基于密度波理论的油水两相流测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注水开发油田的油井中普遍存在油水两相流动,油水两相流测量问题是油水两相产出剖面技术的关键。通常油水两相流测量主要是通过总流量和持率的测量组合来完成的,目前在总流量的测量中主要使用的是涡轮流量计,由于涡轮流量计具有可动部件使其在流体特性复杂多变的恶劣井条件下的响应呈非线性变化规律,影响测量精度,此外,普遍采用的集流型测试仪器在高产井及含水率高的油井中使用也遇到困难,为此,一种新型的适合非集流型点测的测试方法和测试仪器亟待发展和推广。
     本文正是基于这一思想,以开发新的油水两相流测试仪器为目标,进行先期的测量理论探索,试图从原理上改进油水两相流测井方法和工艺,实现利用同种电学敏感原理同时完成持率和总流量的测量,推动油水两相流测井技术的发展。论文首先研究了与测量特性有关的油水两相流流型问题,基于时间序列分析和密度波理论分别得到了流型表征结论,为进一步从测量的时间序列波动信号辨识流型奠定了方法基础。在此基础上,针对稳态密度波理论提出了基于密度波理论的油水两相流测量理论模型,该模型以密度波传播理论作为基础,通过上下游传感器信号相关获得密度波传播速度,利用密度波传播速度与总流量以及持相率的理论关系结合漂移模型来求解总流量和含相率,实现油水两相流的测量,在理论分析的基础上,在实验资料有限的条件下,对基于密度波理论的油水两相流测量理论模型作了极限的简化,提出了本文油水两相流测量理论方法应用在测量均匀油水两相流中的实用线性模型。
     利用油水两相流中的密度波现象来测量油水两相流动,不管是对密度波理论研究还是油水两相流测量研究都具有理论价值,通过这一测量理论研究进而开发新型的油水两相流测量方法将具有良好的发展前景。
Oil/water two-phase flow is very common in oil production wells of affusion oil field and the measurement of oil/water two-phase flow is the key of the oil/water two-phase profiling technique. The measurement of oil/Water two-phase flow is primarily accomplished by the combination of total flow rate and holdup measurement, and at present, the rotator flowmeter is used to measure the total flow rate. Since the rotator flowmeter has movable parts, which makes its responsibility behave nonlinearly under poor environment of me under hole whose fluids have very complex and changeful characteristics and affects the measurement precision. What's more, the widely used centralized measurement instrumentation meets problems in oil wells characterized with high production or high water cuts. So anew type of measurement and instrumentation is badly needed and developed which is suitable for non-centralized and stationary measurement
    Based on this idea, this study take the new type of oilAvater two-phase flow measurement and instrumentation development as the basic goal, cany out some theoretic exploration of measurement in order to improve oil/water two-phase flow well logging method and technique, and try to accomplish bom holdup and total flow rate measurement with one equipment simultaneously so as to push forward development of oilAvater two-phase flow well logging. Firstly, Flow patterns which related with the characteristics of measurement have been studied with both the time series analysis and density wave theory, which lay a solid foundation for oilAvater two-phase flow measurement Then a theoretic model of oil/water two-phase flow measurement based on stationary density wave theory has been brought up. This theoretic model employs the basic idea of correlation measurement, achieve the density wave speed by the correlation of the signals of upper and lower sensors, and get the total flow rate and water cut through the theoretic
     relationship of density wave speed and total flow rate as well as holdup with the help of drift flux model so as to accomplish the oil/water two-phase flow measurement At last, using the limited available experiment data, the theoretic model has been simplified into an applicable linear alternative which is suitable to homogeneous oil/water two-phase flow measurement
    To accomplish the oil/water two-phase flow measurement using the density wave phenomena is of highly theoretically valuable for density wave theory research as well as oilAvater two-phase flow measurement research. To develop new type oil/water two-phase flow instrumentation based on this theoretic measurement method will be very applicable and promising.
