多相流动测井优化及成像算法的研究与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相流产出剖面测井技术作为分析油层动用状况所必须的手段之一,为油田动态监测、制定各种措施提供了依据,在油田高效开发中发挥着重要作用。当多相流中存在多个滑脱速度时,只有优化解释技术能够处理这种情况。而且测井多相流优化解释技术能够充分利用多种测井资料,即使部分资料残缺或者个别曲线误差偏大,该优化解释技术也能在一定程度上提高解释的精度,从而得到较精确的解释结果。
     测井多相流优化解释结果的精度,受到待优化目标函数的本身以及优化算法性能的影响。
     待优化目标函数的构建是基于测井仪器的理论响应方程的,理论响应方程试图反映井筒内各相体积流量与仪器响应值之间的关系。文献调研发现,垂直井及低斜度井中,已经对测井仪器的响应方程做了较深入的研究,各相体积流量与仪器响应值之间的关联较稳定;但水平井及近水平井中,由于重力分异的影响,导致各相体积流量与仪器响应值之间的关联较差,影响了产出剖面测井解释的精度。而且,文献中待优化目标函数的构建只有两种形式:加权平方和形式与加权绝对值和的形式。都采用仪器分辨率来规格化测量数据,其目的是为了实现不同数量级测量数据的规格化,便于合理衡量实测值和理论响应值的偏差。但分析发现,当被测量值和仪器直接观测值不是同类型的物理量时,仪器分辨率不足以达到规格化数据的目的。所以本文首先提出了一种基于相对误差的目标函数构建方法,以仪器观测值的倒数为权重构建绝对值的和,试图更好的平衡不同测量数据之间的差异。原有目标函数的所有权值项中都含有衡量仪器可靠程度的一个参数,但没有见到有文献对如何确定该参数的值给出理论说明,调研发现,生产测井中,现在一般是下入由多种仪器串联成的仪器串,一次测量,同时获得多种数据,因而认为各类数据的可靠程度是相当的,所以在新的构建方法中,去除了权重中衡量仪器可靠程度的参数,这也使得本文提出的目标函数的构建方法简便易行。
     因为部分测井仪器理论响应方程较为复杂,目标函数含有绝对值形式导致函数性质较差,而且目标函数的组成依赖于测井仪器串的构成,导致针对不同测井仪器串时的目标函数形式上不一致。由此可以看出,确定性优化算法不适用于测井多相流优化解释。因而考虑引入随机性优化算法,在分析了基本粒子群算法、蚁群优化算法的原理和特点以后,提出了构建带混沌扰动的粒子群-蚁群算法的思路和具体步骤,该算法充分利用粒子群算法前期收敛快的优点,以及蚁群算法后期寻优能力强的优点,再加上混沌扰动,充分考虑了寻优能力和收敛速度。该算法只使用目标函数的函数值,与目标函数的性质和构成没有直接联系,因而适用于测井多相流解释。采用16个测试函数,分析了各个测试函数二维时的几何特征,针对10维的情况,对比了标准粒子群算法(算法一)、混沌粒子群算法(算法二)、混沌粒子群-蚁群算法(算法三)的优化性能,发现:当实际最优值十分靠近寻优空间的边界时,算法一寻优能力最差,算法二全局寻优能力最好,但耗时较长;当实际最优值不是位于寻优空间的边界附近时,算法三全局寻优能力最好,而且精度高,耗时少。针对垂直井的实测资料,进行了编程试算,检验了所提出模型和算法的性能。
     重力的分异作用导致在水平井及近水平井中,重质相与轻质相分离,容易出现分层流动,多相流流动状态与垂直井中差别较大。所以研究水平井中的测井多相流优化解释技术,需要从研究水平井多相流流型开始。进行了水平管及近水平管油水两相流流动实验,得到以下认识:
     对流动状态,(1)在正负5。的井斜范围内(该角度记录井筒与水平面夹角,上坡流角度为正,下坡流为负),实验条件下,流体流型是层流,只是分相界面的光滑程度不同,界面的波动规律性不同,界面波及的范围大小不同:随流量的增加,分层界面从清晰稳定向波动进而紊乱变化;(2)总的来看,井斜角度为负时,重质相的滞留偏低,此时重质相持率小于含率。井斜角度为正时,重质相的滞留偏高,此时重质相持率大于含率。(3)井斜对层流界面状态的影响很大。尤其是小流量时,0。和正负1。之间,分层的位置差别很大;(4)严格的水平井(井斜0。)中,对于试验中出现的流量,侧视图片中的水相对应的深度(反映了持水率)与含水率关联准确清晰,可区分程度高;(5)在正负5。的井斜范围内,当总流量达到400方/天以上,尤其是达到500方/天时,井斜角度对侧视图像中的水相深度影响较小;
     对于井斜、持水率、含水率、总流量间的关系,(1)就实验所及的井斜角度范围及流量、含水率范围而言,持水率、含水率、总流量与井斜角度具有确定的相关关系。井斜、总流量、含水率一定时,含水率与持水率有几乎是一一对应的函数关系。可以从持水率反求含水率;(2)流量50方/天及以上时,正负5。的井斜角度以内,可以根据持水率区别含水率;但当流量低于30方/天时,根据持水率识别含水率,识别的可靠程度受井斜角度极大影响。井斜0。时,即使是10方/天的流量,也具有可区别性;但上坡流(井斜1。,3。,5。)时,30方/天的流量也具有可区别性;下坡流时,30方/天的流量及以下,己经难于识别。(3)水平井内,影响持水率变化的主要因素是井斜角度。流量越小,则井斜角度的重要程度越大;(4)当井内情况类似于实验条件时,可以借助于实验图版实现持水率向含水率的转化。
     对于井斜、滑脱速度、含水率、总流量间的关系,(1)井斜角度为负时(下坡流),对于一定的含水率,滑脱速度随流量的增加,呈现出降-升-降-升的大致形状,类似“W”形;(2)当流量向着500方/天增加时,滑脱速度的变化趋势是向Ocm/s靠近。这也表明,在大流量情况下,滑脱现象可以忽略。(3)虽然实验结果体现出了一定的规律性,但规律显现的还不够充分。原因可能包含:实验条件没有充分的保持一致、特征数据的采集准确度不够。由于实验历时较长,由温度导致的粘度差异没有考虑;数据的采集依赖于肉眼和侧视数字图像,导致数据的准确度不够。这有待找其它机会做进一步的实验来探讨滑脱速度-含水率-流量-井斜间的关系。
     通过对已有测量仪器的调研发现,阵列电容仪(CAT)相对而言较为适于测量水平井中多相流的分相持率。国内一些厂家已经在仿制该仪器,需要有相应的解释方法。在分析该仪器测量原理的基础上,介绍了已有的解释算法,并指出了该仪器的结构特点、在实际使用及解释中应该注意的事项,针对多相流情况提出了两种新的持率计算方法和一种新的截面成像算法,基于Matlab环境进行了编程试算,得到了持率的预测值和截面成像图。
The production profile well logging technology for multiphase flow is a necessary approach to analyses the producing degree of reserves, it can give the foundation of oil field dynamic monitoring and the establishment of all kinds of measures, it will play an important role in the efficient development of oilfields. If there are some slipping velocities, Optimum interpretation technology is the only way which could used in the case. Optimum interpretation technology in multiphase flow logging (OITMFL) can make full use of logging data. Even some of the information is incomplete, or its error is considerable, the optimum interpretation technology also can improve the interpretation accuracy to a certain degree, so it will get a better result.
     The accuracy of OITMFL is influenced by optimized objective function itself and the performance of optimization algorithm.
