三相循环流化床中催化氧化高硫高砷难选冶金精矿和尾渣基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界上易选冶的黄金矿石资源日益枯竭,开发利用难选冶金精矿或尾渣,特别是含高硫、高砷的难选冶金精矿或尾渣是一大趋势。难选冶金精矿在氰化提金之前一般都需要预处理,从而提高金的回收率。预处理难选冶金精矿的工艺主要包括氧化焙烧、加压氧化和细菌氧化。焙烧氧化法产生废气,污染环境;加压氧化法生产操作和设备维护均要求很高的技术水平;细菌氧化法反应时间比较长,对砷的含量有一定的限制;用硝酸预氧化金精矿可以显著降低反应温度和压力,使硫化矿物能在较低温度和压力下快速氧化分解,提高金的浸出率。用硝酸预氧化金精矿现主要有三种工艺:NlTROX工艺、ARSENO工艺和COAL法。与高压氧化法相比,ARSENO工艺和COAL法压力降低了很多,但仍然需要2-7个大气压的压力;NITROX法中氮氧化物回收系统复杂。针对以上问题,结合三相循环流化床的特点,本文提出了三相流化床中NO_X循环催化氧化高硫高砷金精矿和尾渣工艺,实现在常压下可连续、NO_X易回用、回用率较高和回收系统简单的地预处理难选金精矿或尾渣,以期望低成本、低能耗、低投资和最大化地综合利用该类难选冶资源,消除其对环境的污染,达到清洁生产目的。
     本文首先借助XRD、MLA(矿物解离度分析)、线扫描、面扫描和氰化等测试手段表征所采用的高硫高砷难选冶金精矿和尾渣,表明高硫高砷金精矿属于难选冶一类,金以超显微金的形式存在载金矿物成分中,必须氧化预处理后提金。其次从硝酸分子和硝酸根的结构、硝酸的电极电势和NO_2的催化作用等三方面分析了硝酸的氧化性。然后从化学反应的反应热、焓和吉布斯自由能等角度对硝酸催化氧化高硫高砷难选冶金精矿和尾渣进行了热力学分析,从理论上说明了采用硝酸氧化高硫高砷金精矿和尾渣是可行的。
     在上述理论的指导下,本文进行了间歇式反应器中HNO_3直接氧化高硫高砷金精矿、三相循环流化床中流体力学特性、三相循环流化床中硝酸直接氧化高硫高砷金精矿和三相循环流化床中NO_X循环氧化高硫高砷金精矿和尾渣等四个方面研究,得出了以下结论:
     (1)采用高硫高砷金精矿为实验原料,以间歇式反应器中硝酸直接氧化高硫高砷金精矿反应过程中铁的转化率为实验指标,通过正交实验和单因素实验研究,考察了主要的各相关因素对铁转化率的影响。在此基础上研究了间歇反应器中硝酸直接氧化高硫高砷金精矿的反应模型。研究表明:①间歇式反应器中硝酸氧化金精矿的转化率受反应温度、硝酸浓度、金精矿粒径、反应时间、搅拌速度等因素的影响。随着搅拌速度、反应温度及硝酸浓度的增加,转化率均有所提高,而随着金精矿粒径的增加,转化率降低;②间歇式反应器中硝酸直接氧化高硫高砷金精矿反应过程可以用粒径缩小的缩核模型来描述。③在反应温度25-85℃、硝酸初始浓度10~30%,金精矿粒径74~154μm、搅拌速度400-800 rpm的条件下,当硝酸浓度为10%时,活化能为10.70kJ/mol,当硝酸浓度为25%时,活化能为12.25kJ/mol。间歇式反应器中硝酸直接氧化高硫高砷金精矿反应过程属于扩散控制。因此,加速流体湍动,减少液膜厚度是强化该过程的首要措施。
     (2)分别以空气、水、金精矿为气相、液相和固相,采用理论分析和实验研究的方法,进行了三相循环流化床中流体力学特性研究,考察了气体分布板形式和操作条件对反应器内流动特性的影响,研究表明:①平均气含率随气速的增大呈指数增加;少量固体颗粒的加入,使处于湍动域时的微孔分布板三相循环流化床全床平均气含率增加。②相同操作条件下,微孔气体分布板三相循环流化床中气含率比疏孔气体分布板三相循环流化床气含率大。③在初始阶段,随着气体流速的增加,两点间压降下降。上部压降最大,下部次之,中部最小。随着气体流速进一步增加,压降下降幅度略微降低。④疏孔气体分布板三相循环流化床和微孔气体分布板三相循环流化床内平均气含率的关联式分别为ε_g=0.08U_g~(0.86)和ε_g=0.12U_g~(0.99)。
     (3)采用高硫高砷金精矿为实验原料,以三相循环流化床中硝酸直接氧化高硫高砷金精矿反应过程中铁的转化率为实验指标,通过单因素实验研究,考察了主要的各相关因素对铁转化率的影响。在此基础上研究了三相循环流化床中硝酸直接氧化高硫高砷金精矿的反应模型。研究表明:①在三相循环流化床中硝酸氧化金精矿过程中铁的转化率受气速、硝酸浓度、温度和粒径等因素的影响。随着气速、硝酸浓度及反应温度的增加,转化率均有所提高,而随着金精矿粒径的增加,转化率降低;②三相流化床中硝酸与高硫高砷金精矿反应过程系气液固多相反应,其反应的活化能为43.2KJ/mol,该反应属于化学控制过程;反应模型为1-(1-C_r)~(?)=5987.325e~(-5187.14/T)t,反应速率为(?)。
     (4)采用高硫高砷金精矿和尾渣为实验原料,以三相循环流化床中NO_X循环催化氧化高硫高砷金精矿和尾渣反应过程中铁的转化率为实验指标,进行了三相循环流化床中NO_X循环催化氧化高硫高砷金精矿和尾渣实验。并借助于XRD、点扫描、线扫描和面扫描等测试手段对深度处理前后的金精矿和尾渣的成分进行分析对比。研究表明:①三相循环流化床中NO_X循环催化氧化高硫高砷金精矿和尾渣反应过程中铁的转化率可高达97.59%,经过深度预处理金精矿后的氧化渣中,Fe的单点分析最高量仅为0.63%,S和As单点含量为0,无论线扫描还是面扫描,As均为0;经过深度预处理尾渣之后的氧化渣中铁、硫的残留量极低,FeS_2和FeAsS等载金矿物基本被氧化完全,从而实现金的解离。②三相循环流化床中催化氧化高硫高砷难选冶金精矿和尾渣得到的氧化渣金的浸出率分别达到了96%和100%(氰化钠用量3000g/t,液固比3:1,粒径-25μm,浸出时间24小时,浸出pH 9-10),表明三相循环流化床催化氧化技术确实提高了金的浸出率,提高幅度大约一倍。③三相循环流化床NO_X循环催化氧化高硫高砷难选冶金精矿和尾渣技术是可行的,且设备较为简单,操作方便,易于实现,基本无有害物质排放,有利于环保。
With the depletion of high-grade ore resources, it is a trend to develop and utilizerefractory gold ore and tailings, especially high-sulfur and high-arsenic goldconcentrate (HGC) and tailings. To achieve a satisfactory recovery, an oxidativepretreatment stage is required before applying any conventional treatment. Refractoryore pretreatment processes mainly include roasting oxidation, pressure oxidation andbacterial oxidation. Roasting oxidation would release SO_2 and As_2O_3 and pollute theenvironment; Pressure oxidation processes require high-pressure and high temperatureequipments. Bio-oxidation process requires long time for pretreatment and is sensitiveto arsenic. Nitric acid oxidation method can significantly reduce the reactiontemperature and pressure. Nitric acid oxidation method can be divided into N1TROXprocess, ARSENO technology and COAL method. Although pressure is lower inARSENO technology and COAL method than in high pressure method, there are still2 to 7 atmospheres of pressure. In N1TROX process, nitrogen oxides recovery systemis complex. Considering the above problems and the characteristics of three-phasecirculated fluidized bed, the process of catalytic oxidation of high-sulfur andhigh-arsenic refractory gold concentrate and tailings in three-phase circulatedfluidized bed was suggested. Therefore the development of a cost-effective, clean,atmospheric pressure, low temperature, NO_X easy reuse and recycling rates arerelatively high pre-treatment methods have become the current needs.
