板可靠性优化设计[J].华中科技大学学报(自然科学版),2006,34(4):96-98.
    42.俞欢军,张丽平,陈德钊,宋晓峰,胡上序.复合粒子群优化算法在模型参数估计中的应用[J].高校化学工程学报,2005,19(5):284-287.
    43.张丽平,俞欢军,陈德钊,胡上序.基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用[J].分析化学,2004,32(12):1590-1594.
    44. Ourique C O, Biscaia E C, Pinto J C. The use of particle swarm optimization for dynamical analysis in chemical processes [J]. Computers and Chemical Engineering, 2002,26 (12):1783-1793.
    45. Clerc M. Discrete particle swarm optimization illustrated by the traveling salesman problem, http://www.mauriceclerc.net,2000.
    46. Hendtlass T. Preserving Diversity in Particle Swarm Optimization [C]. In:Lecture Notes in Computer Science 2718,2003:4104-4108.
    47. Shi X H, Liang Y C, Lee H P, Lu C, Wang Q X. Particle swarm optimization-based algorithms for TSP and generalized TSPU [J]. Information Processing Letters,2007, 103 (5):169-176.
    48. Li N, Zou T, De-bao S. Particle Swarm Optimization for Vehicle Routing Problem [J]. Journal of Systems Engineering,2004,19 (6):596-600.
    49.陆琳,谭清美.一类随机需求VRP的混合粒子群算法研究[J].系统工程与电子技术,2006,28(2):244-247.
    50. Chen A L, Yang K, Wu Z M. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem [J]. Journal of Zhejiang University Science A, 2006,7 (4):607-614.
    51. Zhu Q, Qian L M, Li Y C et al. An Improved Particle Swarm Optimization Algorithm for Vehicle Routing [C]. In IEEE Congress on Evolutionary Computation,2006: 1386-1390.
    52.陈曦,蒋加伏.带变异粒子群算法在车辆路径问题中的应用[J].计算机与数字工程,2006,34(9):19-21.
    53.梁英,于海斌,曾鹏.应用PSO优化基于分簇的无线传感器网络路由协议[J].控制与决策,2006,21(4):453-456.
    54.王洪斌,侯婉姝.异步粒子群优化算法在QoS组播路由中的应用[J].传感器与微系统,2007,26(9):109-112.
    55. Li C B, Cao C X, Li Y G et al. Hybrid of Genetic Algorithm and Particle Swarm Optimization for Multicast QoS Routing [C]. In proceeding of 2007 IEEE International Conference on Control and Automation,2007:2355-2359.
    56. Sha D Y, Hsu C Y. A hybrid particle swarm optimization for job shop scheduling problem [J]. Computers and Industrial Engineering,2006,51 (4):791-808.
    57. Lian Z G, Jiao B, Gu X S. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan [J]. Applied Mathematics and Computation,2006,183 (2):1008-1017.
    58. Liao C J, Tsenu C T, Luarn P. A discrete version of particle swarm optimization for flowshop scheduling problems [J]. Computers and Operations Research,2007,34(10): 3099-3111.
    59. Zhang C S, Sun J G, Zhu X J et al.An improved particle swarm optimization algorithm for flowshop scheduling problem [J]. Information Processing Letters,2008,108 (4) 204-209.
    60. Liu B, Wang L, Jin Y H. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers [J].Computers and Operations Research,2008,35(9): 2791-2806.
    61. Sevkli M, Guner A R. A continuous particle swarm optimization algorithm for uncapacitated facility location problem [C]. In Fifth International Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS). Springer-Verlag, Berlin Heidelberg,2006:316-323.
    62. Engelbrecht A P, Ismail A. Training product unit neural networks [J]. Stability and Control:Theory and Applications,1999,2(1):59-74.
    63. Berghf V D, Engelbercht A P. Cooperative learning in neural networks using particle swarm optimizers [J]. South African Computer Journal,2000,26 (1):84-90.
    64.刘洪波,王秀坤,孟军.神经网络基于粒子群优化的学习算法研究[J].小型微型计算机系统,2005,26(4):638-640.
    65.许磊,张凤鸣,程军.基于PSO神经网络的故障诊断方法研究[J].2007,28(15):3640-3642.
    66. Carlisle A, Dozier G. Adapting Particle Swarm Optimization to Dynamic Environments [C]. In Proceeding of the International Conference on Artificial Intelligence,2000:429-434.
