厌氧颗粒污泥规模化培养及其形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生产规模的厌氧废水处理中,厌氧反应器的运行稳定性和高效能在一定程度上取决于能否培养出沉降性能好和产甲烷活性强的厌氧颗粒污泥。如果厌氧反应器内的污泥以松散的絮状体存在,则易出现污泥流失、有机负荷低、处理效果差等问题。成熟的厌氧颗粒污泥属于稀缺、生长慢、难培养、出厂价格高、运输费用大的商品。因而,研究厌氧颗粒污泥生产规模化培养技术,并解决工程应用的一些问题,是具有一定的实际意义和理论价值。
     本论文通过好氧剩余活性污泥启动生产规模厌氧反应器,研究厌氧颗粒污泥规模化培养,用灰色关联度研究颗粒化影响因素的重要程度,采用分子生物技术手段研究微生物种群结构的稳定性,投加无机阳离子Ca~(2+)和聚丙烯酰胺(polyacrylamide, PAM)促进因子研究厌氧污泥颗粒化的生物强化作用,并比较厌氧颗粒污泥基质降解动力学,分析厌氧颗粒污泥生产规模化培养及其形成机制。主要研究结果如下:
     (1)通过控制有机负荷(organic loading rate, OLR)为8.8kg化学需氧量(chemicaloxygen demand, COD)·m~(-3)·d~(-1)、液体上升流速为5.4m·h~(-1)和水力停留时间(hydraulicretention time, HRT)为5.9h处理啤酒废水,好氧剩余活性污泥实现厌氧颗粒污泥规模化培养,颗粒污泥粒径达到2.5mm,粒径大于0.5mm的颗粒污泥占反应器生物总量的比率为57%。内循环(internal circulation, IC)厌氧反应器成熟的颗粒污泥粒径分布是第一反应室颗粒为2.0~2.5mm,第二反应室颗粒为0.8~1.5mm;粒径在1.74mm左右时比产甲烷活性(specific methanogenic activity, SMA)为1.95g CH4-COD·g volatile suspendedsolids (VSS)~(-1)·d~(-1);粒径为1.0~2.5mm的颗粒污泥,比重为1.02~1.06,机械强度为1600~3400Pa。粒径2.5mm左右成熟的厌氧颗粒污泥中紧密粘附的胞外聚合物(tightlybound-extracellular polymeric substances, TB-EPS)和松散附着的EPS(loosely bound-EPS,LB-EPS)分别是30.2mg total organic carbon(TOC)·g suspended solids (SS)~(-1)和15.2mgTOC·g SS~(-1),是接种污泥的1.9倍和2.6倍。研究结果表明厌氧颗粒污泥规模化培养机理是微生物代谢产物EPS的内因和选择压的外因共同作用,EPS中的TB-EPS影响颗粒的大小,LB-EPS影响颗粒的粘结能力和结构强度。选择压影响生物量浓度、粒径分布和颗粒化率,同时也影响颗粒污泥比重、机械强度、沉降速度等性质。
     (2)通过灰色关联度分析,厌氧污泥颗粒化影响的重要程度:液体上升流速> HRT>OLR>进水COD。扫描电子显微镜(scanning electron microscope, SEM)、X射线能谱(energy dispersive spectrometer, EDS)和X射线衍射(X-ray diffraction, XRD)分析流失污泥和截留污泥,结果表明:液体上升流速使颗粒污泥受到颗粒碰撞摩擦力和水流剪切力作用,影响颗粒污泥的表面粗糙度、污泥形状和完整度;有机底物特性影响颗粒污泥的结构、组成和形成;底物的复杂性影响颗粒污泥的微生物多样性。
     (3)在不同OLR下,通过聚合酶链式反应和变性梯度凝胶电泳(polymerase chainreaction with denaturing gradient gel electrophoresis, PCR-DGGE)分析成熟的厌氧颗粒污泥中微生物种群结构的稳定性,结果表明:细菌种群结构的动态变化越来越显著,而古菌种群结构变化小。根据DGGE图谱计算细菌和古菌的Shannon-Wiene指数(H’)、Margalef丰富度指数和优势度指数S,表明多样性指数越高,生态优势度越小,丰富度越低。低负荷下优势古菌为甲烷八叠球菌(Methanosarcina sp.),高负荷下优势古菌为甲烷鬃菌属(Methanosaeta sp.)。
     (4)无机阳离子Ca~(2+)浓度在300mg L~(-1)时,与对照组相比,厌氧颗粒污泥中EPS浓度和EPS中蛋白质含量达到最大值,增加了31.8%和53.1%,多糖含量下降了11.0%,蛋白质/多糖的比率从2.0增加到3.5,Zeta电位从-45mV增加到-30mV,颗粒污泥粒径从2.5mm增加到2.75mm,产甲烷速率提高了5.0%,颗粒污泥的脱氢酶活性、BAA-蛋白质水解酶活性、β-葡萄糖苷酶活性、碱性磷酸酶活性、辅酶F420活性分别提高了36.4%、28%、11.2%、29.8%和28.0%。PAM浓度为20mg L~(-1)时,与对照组相比,EPS及其含有的蛋白质、多糖和Zeta电位达到最大值,分别增加了54.0%、82.0%、3.9%和41.3%,蛋白质/多糖的比率从2.1增加到4.2,Zeta电位从-46mV增加到-27mV,颗粒污泥粒径从2.5mm增加到3.0mm,产甲烷速率提高了15.1%,颗粒污泥的上述五种酶分别提高了120%、40%、29.4%、40.4%和166.7%。研究表明Ca~(2+)和PAM对厌氧污泥颗粒化起到生物强化作用。
     (5)外源厌氧颗粒污泥(R1反应器)历时12周完成启动,OLR为7.4kg COD·m~(-3)·d~(-1)、出水COD约为450mg·L~(-1)和COD去除率为80%。剩余活性污泥(R2反应器)历时30周颗粒化完成,OLR为8.8kg COD·m~(-3)·d~(-1)左右、出水COD约为240mg·L~(-1)和COD去除率为90%。在R1和R2中,挥发性脂肪酸(volatile fatty acids, VFA)分别是200mg·L~(-1)和100mg·L~(-1)左右(以乙酸计),VFA/碱度的比率分别为0.3和0.15,甲烷浓度分别是77.2%和78.6%,R1中EPS浓度从36.4mg·g SS~(-1)增加到36.8mg·g SS~(-1),R2中EPS浓度从22.5mg·g SS~(-1)增加到46.1mg·g SS~(-1)。R1大部分颗粒为1.5~2.5mm,粒径分布单一,而R2中厌氧颗粒化表现出不同规格0.0~0.3mm、0.3~0.5mm、0.5~1.5mm和1.5~2.5mm的颗粒,颗粒粒径分布差异性缩小。通过计算和比较Grau second-order动力学模型和修正的Stover–Kincannon动力学模型,确定剩余活性污泥可以做接种污泥代替厌氧颗粒污泥来启动厌氧反应器,并且能够取得较高的运行效能和实现厌氧污泥颗粒化,从而建立一种高活性厌氧颗粒污泥的规模化培养系统。