     In this paper, first of all, Through XRD, MLA (Mineral Analysis dissociation) andpoint scan, line scan and surface scan, it was revealed that the gold concentrate andtailings in this paper is of refractory kind and the gold in HGC and tailings isencapsulated as fine grained particles in the crystal structure of the mineral matrix.Then, nitric acid oxidation ability was analysed from three aspects: the structure of nitrate and nitric acid molecules, the electrode potential of nitric acid, and catalyticaleffect of NO_2. Thermodynamic analysis was conducted from three aspects: chemicalreaction heat, enthalpy and Gibbs free energy. It was found that HGC and tailingswere oxidized by nitric acid is feasible in theory.
     Under the guidance of the above theories, this paper researched four problems:Direct oxidation of HGC by HNO_3 in the intermittent reactor; Hydrodynamics inthree-phase circulated fluidized; Direct oxidation of HGC by nitric acid in three-phasefluidized bed; NOx circulated catalytic oxidation of HGC and tailings in three-phasecirculating fluidized bed. The conclusions can be drawn as follows:
     (1) The HGC was used as raw materials. The conversion of iron was made as theindicator. Through orthogonal experiment and single factor experiment, the influencesof main factors on the rate of conversion of iron were conducted. Furthermore, thekinetics of HGC oxidation by dilute nitric acid in batch reactor was investigated.①The effects of particle size (50-335μm), reaction temperature (25-85℃), initialacid concentration (10-30%, wt.) and stirring speed (400-800 rpm) on the ironextraction rate (C_r) were determined. It is obvious that C_r increases with the rise ofinitial nitric acid concentration, reaction time and stirring speed, but decreases withthe increase of particle size.②the kinetics of HGC oxidation by dilute nitric acidunder in batch reactor was investigated. The reaction process conforms to shrinkingcore model.③The activation energies were determined to be 10.70 KJ/mol in the10% HNO_3 and 12.25 KJ/mol in the 25% HNO_3. Oxidation kinetics indicates that theprocess of HGC oxidation by dilute nitric acid in batch reactor is diffusion controlled.It is necessary to accelerate fluid turbulence and decreases liquid film.
     (2) Air, water and HGC were used as gas phase, liquid phase and solid phase,respectively. Through theoretical analysis and experimental study, hydrodynamics inthree-phase circulated fluidized were studied. The effects of gas distribution plate andoperation conditions on the flow Characteristics were conducted.①average gasholdup increased with gas velocity exponentially; liquid circulation velocity increasedwith gas velocity, and gas-liquid mass transfer mainly occurred in the upper tube; average gas holdup increased with amount of solid particles.②Under the sameoperating conditions, gas holdup is higher in the circulating fluidized bed withmicropore gas distribution board than in the circulating fluidized bed with sparse gashole distribution board.③At the initial stage, with the increase in gas flow rate,pressure drop between two points dropped. The pressure drop of upper part is thelargest, the lower part is the second, the central is minimum. With a further increase ingas flow rate, pressure drop slightly decrease.④Under the experimental condition,the correlation of average gas holdup in circulating fluidized bed with sparse poredistribution board and micro-pore distribution board areε_g=0.08U_g~(0.86)andε_g=0.12U_g~(0.99), respectively.
     (3) The HGC was used as raw materials. The conversion of iron in three-phasecirculated fluidized bed was made as the indicator. Through single factor experiment,the influences of main factors on the rate of conversion of iron were conducted.Furthermore, the kinetics of HGC oxidation by nitric acid in three-phase circulatedfluidized bed was investigated.①In three-phase circulated fluidized bed, theconversion of iron increases with the rise of initial nitric acid concentration, reactiontemperature and air velocity, but decreases with the increase of particle size.②Thereaction process of HGC oxidation by nitric acid in three-phase circulated fluidizedbed conforms to shrinking core model.③The activation energies were determined tobe 43.2KJ/mol. Oxidation kinetics indicates that the reaction process of HGCoxidation by nitric acid in three-phase circulated fluidized bed ischemically-controlled. Reaction model is 1-(1-C_r)~(?)=5987.325e~(-5187.14/T)t andreaction rate is(?).
     (4) The HGC and tailings were used as raw materials. The conversion of iron inNOx circulated catalytic oxidation process was made as the indicator. The experimentof NO_X circulated catalytic oxidation of HGC and tailings in three-phase circulatedfluidized bed was conducted. Through XRD, point scan, line scan and surface scan, the effect of NOx circulated catalytic oxidation were studied.①The conversion ofiron in NOx circulated catalytic oxidation process can be as high as 97.59%. Afterdepth pretreatment, the maximum volume Fe of the single-point is only 0.63%; S andAs contents of a single point is 0. Regardless of line or surface scan, As content is 0.Gold minerals can be completely oxidized in NOx cycle three-phase circulatingfluidized bed.②The cyanidation leaching rate of HGC and tailings after depthpre-treatment is 96.38% and 100%, respectively(The amount of sodium cyanide is3000g/t; liquid-solid ratio is 3:1; particle size -25μm; leaching time is 24 h; pH is9-10), proving that NOx circulated catalytic oxidation process indeed improve the rateof gold leaching.③It is feasible to pretreat HGC and tailings using three-phasecirculating fluidized bed NO_X catalytic oxidation method. The apparatus is simple andis easy to operate. There is no waste and the environment was protected.