     Objective function for optimization is based on theoretical response equations of logging instruments, the theoretical response equations try to show the relationship between volume flow rate of different phase in the well and response value of logging instruments. Through literature survey, we find that there are an in-depth studies on the response equations of logging instruments for vertical wells and low-inclination wells, there are a steady relationships between phase volume flow rate and response value of logging instruments. But in horizontal sections and nearly horizontal sections, there is a poor relationship between flow rate and response value because of the influence of gravitational differentiation, as a result, the reliability of interpretation results of a production profile is decreased. There are only two kinds of objective function for optimization:weighted square sum form and weighted absolute value sum form. Two kind of function normalize the measured data by using resolution ratio of tool for to weigh the error between measured data and response value equitably. But, if the measured data and response value are different type, resolution ratio of tool can't normalize the measured data perfectly. Firstly, the theses present an objective function based on relative error method, which is trend to balance the different data by using the reciprocal of measured data to weight the error. There is a weight parameter correspond to reliability level of tools in original objective function, but I can't find how to set the parameter with theoretical foundation. At the same time, it is usually to get measured data in one trip by using tool string nowadays, so we can believe that tools in one string have the same reliability level. And then, the new construction method don't considered the reliability parameter, it is helpful to generate the objective function.
     Because some response equation are complex, absolute value form in objective function lead to poor function properties, and the sum in objective function is depend on the actual logging tool string, we consider deterministic optimization algorithm is not fit OITMFL. The writer introduces to use random global optimization algorithm. After analyses the theory and characteristic of basic particle swarm optimization (PSO) and ant colony optimization (ACO), the writer present a new algorithm, it integrate PSO, ACO and chaos disturbance, named CPA, C indicate chaos disturbance, P indicate PSO, A indicate ACO. CPA attempts to make the best of the advantages of PSO, ACO and chaos disturbance. PSO has a fast convergence at earlier stage, ACO has strong search ability at later stage. Chaos has pseudo-randomness, unpredictability, ergodicity. Chaos disturbance should increase the global search ability of CPA. For objective function, CPA is fit to OITMFL because it only use function value, and it don't use function characteristic and form. The author select16benchmark functions, analyses the geometric feature when function is2two dimension. And use the16functions to compare the searching ability of three algorithms:PSO (algorithm one), PSO with chaos disturbance (algorithm two), PSO-ACO with chaos disturbance (algorithm three). The results indicate that:if the actual global optimal value is near the searching space boundary enough, the searching ability of algorithm one is the worst, the ones of algorithm two is the best, but algorithm two needs so long computing time, if the actual global optimal value is at some distance from the searching space boundary, the searching ability of algorithm three is the best, and it spend little computing time with high precision solution. The author examines the performance of the new model and new algorithm by programming to the practical data.