In full-scale anaerobic wastewater treatment, the operational stability and highperformance of an anaerobic reactor depends largely on the efficient settling properties andhigh methanogenic activity of anaerobic granular sludge. If loose sludge floc exists in theanaerobic reactor, the reactor becomes prone to sludge washout, low organic loading rate, andpoor performance. Mature granular sludge merchandise is scarce and expensive, grows slowly,involves difficult training, and has high transportation cost. Therefore, a study on full-scalecultivation of anaerobic granular sludge can solve engineering problems as well as providepractical knowledge and theoretical value.
     In this dissertation, a full-scale anaerobic reactor was inoculated with residual activatedsludge to investigate the following: sludge granulation process, factors influencing anaerobicgranulation by grey relational analysis, microbial population dynamics by molecularbiotechnology, enhanced granulation of anaerobic granular sludge by Ca~(2+)andpolyacrylamide (PAM), and comparison of the kinetic modeling of identical full-scale reactorswith residual activated sludge and anaerobic granular sludge for brewery wastewatertreatment. These concepts demonstrated the full-scale cultivation process of anaerobicgranular sludge and its mechanisms. The main results were described as follows:
     (1) Anaerobic sludge granulation with residual activated sludge could accomplishfull-scale cultivation for brewery wastewater treatment by a continuously average organicloading rate (OLR) of8.8kg chemical oxygen demand (COD)·m~(-3)·d~(-1), upflow velocity of5.4m·h~(-1), and hydraulic retention time (HRT) of5.9h. After granulation, the bioparticles largerthan0.5mm accounted for57%of all bioparticles. Mature particle size in the internalcirculation reactor was between2.0mm and2.5mm in the first reaction, whereas that in thesecond reaction chamber was between0.8mm and1.5mm. When the diameter size was1.74mm, the specific methanogenic activity could reach the maximum level which was1.95gCH4-COD·g volatile suspended solids (VSS)~(-1)·d~(-1). The specific gravity was between1.02and1.06and the mechanical strength was between1600Pa and3400Pa in the diameter size of1.0mm to2.5mm. The tightly bound-extracellular polymeric substances (TB-EPS) andloosely bound-EPS (LB-EPS) were30.2mg total organic carbon (TOC)·g SS~(-1)and15.2mgTOC·g suspended solids (SS)~(-1)in the diameter size of2.5mm. The results showed that sludgegranulation mechanism could be attributed to EPS and selection pressure in full-scalecultivation of anaerobic granular sludge. TB-EPS affected the particle size and LB-EPSaffected the particles capability and structural strength. Selection pressure affected thebiomass concentration, particle size distribution, and the bioparticle rate, but also affected theproportion of the specific gravity, mechanical strength, sedimentation and other properties.