    67. Hu X, Eberhart R C. Adaptive Particle Swarm Optimization:Detection and Response to Dynamic System [C]. In IEEE Proceedings of Congress on Evolutionary Computation,2002:1666-1670.
    68. Parrott D, Li X. Locating and tracking multiple dynamic optima by a particle swarm model using speciation [J]. IEEE Transaction on Evolutionary Computation,2006,10 (4):440-458.
    69. Wang H F, Wang D W, Yang S. Triggered Memory-based Swarm Optimization in Dynamic Environments [J]. Lecture Notes in Computer Science 4448,2007:637-646.
    70. Blackwell T, Branke J. Multiswarms, Exclusion and Anti-Convergence in Dynamic Environments [J]. IEEE Transaction on Evolutionary Computation,2006,10 (4) 459-472.
    71. Parsopoulos K E, Vrahatis M N. Recent Approaches to Global Optimization Problems through Particle Swarm Optimization [J]. Natural Computing,2002,2(1):235-306.
    72.龙云,王健全.基于粒子群游算法的同步发电机参数辨识[J].大电机技术,2003,32(1):8-11.
    73.万福才,汪定伟,李彦平.微粒群优化算法在相关新产品组合投入的应用[J].控制与决策,2004,19(5):520-524.
    74.齐洁,汪定伟.求解网络广告资源模型的改进微粒群优化算法[J].控制与决策,2004,19(8):881-884.
    75. Wever F. The Pole Figure in Textures Materials [J]. Transactions of American Institute of Mining and Metallurgical Engineers,1931,93:51-59.
    76. Harris G P. Quantitative measurement of preferred orientation in rolled uranium bars [J]. The Philosophical Magazine,1952,43 (7):113-123.
    77. Barrett C S, Levenson L H. The structure of Aluminum after compression [J]. Transactions Metallurgy Society AIME,1939,137 (2):112-149.
    78. Bunge H J. Zur Darstellung Allgemeiner Texhuren [J]. Z. Meatlklde,1965,65 (5) 872-876.
    79. Roe R J, Krigbaum W R. Description of Cyrstalliet Orientation in Polycrystalline Materials.Ⅲ. General Solution of Pole Figure Inversion [J]. Journal Applied Physics, 1965,36 (10):2024-2027.
    80.梁志德,徐家祯,王福.织构材料的三维取向分析术-ODF分析[M].沈阳:东北工学院出板社,1986.
    81. Shannon C E. Prediction and entropy of printed English [J]. The Bell System Technical Journal,1950,30:50-64.
    82. Jaynes E T. Information theory and statistical mechanics [J]. Physical Review Letters, 1957,106:620-630.
    83.王大志,王大鹏,汪定伟,左良,王福,梁志德.粒子群优化在最大熵法定量织构分析中的应用[J].金属学报,2008,44(2):183-187.
    84. Ortega J M, Rheinboldt W G. Iterative Solution of Nonlinear Equations in Several Variables [M]. New York:Academic Press,1970.
    85.李庆扬,莫孜中,祁力群.非线性方程组的数值解法[M].北京:科学出版社, 1987.
    86.王德人.非线性方程组解法与最优化方法[M].北京:高等教育出版社,1979.
    87. West G. A System for the Automatic Visual Inspection of Bare Printed Circuit Boards [J]. IEEE Transaction on System, Man and Cybernetics,1984,14(5):767-773.
    88. Wu C H, Wang D Z, Ip Andrew, Wang D W, Chan C Y, Wang H F. A particle swarm optimization approach for components placement inspection on printed circuit boards [J]. Journal of Intelligent Manufacturing, to appear.
    89. Wang D Z, Wu C H, Ip A et al. Fast multi-template matching using a particle swarm optimization algorithm for PCB inspection [C]. In the Proceeding of Applications of Evolutionary Computing-EvoWorkshops 2008, LNCS 4974:365-370.
    90.李杰,宣国荣.印刷电路板缺陷自动视觉检查系统[J].计算机工程,1992,18(5):35-38.
    91.王彩萍.电路组装的检测技术[J].电子工艺技术,2000,21(4):21-23.
    92.李金喜.印刷线路板图像检测技术研究[D].西安理工大学,2001.
    93.周德俭.SMT组装质量检测中的AOI技术与系统[J].电子工业专用设备,2001,31(2):87-91.
    94.步立新.光学检测机中图像识别的研究[D].上海交通大学,2004.