     The influence of gravitational differentiation lead to phase separation between heavy phase and light phase, so the multiphase flow situation in horizontal sections is very different from in vertical well. It is necessary to study flow pattern firstly for studying OITMFL in horizontal sections. The author present the results and conclusions come from the experiment of oil-water two phase flow in horizontal sections and nearly horizontal sections.
     For flow pattern,(1)The range of well deviation angle is±5°(denote the angle between well-bore and horizontal plane, degree is positive when fluid flow upward, and negative when fluid flow downward), under the experiment condition used, flow pattern is laminar flow regime, the difference are the smooth degree of phase boundary, the fluctuation regularity of phase boundary, the fluctuation range of phase boundary; Along with the increase of the whole quantity of flow, the phase boundary become wave from smooth, and become chaos from wave;(2)When well deviation angle is negative, heavy phase residence is weakened, so the holdup of heavy phase is less than phase cut. When well deviation angle is positive, heavy phase residence is enhanced, so the holdup of heavy phase is larger than phase cut;(3) There is a big influence on the phase boundary from well deviation angle. Especially, the position of phase boundary is very different between0°and±1°(4) When well deviation angle is0degree, for the experimental flow rate, there is a distinguishable relationship between the water depth in the side view (indicate water holdup) and water cut;(5) In the range of±5°, if whole flow rate reach400m3/d, especially reach500m3/d, well deviation angle influent little on the water depth in the side view.
     For well deviation, water holdup, water cut and whole flow rate,(1) Under the experimental condition, there is a determinate relationship among well deviation, water holdup, water cut and whole flow rate. If well deviation, water cut and whole flow rate are constants, there is almost a one-one corresponding functional relationship. It is possible to get water cut from water holdup;(2) If whole flow rate is more than50m3/d, in the giving well deviation range, we can identify water cut based on water holdup; but if whole flow rate is less than 30m3/d, the reliability level is significantly impacted by well deviation angel. When well deviation angel is0°, even the whole flow rate is10m3/d,it can be distinguished. When well deviation angel is positive,30m3/d is the lower limit flow rate which can be identified; When well deviation angel is negative, less than or equal to30m3/d is hard to be identified;(3)In horizontal well-bore, the most important factor which impact water holdup is well deviation angle. The little the whole flow rate is, The more important the well deviation angle is;(4)If production condition like the experimental condition, it can get water cut from water holdup by using experiment plate.
     For well deviation, slip velocity, water cut and whole flow rate,(1) If well deviation angle is negative, for a certain water cut, slip velocity increase as the whole flow rate increase, the law show a trend: down-up-down-up, some like a transformative letter "W";(2)If whole flow rate is near or more than500m3/d, the slip velocity is close to0cm/s. So,we can ignore slip phenomenon under a big enough flow rate.(3)Although there is a fuzzy regularity shown, but it is far away from clear. The reasons maybe include:the consistency of the experimental condition, the accuracy of the characteristic data etc. As a fact, the experiment don't consider viscosity which is depend on temperature, but the experiment spent too much time, it's started in spring, and finished in autumn. We get characteristic data only use our eyes and side digital image come from digital camera, it will decrease the accuracy of data. It is worth doing some continue study to discuss the relationship among these factors.
     I researched and found that Capacitance Array Tool (CAT) is more suitable to measure the phase holdup in horizontal section than other logging instruments. Some manufacturers are about to made CAT themselves, they need the interpretation method for the instrument. The author analyses the principle of measurement, and introduce the existing interpretation algorithms. The author presents the structural features of the tool, and some matters need attention in practice. The author presents two new algorithms to calculate phase holdup based on optimal method, and a new imaging algorithm for cross section image, then the author write programme to test the new algorithms under Matlab, then get the phase holdup and the cross section image.
引文
[1]Mayer C, Sibbit A.. Global-A new approach to computer processed log interpretation. SPE 9341,1980.1-14.
    [2]Alberty M. w., Hashmy K. H., APPLICATION OF ULTRA TO LOG ANALYSIS. SPWLA 25th Annual Logging Symposium,1984.1-17.