     (2) The grey relational analysis results showed that the factors that influenced anaerobicgranulation with significant effects on anaerobic granulation were as follows: liquid upflowvelocity> hydraulic retention time (HRT)> organic loading rate (OLR)> influent COD. The sludge in the effluent and in the reactor influenced by liquid upflow velocity was examinedusing a scanning electron microscope, energy dispersive spectrometer, and X-ray diffractionanalysis. The results revealed that the liquid upflow velocity affected the surface roughness,sludge shape, and integrity of the granular sludge through the collision friction andhydrodynamic shear force. The characteristics of the organic substrate could influence theformation, composition, and structure of anaerobic granules. The complexity of the substratecould also exert selection pressure on microbial diversity in anaerobic granules, which wouldconsequently influence the formation and microstructure of granules.
     (3) The main archaeal species in the sludge samples at different OLRs variedsignificantly compared with bacteria species using the polymerase chain reaction withdenaturing gradient gel electrophoresis (DGGE). The Shannon–Wiener index (H'), Margalefrichness index, and dominance index S of bacteria and archaea calculated by DGGE profilesshowed that a higher diversity index resulted in less ecological dominance and reducedrichness. The dominant archaeal species in the treated sludge at low OLRs wasMethanosarcina, whereas that at high OLRs was Methanosaeta.
     (4) Compared with the control group, the contents of EPS and proteins could reach themaximal values and respectively increased by31.8%and53.1%when the Ca~(2+)concentrationwas300mg L~(-1). However, polysaccharides content decreased by11.0%, the ratio of proteinand polysaccharide increased from2.0to3.5, and Zeta potential increased from-45mV to-30mV. The above variations enhanced granular sludge particle size from2.5mm to2.75mm,and methanogenic rate increased by5.0%. Compared with the control group, thedehydrogenase, BAA-protein hydrolase, β-glucosidase, alkaline phosphatase, and coenzymeF420activities increased by36.4%,28%,11.2%,29.8%, and28.0%respectively. Comparedwith the control group, the contents of EPS, proteins, polysaccharides, and Zeta potentialcould reach the maximal values and respectively increased by54.0%,82.0%,3.9%, and41.3%when the PAM concentration was20mg L~(-1). The ratio of protein and polysaccharideincreased from2.0to4.2, and Zeta potential increased from-46mV to-27mV. The abovevariations enhanced granular sludge particle size from2.5mm to3.0mm, and methanogenicrate increased by15.1%. The above enzyme activities increased by120%,40%,29.4%,40.4%, and166.7.0%, respectively, compared with the control group. Anaerobic sludgegranulation enhanced by Ca2+and PAM.
     (5) Two identical full-scale biogas-lift reactors treating brewery wastewater wereinoculated with different types of sludge. One reactor (R1) started up with anaerobic granularsludge in12weeks and obtained a continuously average OLR of7.4kg COD·m~(-3)·d~(-1), effluentCOD of approximately450mg·L~(-1), and COD removal efficiency of80%. The other reactor(R2) started up with residual activated sludge in30weeks and granulation was accomplishedwhen the reactor reached an average OLR of8.8kg COD·m~(-3)·d~(-1), effluent COD ofapproximately240mg·L~(-1), and COD removal efficiency of90%. The difference between thevolatile fatty acids (VFA) concentrations of R1and R2were significant, which were approximately200mg·L~(-1)and100mg·L~(-1)as acetic acid, respectively. The VFA/alkalinityratios of R1and R2were approximately0.3and0.15, respectively. Methane contents in thebiogas of R1and R2were about77.2%and78.6%, respectively. The result suggested that thedominant methanogens in R2were able to maintain a higher level of methanogenesis becauseof achieved anaerobic granulation sludge. EPS production increased slightly from36.4mg·gSS~(-1)to36.8mg·g SS~(-1)in R1, whereas that increased from22.5mg·g SS~(-1)to46.1mg·g SS~(-1)inR2. The increased amount of EPS indicated that EPS could help in granule formation. A singleparticle size of R1was between1.5mm and2.5mm, whereas different particle sizedistribution of R2was0.0~0.3mm,0.3~0.5mm,0.5~1.5mm, and1.5~2.5mm. Differences insludge characteristics, methane content, VFA, and VFA/alkalinity ratio may be accounted forthe superior efficiency of the treatment performance of R2over R1. Grau second-order andModified Stover–Kincannon models were successfully used to develop kinetic parameters ofthe experimental data with high correlation coefficients. These findings demonstrated that theresidual activated sludge could be used effectively instead of anaerobic granular sludge toachieve higher performance and sludge granulation. These results indicated that the highactivity of anaerobic granular sludge full-scale cultivation system could be established.