    95.徐胜海.印刷电路板在线自动视觉检测系统的分析研究[D].合肥工业大学,2001.
    96.张文景,张文渊,苏键等.计算机视觉检测技术及其在机械零件检测中的应用[J].上海交通大学学报,1999,33(5):129-132.
    97.张亚鹏,何涛,文昌俊等.机器视觉在工业测量中的应用与研究[J].光学精密工程,2001,9(4):324-332.
    98. Seul M, Gorman L, Sammon M J. Practical Algorithms References for Image Analysis: Description, Examples and Code [M]. Cambridge:Cambridge University Press,2000.
    99. Duda R O, Hart P E. Pattern Classification and Scene Analysis [M]. New York:Wiley, 1973.
    100. Gonzalez R C, Woods R E. Digital Image Processing (third edition) [M]. Massachusetts:Addison-Wesley,1992.
    101. Moganti M, Ercal F, Dagli C H, Tsunekawa S. Automated PCB inspection algorithms: a survey [J]. Computers Vision and Image Understanding,1996,63 (2):287-313.
    102. Crispin A J, Rankov V. Automated inspection of PCB components using a genetic algorithm template-matching approach [J]. International Journal Advanced Manufacturing Technology,2007,35 (4):293-300.
    103. Beasley D, Bull D R, Martin R R. A sequential niche technique for multimodal function optimization [J]. Evolutionary Computation,1993,1 (2):101-125.
    104. Hutchinson G E. Concluding remarks [C]. In Cold Spring Harbor Symposia on Quantitative Biology,1957,22:415-427.
    105. Spears W M. Simple subpopulation scheme [C]. In Proceeding of Conference on Evolutionary Programming,1994:296-307.
    106. Cohoon J P, Hedge S U, Martin W N et al. Punctuated equilibria:A parallel genetic algorithm [M]. In Grefenstette J J Ed, Genetic algorithm and their application: Proceeding Of second International Conference on genetic algorithm,1987:148-154.
    107. Yin X, Germay N. A fast genetic algorithm with sharing scheme using cluster methods in multimodal function optimization [C]. In Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms, Springer, Innsbruck 1993:450-457.
    108. Petrowski A, Genet M G, A Classification Tree for Speciation [C]. In proceeding of Congress on Evolutionary Computation,1999:204-211.
    109. Bessaou M, Betrowski A, Siarry P. Island model cooperating with speciation for multimodal optimization [C]. In 6th international conference on Parallel problem solving from nature-PPSNVI, Springer,2000.
    110. Li J P, Balazs M E, Parks G et al. A species conserving genetic algorithm for multimodal function optimization [J]. Evolutionary Computation,2002,10 (3) 207-234.
    111. Li X. adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization [C]. In Proceeding of Genetic Evolutionary Computation,2004:105-116.
    112. Parrott D, Li X. A particle swarm model for tacking multiple peaks in a dynamic environment using speciation [C]. In Proceeding of the 2004 Genetic and Evolutionary Computation Conference,2004:98-103.
    113. Petrowski A. A clearing procedure as a niching method for genetic algorithms [C]. In Proceeding of 1996 IEEE International Conference on Evolutionary Computation, 1996:798-803.
    114. Kennedy J. Stereotyping:Improving particle swarm performance with cluster analysis [C]. In Proceedings of IEEE International Conference on Evolutionary Computation, 2002:1507-1512.
    115. Moganti M, Ercal F, Dagli C H et al. Automated PCB inspection algorithms:a survey [J]. Computer Vision and Image Understanding,1996,63 (2):287-313.
    116. Loh H H, Lu M S. Printed circuit board inspection using image analysis [J]. IEEE Transactions on Industrial Application,1999,35 (2):426-432.
    117. Mashohor S, Evans J R, Arslan T. Genetic algorithm based printed circuit board (PCB) inspection system [C]. In 2004 IEEE International Symposium on Consumer Electronics,519-522,2004.
    118. Li D, Yu C F. The application of Genetic algorithm in detecting printed circuit board components [J]. Journal of Fudan University (Natural Science),2006,45 (4) 452--456.
    119.唐立新.CIMS下生产批量计划理论及其应用[M].北京:科学出版社,1999.
    120. Eric D K, Wright R. Discrete event sequencing as a traveling salesman problem [J]. Computers in Industry,1992,19 (3):317-327.