引文
[1] Hill, A.D.. Production Logging—Theoretical and Interpretive Elements. Monograph Volume 14, SPE Henry L. Doherty Series, 1990, 19-36
    [2] 王培烈,赵忠健,姚强 我国产出剖面回顾,测井技术,2001,25(3):163-167
    [3] 蔺景龙,吉寿松,云美厚 油田开发应用地球物理(第一版)北京:石油工业出版社,1996,48-113
    [4] D.M.Maron (Chief Editor), International Symposium on Liquid-Liquid Two-Phase Flow and Transport Phenomena, Antalya, Turkey, November3~7,1997, Begell House,Inc.,1998.
    [5] Gorier G W, Sullivan G A, Wood R K: The Upward Vertical Flow of Oil-Water Mixtures. Can J of Chem Eng, 1961, 67~75
    [6] Vigneaux, P.G, Chenais, R, Hulin, J.R, Liquid-liquid flow in an inclined pipe, AICHEJ, 1988,Vol.34 (5), 781~789.
    [7] 陈听宽,荆建刚,罗珊,并联管两相流不稳定性的研究.工程热物理学报.Vol.23,No.1 2002 99~102
    [8] Chul Hwa Song,Hee Cheon No and Moon Ki Chung: Investigation of Bubbly Flow Developments and its Transition Based on the Instability of Void Fraction Waves. Int.J.Multiphase Flow,1995, 21:381~404
    [9] Flores J G, Chen X T, Cem S, et al: Characterization of Oil-Water Flow Patterns in Vertical and Deviated Wells. SPE 38810 Presented at the 1997 SPE Annual Technical Conference and Exhibition held in San Antonio,Texas, 5-8 October, 1997
    [10] 陈伟,洪良斌,阳永荣,戎顺.加压流化床中差压脉动时间序列的复杂性.化工学报,Vol. 48 No.6 1997,746~750
    [11] D.R Skrzycke, K. Nguyen, C. S. Daw. , Characterization of the fluidization behivor of different solid types based on chaotic time series analysis of pressure signals,international Conference on Fluidized Bed Combustion, Vol. 1, ASME 1993, 155~166
    [12] Michel L.M. van der Stappen, Jaap C. Schouten, C. M. van den Bleek.,Deterministic chaos analysis of the dynamical behavior Of slugging and bubbling fluidized beds, International Conference on Fluidized Bed Combustion, Vol. 1, ASME 1993, 129~140
    [13] Zuber, N. and Findlay, J.A. : Average Volumetric Concentration in Two-Phase Systems, Transaction ASME. Journal of Heat Transfer, Vol.87, No3, PP453~468, November,1965.
    [14] Wallis,G.B., One—dimensional Two Phase Flow, McGraw-Hill Book Company, New York,1969.
    [15] Bourr e J. A. and Mercadier Y. Existence and properties of flow structure waves in two-phase bubbly flows, Proc.IUTAM Symp. (Pasadena, CA, 1981)
    [16] Chul Hwa Song,Hee Cheon No and Moon Ki Chung: Investigation of Bubbly Flow Developments and its Transition Based on the Instability of Void Fraction Waves. Int.J.Multiphase Flow 21,1995,pp381~404
    [17] J. M. Salz-Jabardo & J. A. Bour(?).: Experiments on Void Fraction Waves. Int. J. Multiphase Flow 1989(15), 483~493
    [18] A.Biesheuvel & W. C. M. Gorissen: Void Franction Disturbances In A Uniform Bubbly Fluid. Int. J. Multiphase Flow. Vol. 16, No. 2, 211~231, 1990
    [19] H. K. Kyt(?)maa &C. E. Brennen.: Small Amplitude Kinematic Wave Propagation In Two-Component Media. Int. J. Multiphase Flow. Vol. 17. No. 1, 13~26, 1991
    
    
    [20] R. T. Lahey, Jr.: Void Wave Propagation Phenomena in Two-Phase Flow. AIChE Journal 1991 Vol. 37, No. 1,123~135
    [21] G P. Lucas & I. C. Waltont.: Flow Rate Measurement by Kinematic Wave Detection in Vertically Upward, Bubbly Two-Phase Flows. Flow Meas. Instrum. Vol. 8, Nos, 3/4, 133~143, 1997
    [22] H. Asheim, E. Gr(?)dal : Holdup Propagation Predicted by Steady-State Drift Flux Models. Int. J. Multiphase Flow. 24(1998), 757~774.