    [3]Mezzatesta A. G., Rodriguez, E., Frost, E., OPTIMA:A Statistical Approach to Well Analysis. Geobyte, August,3(3):56-69.
    [4]ELANPlus, Schlumberger, http://www.slb.com/services/software /geo/geoframe/petrophysics/elanplus. aspx.
    [5]高楚桥,张超谟,钟兴水.ELAN解释(程序)方法简析[J].测井技术.1995(02):135-139.
    [6]IP测井解释分析软件,北京恒欣泰克科技有限公司(GeoSpan), http://www. geospan. cn/product_view. asp?id=22.
    [7]雍世和.最优化测井解释[M].山东东营:石油大学出版社,1995.5
    [8]谭廷栋.数字测井最优化解释[M].地球物理文集,1983.
    [9]G. N. Catala, A. J. Torre, B. E. Theron. An Integrated Approach to Production Log Interpretation[J]. SPE25654,1993:465-480.
    [10]Oke Ojonah, Alain Gysen. Three Phase Modelling of Production Log Data Leads to More Accurate Decision Making and Saves Cost[J]. SPE140612,2010:462-473.
    [11]Ali R. Al-Belowi, et al., Production Logging in Horizontal Wells: Case Histories from Saudi Arabia Utilizing Different Deployment and Data Acquisition Methodologies in Open Hole and CasedCompletions. SPE138749,2010:2304-2322.
    [12]J. Torne, F. Arevalo, M. Rourke, P. Jay, S. Kwong. Production Logging in Horizontal Wells:Case Histories from Saudi Arabia Utilizing Different Deployment and Data Acquisition Methodologies in Open Hole and Cased Completions. SPE143754,2011:786-797.
    [13]郭海敏,张宝群.Powell优化算法在气水两相流动分析中的应用[J].江汉石油学院学报.1994,16(3):44-47.
    [14]郭海敏,张宝群.抽油井三相流动优化解释处理方法[J].江汉石油学院学报.1996,17(1):61-70.
    [15]戴家才,郭海敏,汪中浩.灰色理论和优化技术在三相流解释中的应用 [J].江汉石油学院学报.1999,21(3):33-35.
    [16]宋红伟,郭海敏,戴家才.AGA和L-M算法联合预测生产油井油水流动剖面[J].石油天然气学报(江汉石油学院学报).2011,33(10):99-104.
    [17]侯月明,郭海敏.将最优化方法用于水平井生产测井解释当中[J].江汉石油职工大学学报.2004,17(2):44-45.
    [18]侯月明,郭海敏,戴家才,何亿成,戴月祥.水平井生产测井解释方法研究[J].测井技术.2004,28(1):24-26.
    [19]张闪,郭海敏,时新磊.模拟退火PSO优化算法在油水两相流产出剖面解释中的应用[J].测井技术.2010,34(3):289-92.
    [20]董勇,郭海敏,张闪.自适应混沌粒子群算法在油水两相流动分析中的应用[J].石油天然气学报,2011,33(2),81-84.
    [21]李晓祥,石炎福,顾丽莉,等.气液固三相并流系统流型的混沌识别[J].高校化学工程学报,2002.1(16):84-88.
    [22]王忠勇,白博峰.油气水多相流流型在线识别仪[J].自动化仪表,2002,5(23):5-9.
    [23]周云龙,蒋诚.倾斜下降管内油气水三相流流型转变的实验研究.化学工程,2003,31(1):40-42.
    [24]章龙江.国外油气水三相流流动形态研究的最新进展.油气田地面工程,1998,17(4):6-8.
    [25]Hewitt, G.F. and Roberts, D.N. Studies of two-phase patterns by simultaneous x-ray and flash photography[C]. UKAEA Report AERE M2159. 1969.
    [26]Bennett, A. W., Hewitt, G. F., Kearsey, H. A., Keeys, R. K. F. and Lacey, P. M. C. Flow visualisation studies of flow boiling at high pressures. Paper presented at the Symposium on boiling heat transfer in steam generating units and heat exchangers, Manchester,180 (Part 3C) (1965-66),1-11.
    [27]Taitel Y, Barnea and Duker A E. Modeling flow pattern transitions for steady upward gas-liquid flow in vertical tubes, AICHE J,1980(26):37-44.
    [28]Baker,O. Simultaneous flow of oil and gas[J]. Oil and Gas Journal, 1954,53:185-195.
    [29]Scott, S.L., J. P. Brill, G. E. Kouba,O. Shoham, K. A. Kuenhold, and W. Tam:Two-Phase Flow Experiments in the Prudhoe Bay Field of Alaska[C], paper presented at the Multiphase Flow Technology and Consequences for Field Development Conference, Stavanger, Norway,1987,17-29.