    121. Balachandar S R, Kannan K. Randomized gravitational emulation search algorithm for symmetric traveling salesman problem [J]. Applied Mathematics and Computation, 2007,192 (2):413-421.
    122. Righini G, Trubian M. A note on the approximation of the asymmetric traveling salesman problem [J]. European Journal of Operational Research,2004,153 (1) 255-265.
    123.马良.旅行推销员问题的算法综述[J].数学的实践与认识,2000,30(2):156-165.
    124.严晨,王直杰.基于改进型能量函数和瞬态混沌神经网络的TSP问题研究[J].系统仿真学报,2006,18(5):1402-1405.
    125. Gorenstein S. Printing press scheduling for multi-edition periodicals [J]. Management Science 1970,16 (6):373-383.
    126. Angel R D, Caudle W L, Noonan R, Whinston A. Computer assisted school bus scheduling [J]. Management Science,1972,18 (6):279-288.
    127. Gilbert K C, Hofstra R B. A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem [J]. Decision Sciences,1992,23 (1):250-259.
    128. Tang L X, Liu J Y, Rong A Y, Yang Z H. A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron and Steel Complex [J]. European Journal of Operational Research,2000,124 (2):267-282.
    129. Bektas T. The multiple traveling salesman problem:an overview of formulations and solution procedures [J]. Omega,2006,34 (3):209-219.
    130.黄可为,汪定伟.热轧计划中的多旅行商问题及其计算方法[J].计算机应用研究,2007,24(7):43-45.
    131.卢厚清,王辉东,黄杰,李波.任务均分的多旅行商问题[J].系统工程,2005,23(2):19-21.
    132. Garey M, Hohnson D. Computers and Intractability [M]. In Freeman W H Ed. A Guide to the Theory of NP-Completeness. San Francisco, CA,1979.
    133. Lin S, Kernighan B W. An effective heuristic algorithm for the traveling salesman problem [J]. Operations Research,1973,21 (2):498-516.
    134. Helsgaun K. An effective implementation of the Lin-Kernighan traveling salesman heuristic [J]. European Journal of Operational Research,2000,126 (1):106-130.
    135. Hepper F, Grenander U. A stochastic nonlinear model for coordinated bird flocks [M]. In Krasner S Ed. The Ubiquity of Chaos, AAAS Publications, Washington DC,1990.
    136. Flood M M. The Travelling Salesman Problem [J]. Operations Research,1956,4(1) 61-75.
    137. Groes G A. A method for solving traveling-salesman problems [J]. Operations Research,1958,6 (2):791-812.
    138. Tasgetiren M F, Sevkli M, Liang Y C, Gencyilmaz G. Particle swarm optimization algorithm for single machine total weighted tardiness problem [C]. In Proceeding of the Congress on Evolutionary Computation,2004.
    139. Johnson D S, McGeoch L A. The traveling salesman problem:a case study in local optimization [M]. In Aarts E H, Lenstra J K Ed. Local Search in Combinatorial Optimization, New York:John Wiley and Sons,1996.
    140. Weber A. Theory of the Location of Industries [M]. Chicago:The University of Chicago Press,1929.
    141. Hakimi S L. Optimum locations of switching centers and the absolute centers and medians of a graph [J]. Operations Research,1964,12 (3):450-459.
    142. Church R, ReVelle C. The maximal covering location problem [J]. Papers of the Regional Science Association,1974,32 (1):101-118.
    143. Hogan K, ReVelle C S. Concepts and applications of backup coverage [J]. Management Science,1986,32 (11):1434-1444.
    144. ReVelle C S. Review, extensions and predictions in emergency service siting models [J]. European Journal of Operational Research,1989,40 (1):58-69.
    145. ReVelle C S, Hogan K. The maximum availability location problem [J]. Transportation Science,1983,23 (3):192-200.
    146. Galvao R D, Espejo L G A, Boffey B. A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro [J]. European Journal of Operational Research,2002,138 (3):495-517.
    147. Boffey B, Yates D, Galvao R D. An algorithm to locate perinatal facilities in the municipality of Rio de Janeiro [J]. Journal of the Operational Research Society,2003, 54 (1):21-31.
    148. Espejo L G A, Galvao R D, Boffey B. Dual-based heuristics for a hierarchical covering location problem [J]. Computers and Operations Research,2003,30 (2) 165-180.