    [23] Chul-Hwa Song, Moon Ki Chung, Hee Cheon No.: Measurements of Void Fraction by an Improved Multi-Channel Conductance Void Meter. Nuclear Engineering and Design, 184 (1998) 269~285.
    [24] Joo Sung Lee, Hyun Wook Jung, Hyun-Seob Song, Kwan-Young Lee, Jae Chun Hyun.: Kinematic .Waves and Draw Resonace in Film Casting Process. J. Non-Newtonian Fluid Mech. 101 (2001) 43~54.
    [25] 金宁德,基于运动波理论的斜井与垂直井中油水两相流测量特性研究.博士后报告.英国 Huddersfield University,2001.3.
    [26] G.P.Lucas and N.D.Jin.: ANew Kinematic Wave Model for Interpreting Cross Correlation Velocity Measurements in Vertically Upward, Bubbly Oil-in-Water Flows, Measurement Science and Technology, 12(2001), 1538-1545.
    [27] G.P.Lucas and N.D.Jin.: Investingation of a drift velocity model for predicting superficial velocities of oil and water in clined oil-in-water pipe flows with acentre body. Measurement Science and Technology, 12(2001), 1546~1554.
    [28] G.P.Lucas and N.D.Jin.: Measurement of the homogeneous velocity of inclined oil-in-water flows using a resistance cross correlation flow meter. Measurement Science and Technology, 12(2001), 1529~1537.
    [29] 居怀明,徐元辉,黄志勇,刘志勇,李军,何学东,HTR-10蒸汽发生器密度波不稳定性分析.清华大学学报(自然科学版)Vol.38,1998(5),72~75
    [30] 苏光辉,郭予飞,郭玉君,张金玲,秋穗正,贾斗南,喻真烷,垂直上升管内密度波不稳定的研究.核动力工程.Vol.19 No.1 1998,12~15
    [31] 苏光辉,郭予飞,郭玉君,张金玲,秋穗正,贾斗南,喻真烷,两相自然循环流动第1类密度拨不稳定性的理论研究.西安交通大学学报.Vol.32 No.5 1998(5),56~59
    [32] 冯自平,郭烈锦,陈学俊,卧式螺旋管内气液两相流不稳定性试验研究.王程热物理学报.Vol.17 No.2 1996(2),219~233
    [33] 刘磊,周芳德,相态逆转及其密度波的不稳定性.化工学报.Vol.49 No.2 1998(4),141~147
    [34] 孙宝江,颜大椿.垂直气液两相管流中的空隙率波测量.北京大学学报(自然科学版).Vol.35 No.5 1999(5),646~654
    [35] 汪庐山,贾庆升,孙宝江,王瑞和,竖直气.液两相管流中空隙率波及其不稳定性分析.石油大学学报(自然科学版).Vol.25 No.2 2001(2),79~83
    [36] Fouad H. Jaber, Rabi H. Mohtar.: Stability and Accuracy of Finite Element Schemes for the One-Dimensional Kinematic Wave Solution. Advances in Water Resources 25 (2002) 427~438.