    [30]J. M. Mandhane, C. A. Gregory and K. Aziz, "A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes," Int J Multiphase Flow,1974, 1(4):537-554
    [31]J. Weisman and S. Y. Kang. Flow Pattern Transitions in Vertical and Upwardly Inclined Lines[J], Int J Multiphase Flow,1981,7:271-280
    [32]TaitelY, Dukler A E. A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas Liquid Flow. AICHE J,1976,22(1): 47-55.
    [33]Jose G Flores, X Tom Chen, Cem Sarica and James P Brill. Characterization of oil-water flow patterns in vertical and deviated wells,SPE56108,1999:94-101.
    [34]Maron D Med. International Symposium on Liquid-Liquid Two-phase Flow and Transport Phenomena:Antalya, Turkey, November 3-7,1997 [M].. Begell House, Inc.,1998.
    [35]Govier G W, Sullivan G A, Wood R K. The Canadian Journal of Chemical Engineering,1961(April):67-75.
    [36]VigneauxP, ChenaisP, Hulin J P. Liquid-liquid flows in an inclined pipe[J]. A IChE J.,1988,34(5):781-789.
    [37]Flores J G, Chen X T, Cem Sarica, Brill J P. Characterization of Oil-later Flow Patterns in Vertical and Deviated Wells[C]. In:Proceedings of SPE Annual Technical Conference and Exhibition. San Antonio, Texas, October 5-8,1997:601-610
    [38]Jin Ningde, Wang Weiwei, Ren Yingyu, Tian Shuxiang. In:Proceedings of the 5th International Conference on Measurementand Control of Granular Materials, Xi'an, China,2000.271-276.
    [39]金宁德,宁英南,王微微等.垂直上升管中油水两相流流型表征[J],化工学报,2001,52(10):907-918.
    [40]Ningde Jin, Weiwei Wang, Xingbin Liu and Shuxiang Tian. Characterization of oil-water tow-phase flow pattern in vertical upward flow pipes base on fractal and chaotic time series analysis, SPE64654,2000.
    [41]蔡继勇,陈听宽,叶强.垂直下降管内油水乳状液流动特性的研究[J],化学反应工程与工艺,1998,14(11):27-33.
    [42]蔡继勇,陈听宽等.垂直上升管内油水乳状液流动特性的研究[J],石油学报,1998,19(4):94-98.
    [43]Hasan A R, Kabir C S. A simplified model for oil-water flow in vertical and deviated well bores[J], SPE49163,1998.
    [44]Gomez L E, Ovadia Shoham and Zekimir Schmidt, R N Chokshi and Tor Northug. Unified mechanistic model for steady-state two-phase flow, horizontal to vertical upward flow[J], SPE65705,2000.
    [45]Zavareh F. Flow regimes in vertical and in clined oil/water flow in pipes[J],SPE18215,1988.
    [46]Trallero J L, Sarica C and Brill J P. A study of oil-water flow pattern in horizontal pipes[J],SPE Production & Facilities, SPE36609,1996,12 (3):165-172.
    [47]J. Colmenares, P. Ortega, J. Padrino, J. L. Trallero, PDVSA-INTEVEP, VENEZUELA. Slug Flow Model for the Prediction of Pressure Drop for High Viscosity Oils in a Horizontal Pipeline[J]. SPE 71111,2001.
    [48]Nadler M and Mewes D. Flow Induced Emulsification in the Flow of Two Immiscible Liquids in Horizontal Pipes [J], Intl. J. Multiphase Flow,1997, 23(1):55-68.
    [49]Yuri V Fairuzov. Stability analysis of stratified oil/water flow in inclined pipelines[J], SPE58934,2001.
    [50]吴铁军,郭烈锦等.水平管内油水两相流流型及其转换规律研究[J],工程热物理学报,2002,23(4):491-494.
    [51]Vedapuri D.Bessette D and Jeson W P.A segregated flow model to predict water layer thickness in oil-water flows in horizontal and slightly inclined pipes[J], Multiphase 97,1997(33):75-105.
    [52]Shi H, Jepson W P and Rhyne L D. Segregated modeling of oil-water flow[J],SPE84232,2003.
    [53]Javawardena S S, Alkaya B, Redus C L and Brill J P. A new model for dispersed multi-layer oil-water flows[J], Multiphase, 2000(36):77-89.
    [54]刘武,汪开雄,梁党国.管路倾角对混输管线中分层流存在的范围的影响[J],西南石油学院学报,2002,24(4):75-77
    [55]章龙江.国外油气水三相流流动形态研究的最新进展[J],油气田地面工程,1998,17(4):6-8.
    [56]康万利,刘桂范,李金环.油水乳化液流变性研究进展[J],日用化学工业,2004,34(1):37-39.
    [57]陈杰,章龙江,严大凡.油-水两相流流型研究[J],油气田地面工程,2000,19(1):6-9.
    [58]陈杰,孙红彦等.水平管内油水两相流流型的实验研究[J],油气储运,2000,19(12):27-31.