引文
[1] 周丽,文书明,李华伟.难浸金矿预处理技术及其应用[J].国外金属矿选矿,2004,3:11-14.
    [2] Abrantes, L.M., Costa., M.C.. Electro-oxidation as a pre-treatment for gold recovery [J]. Hydrometallurgy, 1996,40 (1-2): 99-110.
    [3] M.S. Prasad, R. Mensah-Biney, R.S. Pizarro. Modern trends in gold processing-overview [J]. Minerals Engineering, 1991,4(12): 1257-1277.
    [4] 徐远志.难浸金矿的预处理方法及影响其工艺选择的冶金学因素[J].云南冶金,1998,27(增刊):9-13.
    [5] S.R. La Brooy, H.G. Linge, G.S. Walker. Review of gold extraction from ores [J].Minerals Engineering, 1994,7(10):1213-1241
    [6] M.D. Adams. Summary of gold plants and processes [J]. Developments in Mineral Processing, 2005,15: 994-1013
    [7] A. Muir, J. Mitchell, S.R. Flatman, C. Sabbagha. A practical guide to re-treatment of gold processing residues [J]. Minerals Engineering, 2005,18(8): 811-824
    [8] C.A..Fleming. Hydrometallurgy of precious metals recovery [J]. Hydrometallurgy,1992, 30(1-2): 127-162.
    [9] 浸矿技术编委会编.浸矿技术[M].北京:原子能出版社,1994.
    [10] M.N. Lehmann, S. O'Leary, J. G. Dunn. An evaluation of pretreatments to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite [J].Minerals Engineering, 2000,13(1): 1-18.
    [11] 刘汉钊.难处理金矿石难浸的原因及处理方法[J].黄金,1997,18(9):44-48.
    [12] P.M. Afenya. Treatment of carbonaceous refractory gold ores [J]. Minerals Engineering,1991,4(7-11):1043-1055.
    [13]苏大雄,张秋利,周军,兰新哲等.难处理金矿的预处理[J].有色金属,2002,54(增刊):137-141.
    [14]William Petruk. Applied mineralogy related to gold [J]. Applied Mineralogy in the Mining Industry, 2000: 111-133
    [15]王力军,刘春谦.难处理金矿石预处理技术综述[J].黄金,2000,1:38-45.
    [16]李卫,谭凯旋.我国难处理金矿的研究现状与开发前景[J].湖南地质,1999,18(2-3):201-205.
    [17]廖梦霞,邓天龙,汪模辉等.难处理含砷金精矿的生物预氧化——硫脲浸金工艺研究[J].矿产综合利用,1998,12:17-20.
    [18]刘汉钊.难处理金矿石堆浸的预处理技术[J].四川地质学报,1997,17(3):231-236.
    [19]李俊萌.难处理金矿石预处理工艺现状与发展[J].湿法冶金,2003,22(1):1-8.
    [20]夏光祥,方兆垳,石伟.难浸金矿的提金技术与展望[J].有色冶炼,2001,4:31-34.
    [21]申开榜.谈谈两段焙烧法预处理高硫砷难浸金精矿[J].云南化工,2007,34(5):26-29.
    [22]肖松文,刘建军,梁经东.难浸金矿焙烧处理的新进展(Ⅱ)[J].黄金,1995,16(4):31-35.
    [23]陈聪,姚香.难处理金矿石预处理方法简述[J].黄金科学技术,2004,12(4):27-30.
    [24]李智伟.难浸金矿处理工艺新进展[J].有色金属设计,1998,25(3):10-15.
    [25]郑晔.难处理金矿石碱性热压氧化预处理工艺研究[J].黄金科学与技术,1999,7(1):44-46.
    [26]K.G. Thomas. Pressure oxidation overview [J]. Developments in Mineral Processing, 2005, 15: 346-369.
    [27]T.J. Harvey, W. Tai Yen, J.G. Paterson. A kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate [J]. Minerals Engineering, 1993,6(8-10): 949-967.
    [28]L. S. Pangum, R. E. Browner. Pressure chloride leaching of a refractory gold ore[J]. Minerals Engineering, 1996, 9(5):547-556.
    [29]P. G. Mason. Examining the economics of some pressure oxidation process options [J]. Hydrometallurgy, 1992,29(1-3): 479-492.
    [30]D. S. R. Murthy, Vinod Kumar, K. V. Rao. Extraction of gold from an Indian low-grade refractory gold ore through physical beneficiation and thiourea leaching [J].Hydrometallurgy, 2003, 68(l-3):125-130.
    [31]R.G. McDonald, D.M. Muir. Pressure oxidation leaching of chalcopyrite. Part Ⅰ.Comparison of high and low temperature reaction kinetics and products [J].Hydrometallurgy, 2007, 86(3-4): 191-205.
    [32]R.G. McDonald, D.M. Muir. Pressure oxidation leaching of chalcopyrite: Part Ⅱ:Comparison of medium temperature kinetics and products and effect of chloride ion [J]. Hydrometallurgy, 2007, 86(3-4): 206-220.
    [33]Hu Long, David G. Dixon. Pressure oxidation kinetics of orpiment (AS_2S_3) in sulfuric acid [J]. Hydrometallurgy, 2007, 85(2-4): 95-102.
    [34]Hu Long, David G. Dixon. Pressure oxidation of pyrite in sulfuric acid media: a kinetic study [J]. Hydrometallurgy, 2004, 73(3-4): 335-349.
    [35]F. P. Gudyanga, T. Mahlangu, R. J. Roman, J. Mungoshi, K. Mbeve. An acidic pressure oxidation pre-treatment of refractory gold concentrates from the KweKwe roasting plant, Zimbabwe [J]. Minerals Engineering, 1999, 12(8): 863-875.
    [36]V. G. Papangelakis, G. P. Demopoulos. Acid pressure oxidation of pyrite: reaction kinetics [J]. Hydrometallurgy, 1991,26(3): 309-325.
    [37]Dimitrious Filippou, Rao Konduru, George P. Demopoulos. A kinetic study on the acid pressure leaching of pyrrhotite [J]. Hydrometallurgy, 1997,47(1): 1-18.