引文
[1] Pol L W H, Lopes S I D, Lettinga G, et al. Anaerobic sludge granulation [J]. Water Research,2004,38(6):1376–1389.
    [2] Zhang Y B, An X L, Quan X. Enhancement of sludge granulation in a zero valence iron packedanaerobic reactor with a hydraulic circulation [J]. Process Biochemistry,2011,46(2):471–476.
    [3] Liu Y W, Zhang Y B, Quan X, et al. Applying an electric field in a built-in zero valent iron-Anaerobicreactor for enhancement of sludge granulation [J]. Water Research,2011,45(3):1258–1266.
    [4] Khanh D, Quan L M, Zhang W J, et al. Effect of temperature on low-strength wastewater treatment byUASB reactor using poly(vinyl alcohol)-gel carrier [J]. Bioresource Technology,2011,102(24):11147–11154.
    [5] Zhang D D, Zhu W B, Tang C, et al. Bioreactor performance and methanogenic population dynamics ina low-temperature (5-18℃) anaerobic fixed-bed reactor [J]. Bioresource Technology,2012,104(1):136–143.
    [6] Siggins A, Enright A M, O'flaherty V. Low-temperature (7℃) anaerobic treatment of atrichloroethylene-contaminated wastewater: Microbial community development [J]. Water Research,2011,45(13):4035–4046.
    [7] O'reilly J, Lee C, Chinalia F, et al. Microbial community dynamics associated with biomassgranulation in low-temperature (15℃) anaerobic wastewater treatment bioreactors [J]. BioresourceTechnology,2010,101(16):6336–6344.
    [8] Xing W, Zuo J E, Dai N, et al. Reactor performance and microbial community of an EGSB reactoroperated at20and15℃[J]. Journal of Applied Microbiology,2009,107(3):848–857.
    [9] Siggins A, Enright A M, O'flaherty V. Temperature dependent (37-15℃) anaerobic digestion of atrichloroethylene-contaminated wastewater [J]. Bioresource Technology,2011,102(17):7645–7656.
    [10] Ferrer I, Ponsa S, Vazquez F, et al. Increasing biogas production by thermal (70℃) sludgepre-treatment prior to thermophilic anaerobic digestion [J]. Biochemical Engineering Journal,2008,42(2):186–192.
    [11] Kotsopoulos T A, Zeng R J, Angelidaki I. Biohydrogen production in granular up-flow anaerobicsludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70℃)[J].Biotechnology and Bioengineering,2006,94(2):296–302.
    [12] Zhang Y B, Ma Y G, Quan X, et al. Rapid startup of a hybrid UASB-AFF reactor using bi-circulation[J]. Chemical Engineering Journal,2009,155(1-2):266–271.
    [13] Chen J W, Zheng P, Yu Y, et al. Promoting sludge quantity and activity results in high loading rates inAnammox UBF [J]. Bioresource Technology,2010,101(8):2700–2705.
    [14] Liu Y, Xu H L, Show K Y, et al. Anaerobic granulation technology for wastewater treatment [J].World Journal of Microbiology&Biotechnology,2002,18(2):99–113.
    [15] Gonzalez-Gil G, Lens P N L, Van Aelst A, et al. Cluster structure of anaerobic aggregates of anexpanded granular sludge bed reactor [J]. Applied and Environmental Microbiology,2001,67(8):3683–3692.
    [16]胡纪萃,周孟津,左剑恶.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.25–95.
    [17] Thiele J H, Wu W M, Jain M K, et al. Ecoengi-neering high ratebiomathanation system: design ofimproved syntrophic biomathanation catalysis [J]. Biotechnology and Bioengineering,1990,35(10):990–999.
    [18] Fang H H P, Lau I W C. Start-up of thermophilic (55℃) UASB reactors using different mesophilicseed sludges [J]. Water Science and Technology,1996,34(5-6):445–452.
    [19] Tay J H, Yan Y G. Influence of substrate concentration on micronial selection and granulation duringstart-up of upflow anaerobic sludge blanket reactors [J]. Water Environment Research,1996,68(7):1140–1150.
    [20] Pereboom J, Vereijken T. Methanogenic granule development in full scale internal circulation reactors[J]. Water Science and Technology,1994,30(8):9–21.
    [21] Ghangrekar M, Asolekar S, Ranganathan K, et al. Experience with UASB reactor start-up underdifferent operating conditions [J]. Water Science and Technology,1996,34(5):421–428.
    [22] Teo K-C, Xu H-L, Tay J-H. Molecular mechanism of granulation. II: Proton translocating activity [J].Journal of Environmental Engineering,2000,126(5):411–418.
    [23] Quarmby J, Forster C F. An examination of the structure of UASB granules [J]. Water Research,1995,29(11):2449–2454.
    [24] Campos C M M, Anderson G K. The effect of the liquid upflow velocity and the substrateconcentration on the start-up and steady-state periods of lab-scale UASB reactors[J]. Water Scienceand Technology,1992,25(7):41–50.