    [59]Brauner N and Maron D M. Stability Analysis of Stratified Liquid-Liquid Flow[J], Intl. J. Multiphase Flaw[J],1992,18(1):103-121.
    [60]Brauner N and Maron D M. Flow Pattern Transitions in Two-Phase Liquid-Liquid Flow in Horizontal Tubes[J],Intl.J. Multiphase Flow,1992,18(1):123-140.
    [61]陈杰,于达,严大凡.油-水两相流流型转换研究,水动力学研究与进展,2003,18(3):355-364.
    [62]李海青等编著.两相流参数检测及应用[M].杭州:浙江大学出版社,1991.
    [63]Angeli P, Hewitt GF. Phase dirstibution measurements in liquid-liquid pipeline flows using an impedance probe [C],In:American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD.1996:149-153.
    [64]Soleimani, A. Phase Distribution and Associated Phenomena in Oil-Water Lows in Horizontal Tubes.PhD Thesis, Imperial College London, UK,1999.
    [65]Angeli P, Hewitt GF. Flow structure in horizontal oil-water flow[J]. INT J MULTIPHAS FLOW,2000,26(7):1117-1140.
    [66]Fairuzov, Y. V., Arenas-Medina, P., Verdejo-Fierro, J., Gonzales-Islas, R.. Flow pattern transitions in horizontal pipelines carrying oil-water mixtures:full-scale experiments [J]. J. Energy Resour. Technol.-Trans. ASME 122,2000:169-175.
    [67]Elseth, G.. An experimental study of oil-water?ow in horizontal pipes. Ph.D. thesis. The Norwegian University of Science and Technology, Porsgrunn.,2001.
    [68]Oddie, G., Shi, H., Durlofsky, L. J., Aziz, K., Pfeffer, B., Holmes, J. A.. Experimental study of two and three phase flows in large diameter inclined pipes[J]. Int. J. Multiphase Flow,2003,29:527-558.
    [69]Rodriguez,0. M. H. and Oliemans, R. V. A.. Experimental study on oil/water flow in horizontal and slightly inclined pipes [J], International Journal of Multiphase Flow,2006,32:323-343.
    [70]Tec, M. R. Multiphase flow of water, oil and natural gas through vertical flow strings[J]. Petrol.Technol,1961,13(10):1029-1036.
    [71]Shean, Arthur Roy. Pressure drop and phase fraction in oil-water-air vertical pipe flow. M.S. Thesis, Massachusetts Institute of Technology, USA,1976.
    [72]陈宜政:垂直上升管内油气水三相流流动特性的研究(D),西安交通大学博士学位论文,1992。
    [73]王跃社:垂直及倾斜上升管内油气水三相弹状流流动特性的研究(D),西安交通大学博士学位论文,1998。
    [74]Lahey Jr., R. T., A?ikg?z, M. and Fran?a, F.. Global volumetric phase fractions in horizontal three-phase flows[J]. AIChE J.,1992,38:1049-1058.
    [75]LEE AH, Jepson. Study of flow regimes of transition oil/water/gas mixtures in horizontal pipelines. Proc. sth int. Offshore and Polar Eng. Conf., Singapore,1993:159-164.
    [76]HEWITT G F. Three-phase gas-liquid-liquid flow:flow patterns, holdups and pressure drop[A]. Proceedings of ISMF 97, Int. Academic Publisher, Beijing,1997:1-18.
    [77]周云龙,蔡辉,关月波,宋景东,张玲.水平管内油气水三相流动摩擦阻力压降特性研究[J].化学工程,2002,30(2):28-31.
    [78]于立军,蒋安众,虞亚辉,胡天本.水平管内油气水三相流动特性研究[J].上海交通大学学报.2000,34(9):1171-1174.
    [79]刘文红,郭烈锦,程开河,等.水平及微倾斜管内油气水三相流流型特性[J].石油学报,2006,27(03):120-125.
    [80]Keskin c, Zhang H Q, Sarica C. Identification and classification of new three-phase gas/oil/water flow patterns[C]. Anaheim, California, USA. Society of Petroleum Engineers,2007.
    [81]刘军峰,郭海敏,王界益等.大管径水平管油气水三相流流型试验研究[J].石油天然气学报,2010,3(4):87-90.
    [82]Lei Yao, Chang Jiang Zhu. Existence and uniqueness of global weak solution to a two-phase flow model with vacuum[J]. Math. Ann. 2011,349:903-928.
    [83]Nicholas D. Ryan, Derek Hayes. A New Multiphase Holdup Tool for Horizontal Wells[J], SPWLA 42nd,2001.
    [84]Frisch G. et al., Integrating wellbore flow images with a conventional production log interpretation method [J], SPE 77782, SPE ATCE, San Antonio, Texas, Sept.29 - Oct.2,2002.