    [38]孙全庆.难处理金矿石的碱法加压氧化预处理[J].湿法冶金,1999,2:14-18.
    [39]T. Koslides, V. S. T. Ciminelli. Pressure oxidation of arsenopyrite and pyrite in alkaline solutions [J]. Hydrometallurgy, 1992, 30(1-3): 87-106.
    [40]石伟,夏光祥,涂兆枝,方兆行.氨性催化氧化-氰化法处理含砷难浸金矿的研究(I)[J].化工冶金,1996,17(1):32-37.
    [41]石伟,夏光祥,方兆行,涂兆枝.氨性催化氧化-氰化法处理含砷难浸金矿的研究(Ⅱ)[J].化工冶金,1996,17(411):295-299.
    [42]夏光祥,石伟,涂兆枝等.氨浸法预处理含砷难浸金矿石的应用研究[J].黄金,1996,17(10):28-34.
    [43]P. Miller, A. Brown. Bacterial oxidation of refractory gold concentrates [J].Developments in Mineral Processing, 2005,15: 371-402.
    [44]K.A. Malatt. Bacterial oxidation of pure arsenopyrite by a mixed culture [J].Process Metallurgy, 1999, 9(1): 411-421.
    [45]P.A. Spencer, J.R. Budden, M.K. Rhodes. Bacterial oxidation technology-A viable process for refractory gold ores and base metals recovery [J]. Minerals Engineering, 1991,4(7-11):1143-1152.
    [46]C. Komnitsas, F.D. Pooley.Bacterial oxidation of an arsenical gold sulphide concentrate from Olympias,Greece [J]. Minerals Engineering, 1990, 3(3-4): 295-306.
    [47]Antti Vuorinen, Olli H. Tuovinen. Analysis of soluble iron compounds in the bacterial oxidation of pyrite [J]. Journal of Fermentation Technology, 1987, 65(1)37-42
    [48]M.V. Ivanov. Bacterial processes in the oxidation and leaching of sulfide-sulfur ores of volcanic origin [J]. Chemical Geology, 1971, 7(3):185-211
    [49]P.A. Spencer, J.R. Budden, M.K. Rhodes. Bacterial oxidation technology-A viable process for refractory gold ores and base metals recovery [J]. Minerals Engineering, 1991,4(7-11): 1143-1152.
    [50]吕文广,郑景宜.细菌氧化在难处理含砷硫金矿石中取得重大进展[J].地质科技管理,1998,6:55-57.
    [51]白兰,裘荣庆,李希明.含砷金矿石细菌预氧化-氰化提金的渗滤柱浸研究[J].黄金,1994,15(3):30-34.
    [52]石伟,夏光祥,涂兆枝等.细菌氧化预处理含砷硫化矿的研究[J].黄金,1994,15(10):31-35.
    [53]闫森,童雄.强化难处理硫化铜矿物微生物浸出过程的研究[J].国外金属矿选矿,2000,11:13-18.
    [54]白铁,江晓庆,黄淦祥.黄金生产工艺指南[M].北京:地质出版社,2000.
    [55]崔勇霞,沈艳.难处理金矿石提炼技术研究进展[J].黄金科学技术,2007,15(3):53-56.
    [56]夏光祥.关于硝化法预处理含砷难冶金矿石的进展概况[J].黄金,1989,10(7):20-25.
    [57]陈玉明,张丽珠,王勋业.金精矿常压稀硝酸自循环氧化浸金工艺研究,矿产综合利用,2003,6:7-10.
    [58]魏晓娜,夏光祥.砷黄铁矿在催化氧化酸浸体系中的反应[J].中国有色金属学报,1994,4(2):31-33.
    [59]夏光祥,涂桃枝.催化氧化酸浸预处理黄铁矿金精矿的研究[J].化工冶金,1989,10(3):23-30.
    [60]金涌,祝京旭,汪展文等.流态化工程原理[M].北京:清华大学出版社,2001.
    [61]李涛,丁百全,朱炳辰,房鼎业.三相流化床反应器流体力学研究[J].化肥设计,1998,36(6):16-20.
    [62]Fan L S. Gas-Liquid-Solid Fluidization Engineering [M]. Boston: Butterworths,1989.
    [63]Cova D R. Catalyst Suspension in Gas-Agitated Tubular Reactors [J]. Ind. Eng.Chem. Pro. Des. Dev, 1966, 5: 20-21.
    [64]Suganuma T, Yamanish i, T.. Behavior of Solid Particles in Bubble Columns [J].Kagagu Kogagu, 1966, 30: 1136-1138.
    [65]El-Temtary S A. Fluidization [M]. Plenum press, 1980: 519-521.
    [66]Page R E. Fluidization and Its Application.Toulouse [M]. Cepadues-Editions,1974: 393-394.
    [67]Tang W T, Fan L S. Hydrodynamics of a Three-Phase Fluidized Bed Containing Low- Density Particles [J]. AIChE J, 1989, 5 (3): 355-360.
    [68]Murry P, Fan L S. Axial Solid Distribution in Slurry Bubble Columns [J]. Ind.Eng. Chem. Res, 1989,28: 1697-1701.
    [69]Jean R H, TangW T, Fan L S. The Sedimentation-Dispersion Model for Slurry Bubble Columns [J]. AIChE J, 1989, 35 (4): 662-665.
    [70]Tsutsumi A, Charinpannitkul T, Yoshida K. Prediction of Solid concentrationProfiles in Three-Phase Reactors by a Wake Shedding Model [J]. Chem.Eng. Sci, 1992,47 (13/14): 3411-3413.
    [71]Fan L-S. Gas-Liquid-Solid Fluidization Engineering [M]. Butterwortb Publishers,1989.
    [72]Ostergaard K, et al. Proceedings of the 4th European Symposium on Chem [M].React. Eng. Pergamon Press, 1971, 21-23.
    [73]H.M. Jena, G.K. Roy, B.C. Meikap. Prediction of gas holdup in a three-phase fluidized bed from bed pressure drop measurement [J]. Chemical Engineering Research and Design, 2008, 86(11): 1301-1308.
    [74]Imran Hamdad, Shahrzad Hashemi, Dano Rossi, Arturo Macchi. Oxygen transfer and hydrodynamics in three-phase inverse fluidized beds [J]. Chemical Engineering Science, 2007,62(24): 7399-7405.
    [75]Chi-Neng Lin, Shu-Yii Wu, Jian-Sheng Chang, Jo-Shu Chang. Biohydrogen production in a three-phase fluidized bed bioreactor using sewage sludge immobilized by ethylene-vinyl acetate copolymer [J]. Bioresource Technology, 2009,100(13),3298-3301.