    [37] Gilberto Espinosa-Paredes.: Theoretical Derivation of the Interaction Effects with an Eccentric Cell Model and Void Fraction Propagation in Two-Phase Flow. Annals of Nuclear Energy 28 (2001) 659~688
    [38] S. F. Smith, C. Swan.: Extreme Two-Dimensional Water Waves: An Assessment of
    
    Potential Design Solutions. Ocean Engineering 29 (2002) 387~416
    [39] H.M. Letzel, J. C. Schouten, R. Krishna, C. M. van den Bleek.,Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure signals, Chemical Engineering Science, Vol. 52, No.24, 1997, 4447~4459
    [40] M.C. Ruzicka, J. Drahos, J. Zahradnlk, N.H. Thomas.,Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows,Int. J. Multiphase Flow Vol. 23, No. 4. 1997, 671~682
    [41] Jaap C. Schouten, Robert C. Zijerveld, Cor M. van den Bleek. ,Scale-up of bottom-bed dynamics and axial solids-distribution in circulating fluidized beds of Geldart-B particles,Chemical Engineering Science, 54(1999), 2103~2112
    [42] E Johnsson, R. C. Zijerveld, J. C. Schouten, C. M. van den Bleek, B. Leckrler. Characterization of Fluidization Regimes by Time-series Analysis of Pressure Fluctuations. Int. J. of Multiphase Flow 26(2000) 663~715
    [43] 陈亚非,高翔,骆仲泱,周劲松,倪明江,岑可法,气固两相流瞬态传热的混沌研究.中国电机工程学报,1998,18(4):270—274.
    [44] 程易,魏飞,王振宇,金涌,高速气固流化床局部瞬态行为混沌分析,化工学报,2000,51(2):169—175
    [45] 刘明言,胡宗定,气液两相鼓泡塔流区及其过渡的混沌分析,化工冶金,2000,21(1):37—41
    [46] 白博峰,郭烈锦,陈学俊,空气水两相流压力波动现象非线性分析,工程热物理学报,2001,22(3):359—362
    [47] P.Grassberger and I.Procaccia. Estimation of the Kolmogorov Entropy from a Chaotic Signal. Physical Review A, 1983, 28(4): 2591—2593
    [48] K.Pawelzik and H.G.Schuster. Generalized Dimensions and Entropies from a Measured Time Series. Physical Review A, 1987, 35(1): 531—534
    [49] 金宁德,宁英男,王微微,刘兴斌,田树祥,基于分形及混沌时间序列分析的垂直上升管中油水两相流流型表征,化工学报,52(10),2001,907-915.
    [50] M.C.Mackey and L.Glass, Oscillation and Chaos in Physiological Control Systems. Science, 1977, 197:287—289
    [51] Liu Xingbin, Qiao Hetang, Yuan Zhihui, Gu Ning. In: Proceedings of the 8th International Conference on Flow Measurement, Beijing, 1996, 301—306.
    [52] Foussat A J M, Hulin J P. In: Cognet G; Delhaye J M. IUTAM Symposium on Measuring Techniques in Gas-Liquid Two Phase Flow, Nancy, France, July 5-8,1983, Springer, 651(1984)
    [53] N.D Jin, W.W Wang et al: Flow Patterns Identification of Oil-Water Two Phase Flow in Vertical Upward Pipes Based on Kinematic Wave Theory, 4th International Conference on Multiphase Flow, ICMF'2001, New Orleans, LA, U.S.A., May 27-June 1, 2001.
    [54] 牛超群 金宁德 张淑梅,油水两相流动生产测井解释中关键参数的确定.测井技术,1993,17(6):447~452.
    [55] Taitel Y, Bamea D, Dukler A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AICHEJ, 1980, 26(3): 345-354
    [56] Mohammed J.Davarzani, Allen A.Miller: Investigation of the Flow of.Oil and Water Mixure in Large Diameter Vertical Pipes. SPWLA 20th Annual Logging Symposium, June 27-30,1983
    [57] 郭烈锦,《两相与多相流动力学》,西安交通大学出版社,2002年12月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700