    [85]Frisch G. et al., Improving the process of understanding multiprobe production logging tools from the field to final answer[J], SPE 125028, SPE ATCE, New Orleans, Oct.4-7,2009.
    [86]Ali R. Al-Belowi, Mohammed A. A1-Mudhi, Mohammed Hashem, et al. Production Logging in Horizontal Wells:Case Histories from Saudi Arabia Utilizing Different Deployment and Data Acquisition Methodologies in Open Hole and Cased Completions[J], SPE 138749, SPE ATCE, Calgary, Alberta, Canada, Oct.19-21,2010. ATCE, Abu Dhabi, UAE, Nov.1-4,2010.
    [87]倪国军,郑雪祥.在水平井中应用的一种新型多相持率测井仪——电容阵列多相持率测井仪(CAT)[J],油气井测试,2004,13(4),86-89.
    [88]黄志洁,马焕英,郭海敏等.大斜度井电容阵列仪测井解释方法实验研究[J].石油天然气学报(江汉石油学院学报),2008,30(2):107-110.
    [89]张海博,郭海敏,戴家才等.电容阵列仪在大斜度井中的实验研究[J].测井技术,2008,32(4):304-306.
    [90]张海博,郭海敏,戴家才等.水平井持水率成像测井仪CAT的应用[J].石油仪器,2008,22(2):33-34.
    [91]戴家才,郭海敏,刘恒等.电容阵列仪测井资料流动成像算法研究[J].测井技术,2010,34(1):27-30.
    [92]董勇,郭海敏.改进的基于距离因子的多相流动成像算法[J].石油天然气学报,2012,34(9),79-82.
    [93]大庆生产测井研究所.生产资料解释方法.北京:石油工业出版社,1995.
    [94]吴锡令.生产测井原理.北京:石油工业出版社,1997.
    [95]陈科贵,谌海云.油气田生产测井.北京:石油工业出版社,2000.
    [96]吴铁军.水平管内油水两相流动特性研究[D].西安:西安交通大学能源与动力工程学院硕士学位论文,2001.
    [97]李海青,周泽魁,张宏建编著.两相流参数检测及应用[M].浙江:浙江大学出版社,1991.
    [98]乔贺堂主编.生产测井原理与资料解释.北京:石油工业出版社,1992.
    [99]郭海敏.多相流动生产测井解释.北京航空航天博士后报告,1993.
    [100]Beggs, H. D. & Brill, J. P.:A Study of Two-phase Flow in Inclined Pipes. J. P. T,1973,5,607-617.
    [101]Hasan, kabir. Predicting Multiphase Flow Behavior in Deviated Well, SPE 15449,1986.
    [102]Liang-Biao Ouyang. Development of New Wall Friction Factor and Interfacial Friction Factor Correlations for Gas-Liquid Stratified Flow in Wells and Pipelines.SPE35679,1996.
    [103]Liang-Biao Ouyang.. A Homogeneous Model for Gas-Liquid Flow in Horizontal Wells, J. Of Petroleum Science and Engineering 27 (2000) 119-128.
    [104]Liang-Biao Ouyang. Mechanistic and Simplified Models for Oil-Water Countercurrent Flow in Deviated and Multilateral Wells, SPE 77501, 2002.
    [105]Justin Rounce, Chris Lenn. Pinpointing fluid entries in producing wells [J]. SPE53249,1999.
    [106]刘军锋,郭海敏,戴家才.水平井油水两相产液剖面解释方法探讨[J].石油地质与工程,2006,20(5):43-45.
    [107]郭海敏,刘军锋,戴家才等.水平井生产测井产出剖面研究[C].第四届中俄测井国际学术交流会,2006,海南.
    [108]B. E Theron and T. Unwin. Stratified Flow Model and Interpretation in Horizontal Wells. SPE 36560,1996.
    [109]陈杰.水平油水管流流动规律研究[D].北京:石油大学石油工程系储运教研室博士学位论文,2001.67-78.
    [110]罗未平.国外水平井生产测井技术[J].测井技术,1997,21(6):380-384.
    [111]邹长春,尉中良,柴细元,韩成,张红艳.利用遗传算法实现最优化测井解释[J].测井技术.1999(05):361-365.
    [112]闫桂京,潘保芝.遗传算法在估计测井解释参数方面的应用[J].物探化探计算技术.2001(01):43-46,67.
    [113]冯国庆,陈军,张烈辉,冯异勇.最优化测井解释的遗传算法实现[J].天然气工业.2002(06):48-51.
    [114]李名,王向公,胥博文.遗传算法在复杂储层测井评价中的应用[J].山东理工大学学报(自然科学版).2009(05):83-85.
    [115]肖立志.测井资料最优化解释方法的理论问题[J].石油物探.1988(02):81-90.
    [116]雍世和,张超谟.测井数据处理与综合解释[M].北京,中国石油大学出版社,2007.320-348.