    [76]G.V. Reddy, Sriram Prasad. A multistage three-phase mathematical model for fluidized bed coal combustors [J]. Fuel, 1993, 72(5):722-725.
    [77]Wooseok Nam, Kyungchan Woo, GuiYoung Han. Photooxidation of anionic surfactant (sodium lauryl sulfate) in a three-phase fluidized bed reactor using TiO_2/SiO_2 photocatalyst [J]. Journal of Industrial and Engineering Chemistry, 2009,15(3): 348-353.
    [78]Mauren Fuentes, Miguel C. Mussati, Nicolas J. Scenna, Pio A. Aguirre. Global modeling and simulation of a three-phase fluidized bed bioreactor [J]. Computers & Chemical Engineering, 2009, 33(1): 359-370.
    [79]Tawatchai Charinpanitkul, Apinan Soottitantawat, Wiwut Tanthapanichakoon. A simple method for bakers' yeast cell disruption using a three-phase fluidized bed equipped with an agitator [J]. Bioresource Technology, 2008, 99(18): 8935-8939.
    [80]A. Lohi, M. Alvarez Cuenca, G. Anania, S.R. Upreti, L. Wan. Biodegradation of diesel fuel-contaminated wastewater using a three-phase fluidized bed reactor [J].Journal of Hazardous Materials, 2008, 154(1-3): 105-111.
    [81]D. Mowla, M. Ahmadi. Theoretical and experimental investigation of biodegradation of hydrocarbon polluted water in a three phase fluidized-bed bioreactor with PVC biofilm support [J]. Biochemical Engineering Journal, 2007,36(2): 147-156.
    [82]Sang Done Kim, Yong Kang. Hydrodynamics, heat and mass transfer in inverse and circulating three-phase fluidized-bed reactors for waste water treatment [J].Studies in Surface Science and Catalysis, 2006,159: 103-108.
    [83]Pyung Seob Song, Suk Hwan Kang, Wang Kyu Choi, Chong Hun Jung, Won Zin Oh, Yong Kang. Recovery of copper powder from wastewater in three-phase inverse fluidized-bed reactors [J]. Studies in Surface Science and Catalysis, 2006, 15:537-540.
    [84]M. Nefzi, M. Ben Amor, M. Maalej. A clean technology for decarbonation of geothermal waters using a three-phase fluidized bed reactor-modelling aspect [J].Desalination, 2004,165: 337-350.
    [85]Gennaro Volpicelli, Leopoldo Massimilla. Three-phase fluidized bed reactors an application to the production of calcium bisulphite acid solutions [J]. Chemical Engineering Science, 1970, 25(9): 1361-1373.
    [86]Yan Sun, Shintaro Furusaki. Continuous production of acetic acid using immobilized acetobacter aceti in a three-phase fluidized bed bioreactor [J]. Journal of Fermentation and Bioengineering, 1990, 69(2): 102-110.
    [87]O. Nore, C. Briens, A. Margaritis, G. Wild. Hydrodynamics, gas-liquid mass transfer and particle-liquid heat and mass transfer in a three-phase fluidized bed for biochemical process applications [J]. Chemical Engineering Science, 1992, 47(13-14):3573-3580.
    [88]张同旺.气升式环流浆态床流动与传质行为的研究.清华大学博士论文,5-10.
    [89]张永利,刘永民,张红.环流反应器研究进展[J].辽宁化工,2002,31(9):410-414.
    [90]薛胜伟.气升式环流反应器流动与传质的研究.南京工业大学学位论文,3-4.
    [91]DongHyun Lee, Arturo Macchi, John R. Grace, Norman Epstein. Fluid maldistribution effects on phase holdups in three-phase fluidized beds [J]. Chemical Engineering Science, 2001, 56(21-22): 6031-6038.
    [92]Arturo Macchi, Hsiaotao Bi, John R. Grace, Craig A. McKnight, Larry Hackman.Dimensional hydrodynamic similitude in three-phase fluidized beds [J]. Chemical Engineering Science, 2001, 56(21-22): 6039-6045.
    [93]K.V. Ramesh, G.M.J. Raju, G.V.S. Sarma, C. Bhaskara Sarma. Effect of internal on phase holdups of a three-phase fluidized bed [J]. Chemical Engineering Journal,2009,145(3): 393-398.
    [94]H.M. Jena, B.K. Sahoo, G.K. Roy, B.C. Meikap. Characterization of hydrodynamic properties of a gas-liquid-solid -three-phase fluidized bed with regular shape spherical glass bead particles [J]. Chemical Engineering Journal, 2008, 145(1):50-56.
    [95]Krishna S.V.S.R. Bandaru, D.V.S. Murthy, K. Krishnaiah. Some hydrodynamic aspects of 3-phase inverse fluidized bed [J]. China Particuology, 2007, 5(5): 351-356.
    [96]Sung Mo Son, Suk Hwan Kang, Uk Yeong Kim, Yong Kang, Sang Done Kim.Bubble properties in three-phase inverse fluidized beds with viscous liquid medium [J]. Chemical Engineering and Processing, 2007, 46(8): 736-741.
    [97]Hui Zhao, Wei Ge. A theoretical bubble breakup model for slurry beds or three-phase fluidized beds under high pressure [J]. Chemical Engineering Science,2007, 62(1-2).
    [98]Puneet Dargar, Arturo Macchi. Effect of surface-active agents on the phase holdups of three-phase fluidized beds [J]. Chemical Engineering and Processing, 2006,45 (9):764-772.
    [99]Ryuji Kikuchi, Atsushi Tsutsumi, Kunio Yoshida. Fractal aspect of hydrodynamics in a three-phase fluidized bed [J]. Chemical Engineering Science,1996, 51(11):2865-2870.
    [100]Zumao Chen, Chong Zheng, Yuanding Feng, Hanns Hofmann. Modeling of three-phase fluidized beds based on local bubble characteristics measurements [J].Chemical Engineering Science, 1995, 50 (2):231-236.
    [101]Zumao Chen, Chong Zheng, Yuanding Feng, Hanns Hofmann. Distributions of flow regimes and phase holdups in three-phase fluidized beds [J]. Chemical Engineering Science, 1995, 50(13):2153-2159.
    [102]M. Del Pozo, C. L. Briens, G. Wild. Effect of liquid coalescing properties on mass transfer, heat transfer and hydrodynamics in a three-phase fluidized bed [J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994,
    [103]Lauren A. Briens, Naoko Ellis. Hydrodynamics of three-phase fluidized bed systems examined by statistical, fractal, chaos and wavelet analysis methods [J].Chemical Engineering Science, 2005, 60(22):6094-6106.