    [25] Fang H H, Chui H-K, Li Y-Y. Effect of degradation kinetics on the microstructure of anaerobicbiogranules [J]. Water Science and Technology,1995,32(8):165–172.
    [26] Arne Alphenaar P, Visser A, Lettinga G. The effect of liquid upward velocity and hydraulic retentiontime on granulation in UASB reactors treating wastewater with a high sulphate content [J].Bioresource Technology,1993,43(3):249–258.
    [27] O'Flaherty V, Lens P N L, De Beer D, et al. Effect of feed composition and upflow velocity onaggregate characteristics in anaerobic upflow reactors[J]. Applied Microbiology and Biotechnology,1997,47(2):102–107.
    [28] Alves M, Cavaleiro A, Ferreira E, et al. Characterisation by image analysis of anaerobic sludge undershock conditions[J]. Water Science and Technology,2000,41(12):207–214.
    [29] Noyola A, Moreno G. Granule production from raw waste activated sludge[J]. Water Science andTechnology,1994,30(12):339–346.
    [30] Chen J, Lun S Y. Study on mechanism of anaerobic sludge granulation in UASB reactors [J]. WaterScience and Technology,1993,28(7):171–178.
    [31] Hickey R F, Wu W M, Veiga M C, et al. Start-up, operation, monitoring and control of high-rateanaerobic treatment systems[J]. Water Science and Technology,1991,24(8):207–255.
    [32] Li J, Wang J, Luan Z K, et al. Evaluation of performance and microbial community in a two-stageUASB reactor pretreating acrylic fiber manufacturing wastewater [J]. Bioresource Technology,2011,102(10):5709–5716.
    [33] El-Mamouni R, Leduc R, Guiot S R. Influence of the starting microbial nucleus type on the anaerobicgranulation dynamics[J]. Applied Microbiology and Biotechnology,1997,47(2):189–194.
    [34] Guiot S R, Pauss A, Costerton J W. A structured model of the anaerobic granule consortium[J]. WaterScience and Technology,1992,25(7):1–10.
    [35] Lepist R, Rintala J. Extreme thermophilic (70℃), VFA-fed UASB reactor: performance, temperatureresponse, load potential and comparison with35℃and55℃UASB reactors[J]. Water Research,1999,33(14):3162–3170.
    [36] El-Mamouni R, Leduc R, Guiot S R. Influence of synthetic and natural polymers on the anaerobicgranulation process[J]. Water Science and Technology,1998,38(8):341–347.
    [37] Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation andstability of biogranules [J]. Applied Microbiology and Biotechnology,2004,65(2):143–148.
    [38] Tourney J, Ngwenya B T. Bacterial extracellular polymeric substances (EPS) mediate CaCO3morphology and polymorphism [J]. Chemical Geology,2009,262(3-4):138–146.
    [39] Yu H, Tay J, Fang H H. The roles of calcium in sludge granulation during UASB reactor start-up [J].Water Research,2001,35(4):1052–1060.
    [40] Chen M Y, Syu M J. Film analysis of activated sludge microbial discs by the Taguchi method andgrey relational analysis[J]. Bioprocess and biosystems engineering,2003,26(2):8–92.
    [41] Xu J, Sheng G P, Luo H W, et al. Evaluating the influence of process parameters on soluble microbialproducts formation using response surface methodology coupled with grey relational analysis[J].Water Research,2011,45(2):674–680.
    [42] Deng J L. Control problems of grey systems [J]. System Contr Lett,1982,1(5):288–294.
    [43] Sing H S. Optimization of machining characteristics in electric discharge machining of6061Al/Al(2)O(3)p/20P composites by grey relational analysis [J]. International Journal ofAdvanced Manufacturing Technology,2012,63(9-12):1191–1202.
    [44] Deng J L. Essential topics on grey system—theory and application [M]. Beijing.China Ocean Press,1988:121–135.
    [45] Tan X R and Deng J L. Grey relational analysis: a new statistical method of multifactorial analysis inmedicine [J]. The Journal of Xi'an Medical University,1997,9(1):59–65.
    [46] Fu C, Zheng J, Zhao J, et al. Application of grey relational analysis for corrosion failure of oil tubes[J]. Corrosion Science,2001,43(5):881–889.
    [47] Hu W, Hua B,Yang C.Building thermal process analysis with grey system method [J]. Building andEnvironment,2002,37(6):599–605.
    [48] Wong H, Hu BQ, Ip WC, et al. Change-point analysis of hydrological time series using grey relationalmethod [J]. Journal of Hydrology,2006,324(1):323–338.
    [49] Kao PS, Hocheng H. Optimization of electrochemical polishing of stainless steel by grey relationalanalysis [J]. Journal of Materials Processing Technology,2003,140(1):255–259.