    [117]雍世和,孙建孟.测井数字处理中最优化方法的选择[J].石油大学学报,1988,12(4-5):11-26.
    [114]陈忠,朱建伟.数值计算方法[M].北京,石油工业出版社,2003.3-8.
    [115]李梦霞,陈忠.最小二乘法自加权问题的另一种修正[J].长江大学学报:自然科学版2005,2(10):279-280.
    [116]陈宝林.最优化理论与算法[M].北京,清华大学出版社,2005.12-34.
    [117]国家质量监督局.JJF 1001-1998通用计量术语及定义.1998.6-14.
    [118]国家质量监督检验检疫总局.JJF 1001-2011通用计量术语及定义.2011.22-24.
    [119]郭海敏,吴锡令,金振武.涡轮流量计在多相流动中的响应方程[J].江汉石油学院学报,1993,15(2):39-44.
    [120]塑盏型,谭廷栋,奎造,杜贵香.油水两相流动漂流模型的研究[J].测井技术,1998,22(3):178-182.
    [121]郭海敏.生产测井导论[M].石油工业出版社,2003:507-518.
    [122]Seid H, Pourtakdoust and Hadi Nobahari. An Extension of Ant Colony System to Continuous Optimization Problems. M. Dorigo et al. (Eds):ANTS 2004, LNCS 3172,294-301.
    [123]王慧玲,黄挚雄,李志勇.连续区域改进蚁群算法的研究[J].计算机工程与科学,2010,32(3):76-77,103.
    [124]王育平,亓呈明.改进的蚁群算法求解连续性空间优化问题[J].辽宁工程技术大学学报(自然科学版),2010,29(5):903-906.
    [125]王君,肖菁,张军.改进的蚁群算法求解连续函数约束优化问题[J].计算机工程与设计,2010,31(5):1027-1030.
    [126]Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies[A]. Proc of European conf on Artificial Life[C]. Paris,1991:134-142.
    [127]Dorigo M, Bonabeau E, Theraulaz G.Ant algorithms and stigmergy[J]. Future Generation Computer Systems.2000,16:851-871.
    [128]Dorigo M, Zlochin M, Meuleau N, et al. Updating ACO pheromones using Stochastic Gradient Ascent and Cross-Entropy methods, in Proceedings of the EvoWorkshops 2002, LNCS 2279m21-30, springer.
    [129]Zlochin M, Dorigo M. Model-based search for combinatorial optimization:A comParative study, in proceeedings of the Sixth International Conference on Parallel Problem Solving from Nature. PPSN,2002.
    [130]段海滨.蚁群算法原理及其应用[M].北京:科学出版社.2005.
    [131]杨荣华,王新洲,牛瑞芳.非线性最小二乘估计的蚁群单纯形混合算法[J].地理空间信息,2005,3(3):51-53.
    [132]唐泳,马永开.用改进蚁群算法求解多目标优化问题[J].电子科技大学 学报,2005,34(2):281-284.
    [133]支成秀,梁正友.融合粒子群优化算法与蚁群算法的随机搜索算法[J].广西科学院学报,2006,22(4):231-233,239.
    [134]伍爱华,李智勇.连续空间多目标最优化问题的蚁群遗传算法[J].计算机工程与科学,2008,30(5):65-67.
    [135]KENNEDY J, EBERHART R C. Particle Swarm Optimization[C]. Proceedings of IEEE International Conference on Neutral Networks, Pwrth, Australia, [s. n.],1995:1942-1948.
    [136]CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [137]SHI Y, EBERHART R C.A modified swarm optimizer[C]. IEEE International Conference of Evolutionary Computation. Anchorage, Alaska: IEEE Press, May,1998.
    [138]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004.
    [139]吕金虎、陆君安、陈士华.混沌时间序列分析及其应用[M]].武汉:武汉大学出版社,2002.
    [140]冯艳.一种产生随机数新方法的研究与实现[D].北京:北京工业大学,2002.
    [141]张广强.均匀随机数发生器的研究和统计检验[D].大连:大连理工大学,2005.
    [142]刘军锋,郭海敏,王界益.水平管油水两相流持率仪响应特征试验研究[J].石油天然气学报(江汉石油学院学报),2010,32(1):88-91.
    [143]回雪峰,吴锡令.油田开发中后期持水率测井技术研究与展望[J].地球物理学进展,2004,19(1):61-65.
    [144]庄海军,彭玉辉,刘兴斌.集流型流体电容含水率计低流速测量原理[J].测井技术,1995,19(6):411-415.
    [145]庄海军,刘兴斌,梅艳.一种测量油井产液含水率的电容式传感器[J].传感器技术,1997,16(2):39-41.
    [146]R. Salomon. Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems,1996,39,263-278.
    [147]Derek Hayes, Daphne Outwin. CAT Operational & Maintenance Manual[M]. Sondex,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700