    [104]Tiefeng Wang, Jinfu Wang, Weiguo Yang, Yong Jin. Experimental study on bubble behavior in gas-liquid-solid three-phase circulating fluidized beds [J]. Powder Technology, 2003,137(1-2): 83-90.
    [105]Yong Jun Cho, Sa Jung Kim, Seok Hee Nam, Yong Kang, Sang Done Kim.Heat transfer and bubble properties in three-phase circulating fluidized beds [J].Chemical Engineering Science, 2001, 56(21-22): 6107-6115.
    [106]Chia-Min Chen, Lii-Ping Leu. Hydrodynamics and mass transfer in three-phase magnetic fluidized beds [J]. Powder Technology, 2001,117(3): 198-206.
    [107]Jianping Zhang, Yong Li, Liang-Shih Fan. Numerical studies of bubble and particle dynamics in a three-phase fluidized bed at elevated pressures [J]. Powder Technology, 2000,112(1-2): 46-56.
    [108]李宝璋,任文坛,张来奇.非牛顿型浆液鼓泡塔内气含率轴向分布实验研究[J].化学工程,1994,22(1):60-63.
    [109]何广湘,张同旺,靳海波,佟泽民.喷管分布器大型浆态鼓泡床反应器气含率的研究[J].石油化工,2003,32(6):495-498.
    [110]张同旺,何广湘,靳海波,佟泽民,朱建华.气液鼓泡床中气含率的实验 研究[J].石油化工高等学校学报,2002,15(4):1-4.
    [111]罗运柏,李绍箕,闻建平,张金利,胡宗定.三相反应器的气含率与液速分布和数值模拟[J].武汉水利电力大学学报,1998,31(1):100-103.
    [112]张锴,赵玉龙,张碧江.锥形鼓泡浆液反应器内气含率和固含率轴向分布研究[J].燃料化学学报,1993,21(4):400-406.
    [113]王琦.气液固三相外循环流化床流动特性的研究.河北工业大学硕士论文,2006.
    [114]Abdulrahim Ahmad Alzahrani, M.M. Noor Wali. A study of pressure drop fluctuations in a gas-solids fluidized bed [J]. Powder Technology, 1993, 76(2):185-189.
    [115]N. Sadasivan, D. Barreteau, C. Laguerie. Studies on frequency and magnitude of fluctuations of pressure drop in gas-solid fluidized beds [J]. Powder Technology,1980,26(1): 67-74.
    [116]C.R. Mohanty, B.C. Meikap. Pressure drop characteristics of a multi-stage counter-current fluidized bed reactor for control of gaseous pollutants [J]. Chemical Engineering and Processing: Process Intensification, 2009,48(1): 209-216.
    [117]李荫堂,李军,王栋.循环流化床主床压降的研究[J].动力工程,1994,14(3):34-38.
    [118]H.M. Jena, G.K. Roy, B.C. Meikap. Prediction of gas holdup in a three-phase fluidized bed from bed pressure drop measurement [J]. Chemical Engineering Research and Design, 2008, 86(11): 1301-1308.
    [119]邹克华.三相循环流化床流动沸腾传热和压降的研究.天津大学硕士学位论文,1999.
    [120]Murugesan T, Sivakumar V. Pressure drop and flow regimes in cocurrent gas-liquid upflow rhrough packed beds [J]. Chemical Engineering Journal, 2002, 88:233-243.
    [1]刘汉钊.难处理金矿石难浸的原因及预处理方法[J].黄金,1997,18(9):44-48.
    [2]郑存江,熊英,胡建平.微细粒包裹型金矿中金的赋存状态扫描电镜分析[J].理化检验(物理分册),2006,42(4):184-186.
    [3]李凡庆,卢江,毛振伟等.用电子探针对广西金牙微细粒金矿金赋存状态的研究[J].光谱学与光谱分析,1995,15(6):107-110.
    [4]熊英,林滨兰,郑存江.综合分析技术在微细粒浸染型金矿金赋存状态研究中的应用[J].岩矿测试,2004,23(1):62-66.
    [5]王安平,姚杰,马丽群,姚立.玲珑金矿黄铁矿中显微金、超显微金的矿物学特征[J].黄金,1999,20(2):6-9.
    [6]郑大中,郑若锋.矿石中金的化学物相分析新方法[J].黄金,1993,14(3):55-60.
    [7]贾建业.黄铁矿中金的赋存状态和存在形式研究[J].西北地质,1996,17(3):27-32.
    [8]张苏春,张玉杰.广西金牙金矿提取金之试验研究[J].贵金属,1995,16(2):47-50.
    [9]马建秦,李朝阳,温汉捷.不可见金赋存状态研究现状[J].矿物学报,1999,19(3):335-342.
    [10]杨洪英,杨立,佟琳琳等.广西金牙难浸金矿的工艺矿物学研究[J].东北大学学报(自然科学版),2007,28(8):1156-1158.
    [11]Yang HY, Yang L, Zhao YS, et al. Submicro-battery effect and selective bio-oxidation model of gold-bearing arsenopyrite by thiobaeillus ferrooxidams [J].Transactions of Nonferrous Memls Society of China, 2002,12 (6): 1199-1202.
    [12]Haque K E. Gold leaching from refractory ores-literature survey [J]. Mineral Processing and Extractive Metallurgy Review, 1987(2): 235-253.
    [13]郑存江.含砷难浸金矿的研究及应用[J].陕西地质,2003,21(1):88-98.
    [14]徐天允,徐正春.金的氰化与冶炼[M].沈阳:沈阳黄金学院出版社,1991.
    [15]巧瑕.黄金回收600问[M].北京:科学技术文献出版社,1992.
    [16]崔礼生,韩跃新.难选冶金矿石预处理现状[J].金属矿山,2005,7:6-9.
    [17]贾忠明.谈硝酸的氧化性.晋东南师专学报[J],1993,3:34-36.
    [18]谢育卿,林作森.硝酸氧化性机理问题的探讨[J].韩山师范学院学报,2001,22(2):59-68.
    [19]刘升明.难处理金矿石浮选药剂制度及预氧化反应器的改进研究[J].北京科技大学博士学位论文,2007.
    [20]苏扬.论硝酸的氧化性及还原产物[J].四川轻化工学院学报,1999,12(2): 62-64.
    [21]印永嘉,奚正楷,张树永.物理化学简明教程[M].北京:高等教育出版社,2007.