    [50] Angenent L T, Sung S W, Raskin L. Formation of granules and Methanosaeta fibres in an anaerobicmigrating blanket reactor (AMBR)[J]. Environmental Microbiology,2004,6(4):315-322.
    [51] Rani R U, Kumar S A, Kaliappan S, et al. Low temperature thermo-chemical pretreatment of dairywaste activated sludge for anaerobic digestion process [J]. Bioresource Technology,2012,103(1):415-424.
    [52] Ahring B K, Schmidt J E, Winther-Nielsen M, et al. Effect of medium composition and sludgeremoval on the production, composition, and architecture of thermophilic (55℃) acetate-utilizinggranules from and upflow anaerobic sludge blanket reactor [J]. Applied and EnvironmentalMicrobiology,1993,59(8):2538–2545.
    [53] Moosbrugger R E, Loewenthal R E, Marais G R.Pelletization in a UASB system with protein (casein)as substrate [J]. Water SA,1990,16(3):171–178.
    [54] Morgan J W, Evison L M, Forster C F.Upflow sludge blanket reactors: the effect of bio-supplementson performance and granulation [J]. Journal of Chemical Technology and Biotechnology,1991,52(2):243–255.
    [55] McLeod F A, Guiot S R, Costerton J W.Layered structure of bacterial aggregates produced in anupflow anaerobic sludge bed and filter reactor [J]. Applied and Environmental Microbiology,1990,56(6):1598–1607.
    [56] Fang H H P.Microbial distribution in UASB granules and its resulting effects [J]. Water Science andTechnology,2000,42(12):201–208.
    [57] Vanderhaegen B, Ysebaert K, Favere K, et al. cidogenesis in relation to in-reactor granule yield [J].Water Science and Technology,1992,25(7):21–30.
    [58] Ahn Y H. Physicoch emical and microbial aspects of anaerobic granular pellets [J]. Journal ofEnvironmental Science&Health Part A,2000,35(9):1617–1635.
    [59] Schmidt J E, Ahring BK. Review: granular sludge formation in upflow anaerobic sludge blanket(UASB) reactors [J]. Biotechnology and Bioengineering,1996,49(3):229–246.
    [60] Thaveesri J, Daffonchio D, Liessens B, et al.Granulatio n and sludge bed stability in upflow anaerobicsludge bed reactors in relation to surface thermodynamics [J]. Applied and EnvironmentalMicrobiology,1995,61(10):3681–3686.
    [61] Tay J H, Xu H L, Teo KC. Molecular mechanism of granulation.I: H+translocation–dehydrationtheory [J]. Journal of Environmental Engineering-Asce,2000,126(5):403–410.
    [62] Vanderhaegen B, Ysebaert E, Favere K, et al. Acidogenesis in relation to in-reactor granule yield [J].Water Science Technology,1992,25(7):21–30.
    [63] Lopes S I C, Dreissen C, Capela M I, et al. Comparison of CSTR and UASB reactor configuration forthe treatment of sulfate rich wastewaters under acidifying conditions [J]. Enzyme and MicrobialTechnology,2008,43(7):471–479.
    [64] Liu Z G, Zhou X F, Zhang Y L, et al. Enhanced anaerobic treatment of CSTR-digested effluent fromchicken manure: The effect of ammonia inhibition[J]. Waste management,2012,32(1):137–143.
    [65] Kafle G K, Kim S H. Anaerobic treatment of apple waste with swine manure for biogas production:Batch and continuous operation[J]. Applied Energy,2013,103(3):61–72.
    [66] Bou ková A, Dohanyos M, Schmidt J E, et al. Strategies for changing temperature from mesophilic tothermophilic conditions in anaerobic CSTR reactors treating sewage sludge[J]. Water Research,2005,39(8):1481–1488.
    [67] Méndez-Acosta H O, Snell-Castro R, Alcaraz-González V, et al. Anaerobic treatment of Tequilavinasses in a CSTR-type digester[J]. Biodegradation,2010,21(3):357–363.
    [68] Show K Y, Zhang Z P, Tay J H, et al. Production of hydrogen in a granular sludge-based anaerobiccontinuous stirred tank reactor[J]. International Journal of Hydrogen Energy,2007,32(18):4744–4753.
    [69] Shao X W, Peng D C, Teng Z H, et al. Treatment of brewery wastewater using anaerobic sequencingbatch reactor (ASBR)[J]. Bioresource Technology,2008,99(8):3182–3186.
    [70] Angenent L T, Sung S W. Development of anaerobic migrating blanket reactor (AMBR), a novelanaerobic treatment system [J]. Water Research,2001,35(7):1739–1747.
    [71] Lant P, Hartley K. Solids characterisation in an anaerobic migrating bed reactor (AMBR) sewagetreatment system [J]. Water Research,2007,41(11):2437–48.