    149. Ballou R H. Dynamic warehouse location Analysis [J]. Journal of Marketing Research, 1968,5:271-276.
    150. Owen S H, Daskin M S. Strategic facility location:a review [J]. European Journal of Operational research,1998,111 (3):423-447.
    151. Brandeau M, Chiu S S. An overview of representative problems in location research [J]. Management Science,1989,35 (6):645-674.
    152. Daskin M S. Network and discrete location:models algorithms and applications [M]. New York:Wiley Interscience,1995.
    153. Erkut E, Neuman S. Analytical models for locating undesirable facilities [J]. European Journal of Operational Research,1989,40 (3):275-291.
    154. Current J, Min H, Schilling D. Multiobjective analysis of facility location decisions [J]. European Journal of Operational Research,1990,49 (3):295-307.
    155. Kuehn A A, Hamburger M J. A heuristic program for locating warehouses [J]. Management Science,1963,9:643-666.
    156. Balinski M L. Integer programming:methods, uses, computation [J]. Management Science.1965.12:253-313.
    157. Cornuejols G, Fisher M L, Nemhauser G L. Location of bank accounts to optimize float:an analytic study of exact and approximate algorithms [J]. Management Science, 1977,23:789-810.
    158. Galvao R D, Raggi L A. A method for solving to optimality uncapacitated location problems [J]. Annals of Operations Research,1989,18:225-244.
    159. Hoehbamu D S. Heuristics for the fixed cost medina Problems [J]. Math Programming, 1982,2:148-162.
    160. Shmoys D B, Tardos E, Adaral K. Apporximation algorithms for facility location problems [C]. In proeeedings of the29th ACM Symposium onTheoy of Computing, 1997:265-274.
    161. Guhanad S, Khuller S. Greedy strikes back:ImProved facility location algorithms [J]. Journmal of Algorithms,1999,31 (1):228-248.
    162. Krarup J, Pruzan P M. The simple plant location problem:survey and synthesis [J]. European Journal of Operational Research,1983,12 (1):36-81.
    163. Taha H A. Interger Programming [M]. San Diego:Academic Press,1975.
    164. Efroymson M, Ray T. A branch and bound algorithm for plant location [J]. Operations Research,1966,14 (3):361-368.
    165. Davis P, Ray T. A branch-bound algorithm for the capacitated facilities location problems [J]. Naval Research Logistics Quarterly,1969,16 (3):331-344.
    166. Barcelo J, Fernandez E, Jornsten K. Computational results from a new Lagrangean relaxation algorithm for the capacitated plant location problem [J]. European Journal of Operational Research,1991,53 (1):38-45.
    167. Al-Sultan K S, Al-Fawzan M A. A tabu search approach to the uncapacitated facility location problem [J]. Annals of Operations Research,1999,86:91-103.
    168. Laurent M, Hentenryck P V. A simple tabu search for warehouse location [J]. European Journal of Operational Research,2004,157 (3):576-591.
    169. Jaramillo J H, Bhadury J, Batta R. On the use of genetic algorithms to solve location problems [J]. Computers and Operations Research,2002,29 (6):761-779.
    170. Ghosh D. Neighborhood search heuristics for the uncapacitated facility location problem [J]. European Journal of Operational Research,2003,150 (1):150-162.
    171. Bilde O, Krarup J. Sharp lower bounds and efficient algorithms for the simple plant location problem [J]. Annals of Discrete Mathematics,1977,1:79-97.
    172. Erlenkotter D. A dual-based procedure for uncapacitated facility location [J]. Operations Research,1978,26:992-1009.
    173. Korkel M. On the exact solution of large-scale simple plant location problems [J]. European Journal of Operational Research,1989,39 (2):157-173.
    174. Guignard M. A Lagrangean dual ascent algorithm for simple plant location problems [J]. European Journal of Operational Research,1988,35 (2):193-200.
    175. OpenMP Forum, http://www.openmp.org/.OpenMP:A Proposed Industry Standard API for shared Memory Programming,1997.
    176. Foster I. Designing and building parallel programs [M]. 北京:机械工业出版社, 2002.
    177. Erick C. A survey of parallel genetic algorithms [J]. Calculateurs Parallels,1998,10 (2):141-711.
    178. Bernd B, Gabriel E K, Christine S. Parallelization strategies for the ant system [R]. Vienna, Austria: University of Vienna,1997.
    179. Mahfoud S W, Goldberg D E. Parallel recombinative simulated annealing:a genetic algorithm [J]. Parallel Computing,1995,21 (1):1-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700