    [22]傅献彩.物理化学[M].北京:高等教育出版社,1990.
    [23]傅崇说.冶金溶液热力学原理与计算[M].北京:冶金工业出版社,1989.
    [24]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998.
    [25]梁英教等.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [1] Abrantes, L.M., Costa., M.C.. Electro-oxidation as a pre-treatment for gold recovery [J]. Hydrometallurgy, 1996, 40 (1-2): 99-110.
    [2] Ubaldini S., Veglio F., Toro L., Abbruzzese, C. Biooxidation of arsennopyrite to improve gold cyanidation: study of some parameters and comparison with grinding[J].International Journal of Mineral Processing, 1997, 52: 65-80.
    [3] Karamanev, D., Margaritis, A., Chong., N.. The application of ore immobilization to the bioleaching of refractory gold concentrate [J]. International Journal of Mineral Processing, 2001, 62 (1-4): 231-241.
    [4] Climo, M., Watling, H. R., Bronswijk, W. V.. Biooxidation as pre-treatment for a telluride-rich refractory gold concentrate [J]. Minerals Engineering, 2000, 13(12):1219-1229.
    [5] Dunn, J. G, Chamberlain, A. C.The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation [J]. Minerals Engineering, 1997,10(9): 919-928.
    [6] Gudyanga, F. P., Mahlangu, T., Roman, R. J.. Mungoshi, J.. An acidic pressure oxidation pre-treatment of refractory gold concentrates from the KweKwe roasting plant, Zimbabwe [J]. Minerals Engineering, 1999,12(8): 863-875.
    [7] Gonzalez, R., Gentina, J.C., Acevedo, F.. Continuous biooxidation of a refractory gold concentrate [J]. Process Metallurgy, 1999, 9(1): 309-317.
    [8] Deng, T. L., Liao, M. X.. Gold recovery enhancement from a refractory flotation concentrate by sequential bioleaching and thiourea leach [J]. Hydrometallurgy, 2002,63 (3): 249-255.
    [9] Miller, P., Brown, A.. Bacterial oxidation of refractory gold concentrates [J].Developments in Mineral Processing, 2005,15: 371-402.
    [10] Ramon G, Juan C. G, Fernando A.. Biooxidation of a gold concentrate in a continuous stirred tank reactor: mathematical model and optimal configuration [J].Biochemical Engineering Journal, 2004,19(1): 33-42.
    [11] 夏光祥.湿法冶金[M].北京:科学出版社出版,1978.
    [1] Maria Sol Fraguio, Miryan C. Cassanello, Fa(?)al Larachi, Sunun Limtrakul,Milorad Dudukovic. Classifying flow regimes in three-phase fluidized beds from CARPT experiments [J]. Chemical Engineering Science, 2007, 62 (24): 7523-7529.
    [2] Weiguo Yang, Jinfu Wang, Tiefeng Wang, Yong Jin. Experimental study on gas-liquid interfacial area and mass transfer coefficient in three-phase circulating fluidized beds [J]. Chemical Engineering Journal, 2001, 84(3): 485-490.
    [3] J. P. Zhang, J. R. Grace, N. Epstein, K. S. Lim. Flow regime identification in gas-liquid flow and three-phase fluidized beds [J]. Chemical Engineering Science,1997, 52 (21-22): 3979-3992.
    [4] Chong Zheng, Zumao Chen, Yuanding Feng, Hanns Hofmann. Mass transfer in different flow regimes of three-phase fluidized beds [J]. Chemical Engineering Science, 1995,50(10):1571-1578.
    [5] Chia-Min Chen, Lii-Ping Leu. A highly elevated mass transfer rate process for three-phase, liquid-continuous fluidized beds [J]. Chemical Engineering Journal, 2001,81(1-3): 223-230.
    [6] 张元兴、许学书.生物反应器工程[M].上海:华东理工大学出版社,2001:237-265.
    [7] Jiasen Song, Caroline L. Hyndman, Rajesh K. Jakher, et al. Fundamentals of hydrodynamics and mass transfer in a three-phase fluidized bed system [J]. Chemical Engineering Science, 1999, 54(21): 4967-4973.
    [8] Sang Done Kim, Yong Kang. Heat and mass transfer in three-phase fluidized-bed reactors-an overview [J]. Chemical Engineering Science, 1997, 52(21-22):3639-3660.
    [9] 戚以政,汪叔雄.生物反应动力学与反应器[M].北京:化学工业出版社,1999:290-328.
    [10] E. Maucci, C. L. Briens, R. J. Martinuzzi, G. Wild. Detection and characterization of piston flow regime in three-phase fluidized beds [J]. Powder Technology, 1999, 103(3), 243-259.
    [11]Anand A. Samuel, V. N. Vedamurthy. Mathematical modelling of heat and mass transfer in three phase fluidized bed systems [J]. Mathematical and Computer Modelling, 1990,14: 837-841.
    [12]金涌,祝京旭,汪展文等.流态化工程原理[M],清华大学出版社,2001.
    [13]张濂,朱海东.气-液-固三相外循环淤浆反应器连续化的工程研究[J].化学世界,1994,35(9):481-485.
    [14]Hisham El-Dessouky. Thermal and hydraulic performance of a three-phase fluidized bed cooling tower [J]. Experimental Thermal and Fluid Science, 1993, 6 (4):417-426.
    [15]Iordan Nikov, Henri Delmas. Mechanism of liquid-solid mass transfer and shear stress in three-phase fluidized beds [J]. Chemical Engineering Science, 1992, 47(3):673-681.
    [16]张同旺,高继贤,王铁峰,王金福.三相环流反应器中的局部相含率[J].过程工程学报,2005,5(5):485-489.
    [17]Abdul-Fattah A. Asfour, Abdulghanni H. Nhaesi. An improved model for mass transfer in three-phase fluidized beds [J]. Chemical Engineering Science, 1990, 45(9):2895-2900
    [18]张永利、刘永民、张红.环流反应器研究进展[J].辽宁化工,2002,31(9):410-414.
    [19]Rong-Her Jean, Liang-Shih Fan. A mechanistic model for phase holdup predictions in a three-phase fluidized bed [J]. Chemical Engineering Science, 1991,46(8): 1969-1976.
    [20]沐方平、范轶、何清华等.外环流反应器的气含率及循环液速[J].高校化学工程学报,1998,12(4):345-349.
    [21]Joo H. Han, Gabriel Wild, Sang D. Kim. Phase holdup characteristics in three phase fluidized beds [J]. The Chemical Engineering Journal, 1990,43(2): 67-73.
    [1]金涌、祝京旭、汪展文等.流态化工程原理[M].北京:清华大学出版社,2001.