    [72] Chu L B, Yang F L, Zhang X W. Anaerobic treatment of domestic wastewater in a membrane-coupledexpended granular sludge bed (EGSB) reactor under moderate to low temperature [J]. ProcessBiochemistry,2005,40(3-4):1063–1070.
    [73] Liu J, Luo J, Zhou J, et al. Inhibitory effect of high-strength ammonia nitrogen on bio-treatment oflandfill leachate using EGSB reactor under mesophilic and atmospheric conditions[J]. BioresourceTechnology,2012,113(6):239–243.
    [74] Delforno T P, Okada D Y, Polizel J, et al. Microbial characterization and removal of anionic surfactantin an expanded granular sludge bed reactor[J]. Bioresource Technology,2012,107(3):103–109.
    [75] Siggins A, Enright A M, O’Flaherty V. Methanogenic community development in anaerobic granularbioreactors treating trichloroethylene (TCE)-contaminated wastewater at37℃and15℃[J]. WaterResearch,2011,45(8):2452–2462.
    [76] Ra C, Lau A. Swine Wastewater Treatment Using Submerged Biofilm SBR Process: Enhancementof Performance by Internal Circulation through Sand Filter [J]. Journal of EnvironmentalEngineering-Asce,2010,136(6):585–590.
    [77] Lu N, Liao S G. Designed technics and ideas of Anaerobic reactors with Internal Circulation [J].Disaster Advances,2010,3(4):354–357.
    [78] Deng L W, Zheng P, Chen Z A. Anaerobic digestion and post-treatment of swine wastewater usingIC-SBR process with bypass of raw wastewater [J]. Process Biochemistry,2006,41(4):965–969.
    [79] Ding J N, Wang D Z. Influence of external circulation on sludge characteristics during start-up ofinternal circulation reactor [J]. Journal of Central South University of Technology,2005,12(4):425–429.
    [80] Wu J, Lu Z Y, Hu J C, et al. Disruption of granules by hydrodynamic force in internal circulationanaerobic reactor [J]. Water Science and Technology,2006,54(9):9–16.
    [81] Wu J, Zhao P, Tian L, et al. Internal circulation anaerobic digester—a upflow anaerobic sludgedigester[J]. Journal of Biotechnology,2010,150(11):39–39.
    [82] O'reilly J, Chinalia F A, Mahony T, et al. Cultivation of low-temperature (15℃), anaerobic,wastewater treatment granules [J]. Letters in Applied Microbiology,2009,49(4):421–426.
    [83] Wei C H, Zhang T, Feng C H, et al. Treatment of food processing wastewater in a full-scale jet biogasinternal loop anaerobic fluidized bed reactor [J]. Biodegradation,2011,22(2):347–357.
    [84] Liu C, Yang J L, Wu G, et al. Estimation of dominant microbial population sizes in the anaerobicgranular sludge of a full-scale UASB treating streptomycin wastewater by PCR-DGGE [J]. WorldJournal of Microbiology&Biotechnology,2010,26(2):375–379.
    [85] Chen C L, Wu J H, Tseng I C, et al. Characterization of Active Microbes in a Full-Scale AnaerobicFluidized Bed Reactor Treating Phenolic Wastewater [J]. Microbes and Environments,2009,24(2):144–153.
    [86] Diaz E E, Stams A J A, Amils R, et al. Phenotypic properties and microbial diversity of methanogenicgranules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater [J].Applied and Environmental Microbiology,2006,72(7):4942–4949.
    [87] Akarsubasi A T, Ince O, Oz N A, et al. Evaluation of performance, acetoclastic methanogenic activityand archaeal composition of full-scale UASB reactors. Treating alcohol distillery wastewaters [J].Process Biochemistry,2006,41(1):28–35.
    [88] Parawira W, Kudita I, Nyandoroh M G, et al. A study of industrial anaerobic treatment of opaque beerbrewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activatedsludge [J]. Process Biochemistry,2005,40(2):593–599.
    [89] Zhang J, Wei Y J, Xiao W, et al. Performance and spatial community succession of an anaerobicbaffled reactor treating acetone-butanol-ethanol fermentation wastewater [J]. BioresourceTechnology,2011,102(16):7407–7414.
    [90] Savichtcheva O, Okabe S. Qualitative and quantitative estimation of host-specific fecal pollution usingBacteroides-Prevotella16S rRNA genetic markers by T-RFLP and real-time PCR analyses [J].Water Science and Technology,2009,59(9):1831–1840.
    [91] Liu Y, Zhang Y, Quan X, et al. Optimization of anaerobic acidogenesis by adding Fe0powder toenhance anaerobic wastewater treatment[J]. Chemical Engineering Journal,2012,192(1):179–185.
    [92] Savichtcheva O, Joris B, Wilmotte A, et al. Novel FISH and quantitative PCR protocols to monitorartificial consortia composed of different hydrogen-producing Clostridium spp.[J]. InternationalJournal of Hydrogen Energy,2011,36(13):7530–7542.