    [2]胡恒亮.X射线衍射技术[M].北京:中国纺织出版社,1988:15-39.
    [3]陈学玺、陈永.磷矿在盐酸中的溶解动力学[J].化学反应工程与工艺,2000,16(4):389-395.
    [4]黄隐华,张允湘,丁炜,安泓汋、刘期崇.硝酸分解磷矿的宏观动力学研究[J].化学研究与应用,2002,14(2):153-156.
    [5]侯长军,霍丹群.硫铁矿渣酸解反应过程动力学研究[J].重庆大学学报(自然科学版),1998,21(6):60-66.
    [1]马双忱,赵毅,陈颖敏.液相催化氧化脱除烟气中SO_2和NO_X的机理讨论[J].华北电力大学学报,2001,28(4):75-79.
    [2]Counce R M, Crawford D B. Performance models for NOx absorbers/strippers [J].Environmental Progress, 1990, 9(2): 87-92.
    [3]郑存江,熊英,胡建平.微细粒包裹型金矿中金的赋存状态扫描电镜分析[J].理化检验(物理分册),2006,42(4):184-186。
    [4]李凡庆,卢江,毛振伟等.用电子探针对广西金牙微细粒金矿金赋存状态的研究[J].光谱学与光谱分析,1995,15(6):107-110.
    [5]熊英,林滨兰,郑存江.综合分析技术在微细粒浸染型金矿金赋存状态研究中的应用[J].岩矿测试,2004,23(1):62-66.
    [6]王安平,姚杰,马丽群等.玲珑金矿黄铁矿中显微金、超显微金的矿物学特征[J].黄金,1999,20(2):6-9.
    [7]郑大中,郑若锋.矿石中金的化学物相分析新方法[J].黄金,1993,14(3):55-60.
    [8]贾建业.黄铁矿中金的赋存状态和存在形式研究[J].西北地质,1996,17(3):27-32.
    [9]张苏春,张玉杰.广西金牙金矿提取金之试验研究[J].贵金属,1995,16(2):47-50.
    [10]马建秦,李朝阳,温汉捷.不可见金赋存状态研究现状[J].矿物学报,1999,19(3): 335-340.
    [11]杨洪英,杨立,佟琳琳等.广西金牙难浸金矿的工艺矿物学研究[J].东北大学学报(自然科学版),2007,28(8):1156-1158.
    [12]Yang HY, Yang L, Zhao YS, et al. Submicro-battery effect and selective bio-oxidation model of gold-bearing arsenopyrite by thiobaeillus ferrooxidams [J].Transactions of Nonferrous Memls Society of China, 2002,12 (6): 1199-1202.
    [13]Haque K E. Gold leaching from refractory ores-literature survey [J]. Mineral Processing and Extractive Metallurgy Review, 1987, 2: 235-253.
    [14]许端平,汪胜,钟立林.提高氮氧化物水吸收效果途径初探[J].煤矿爆破,2001,1:12-13.
    [15]孙佩极.冶金化工过程及设备[M].北京:冶金工业出版社,1980.
    [1]G. Senanayake. A review of effects of silver, lead, sulfide and carbonaceous matter on gold cyanidation and mechanistic interpretation [J]. Hydrometallurgy, 2008, 90 (1):46-73.
    [2]Jing Chen, Kun Huang. A new technique for extraction of platinum group metals by pressure cyanidation [J]. Hydrometallurgy, 2006, 82(3-4): 164-171.
    [3]L.R.P. de Andrade Lima, D. Hodouin. Analysis of the gold recovery profile through a cyanidation plant [J]. International Journal of Mineral Processing, 2006,80(1):15-26.
    [4]J. Li, B. Dabrowski, J.D. Miller, S. Acar, M. Dietrich, K.M. LeVier, R.Y. Wan. The influence of pyrite pre-oxidation on gold recovery by cyanidation [J]. Minerals Engineering, 2006,19(9): 883-895.
    [5]马巧瑕.黄金回收600问[M].北京:科学技术文献出版社,1992.
    [6]G.Senanayake. Kinetics and reaction mechanism of gold cyanidation: Surface reaction model via Au(Ⅰ)-OH-CN complexes[J]. Hydrometallurgy, 2005, 80(1-2):1-12.
    [7]G.Deschenes. Advances in the cyanidation of gold [J]. Developments in Mineral Processing, 2005, 15: 479-500.
    [8]G.Deschenes, S. Lacasse, M. Fulton. Improvement of cyanidation practice at Goldcorp Red Lake Mine [J]. Minerals Engineering, 2003,16(6): 503-509.
    [9]郑可利,华杰.某浮选金精矿的氰化浸出工艺研究[J],金属矿山,2003,8:21-22.
    [10]邝金才,姚香.国内金精矿氰化提金技术现状[J],有色矿冶,2003,19(2):16-21.
    [11]中国黄金生产实用技术编委会.中国黄金生产实用技术[M].北京:冶金工业出版社,1998:333-345.
    [12]Milton E. Wadsworth. Surface processes in silver and gold cyanidation [J].International Journal of Mineral Processing, 2000, 58(1-4): 351-368.
    [13]L. Curreli, G. Loi, R. Peretti, G. Rossi, P. Trois, A. Zucca. Gold recovery enhancement from complex sulphide ores through combined bioleaching and cyanidation [J]. Minerals Engineering, 1997,10(6):567-576.
    [14]薛光,于永江.提高高硫金精矿金的氰化浸出率的试验研究[J].黄金,2004,25(9):31-33.
    [15]D.德希内斯等.在氰化物介质中金和硫化矿物的相互作用[J].国外金属矿选矿,2003(8):32-39.
    [16]P. D. Kondos, G. Deschenes, R. M. Morrison. Process optimization studies in gold cyanidation [J]. Hydrometallurgy, 1995, 39(1-3):235-250.
    [17]黄金矿山实用手册编写组.黄金矿山实用手册[M].北京:中国工人出版社,1990.
    [18]徐志明等.氰化工[M].北京:国家黄金管理局,1990.
    [19]杨玮.高铜铅含碳难处理金精矿直接氰化及综合回收研究.中南大学硕士学位论文,2006.
    [20]R. M. Luna, G. T. Lapidus. Cyanidation kinetics of silver sulfide [J].Hydrometallurgy, 2000, 56(2):171-188.
    [21]P. Ling, V. G. Papangelakis, S. A. Argyropoulos, P. D. Kondos. An improved rate equation for cyanidation of a gold ore [J]. Canadian Metallurgical Quarterly, 1996,35(3): 225-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700