    [93] Trosvik P, Skanseng B, Jakobsen K S, et al. Multivariate analysis of complex DNA sequenceelectropherograms for high-throughput quantitative analysis of mixed microbial populations [J].Applied and Environmental Microbiology,2007,73(15):4975–4983.
    [94] Hesham A E-L, Qi R, Yang M. Comparison of bacterial community structures in two systems of asewage treatment plant using PCR-DGGE analysis [J]. Journal of Environmental Sciences,2011,23(12):2049–2054.
    [95] Werbrouck H, Botteldoorn N, Uyttendaele M, et al. Quantification of gene expression of Listeriamonocytogenes by real-time reverse transcription PCR: Optimization, evaluation and pitfalls [J].Journal of Microbiological Methods,2007,69(2):306–314.
    [96] Moreno l I, Mills D, Fetscher J, et al. The application of amplicon length heterogeneity PCR (LH-PCR)for monitoring the dynamics of soil microbial communities associated with cadaver decomposition[J]. Journal of Microbiological Methods,2011,84(3):388–393.
    [97] Ying Y L, Lv Z M, Min H, et al. Dynamic changes of microbial community diversity in aphotohydrogen producing reactor monitored by PCR-DGGE [J]. Journal of EnvironmentalSciences,2008,20(9):1118–1125.
    [98] Wang G H, Jin J, Liu J J, et al. Bacterial Community Structure in a Mollisol Under Long-Term NaturalRestoration, Cropping, and Bare Fallow History Estimated by PCR-DGGE [J]. Pedosphere,2009,19(2):156–165.
    [99] Liu W T, Chan O C, Fang H H P. Microbial community dynamics during start-up of acidogenicanaerobic reactors [J]. Water Research,2002,36(13):3203–3210.
    [100] Choi J H, Lee S H, Fukushi K, et al. Comparison of sludge characteristics and PCR-DGGE basedmicrobial diversity of nanofiltration and microfiltration membrane bioreactors [J]. Chemosphere,2007,67(8):1543–1550.
    [101] Zhang J X, Zhang Y B, Quan X. Electricity assisted anaerobic treatment of salinity wastewater andits effects on microbial communities [J]. Water Research,2012,46(11):3535–3543.
    [102] Ning Y Y, Jin D W, Sheng G P, et al. Evaluation of the stability of hydrogen production andmicrobial diversity by anaerobic sludge with chloroform treatment [J]. Renewable Energy,2012,38(1):253–257.
    [103] Zhang J X, Zhang Y B, Quan X, et al. Bioaugmentation and functional partitioning in a zero valentiron-anaerobic reactor for sulfate-containing wastewater treatment [J]. Chemical EngineeringJournal,2011,174(1):159–165.
    [104] Zandvoort M H, Van Hullebusch E D, Fermoso F G, et al. Trace metals in anaerobic granular sludgereactors: bioavailability and dosing strategies[J]. Engineering in Life Sciences,2006,6(3):293–301.
    [105] Nizami A S, Murphy J D. Optimizing the Operation of a Two-Phase Anaerobic Digestion SystemDigesting Grass Silage [J]. Environmental Science&Technology,2011,45(17):7561–7569.
    [106] Roy S, Ghosh S, Das D. Improvement of hydrogen production with thermophilic mixed culture fromrice spent wash of distillery industry [J]. International Journal of Hydrogen Energy,2012,37(21):15867–15874.
    [107] Yan Q, Yu D, Wang z L, et al. Phenol inhibition and restoration of the bioactivity of anaerobicgranular sludge [J]. Applied Biochemistry and Biotechnology,2008,150(3):259–265.
    [108]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007.159–278.
    [109] Isik M, Sponza D T. Substrate removal kinetics in an upflow anaerobic sludge blanket reactordecolorising simulated textile wastewater [J]. Process Biochemistry,2005,40(3-4):1189–1198.
    [110] Hu W C, Thayanithy K, Forster C F. A kinetic study of the anaerobic digestion of ice-creamwastewater [J]. Process Biochemistry,2002,37(9):965–971.
    [111] Sponza D T, Ulukoy A.. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludgeblanket (UASB) reactor treating2,4dichlorophenol (2,4DCP)[J]. Journal of EnvironmentalManagement,2008,86(1):121–131.
    [112] Debik E, Coskun T. Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treatpoultry slaughterhouse wastewater and kinetic modeling [J]. Bioresource Technology,2009,100(11):2777–2782.
    [113] Mairet F, Bernard O, Ras M, et al. Modeling anaerobic digestion of microalgae using ADM1[J].Bioresource Technology,2011,102(13):6823–6829.
    [114] Fedorovich V, Lens P, Kalyuzhnyi S. Extension of Anaerobic Digestion Model No.1with processesof sulfate reduction [J]. Applied Biochemistry and Biotechnology,2003,109(1-3):33–44.
    [115] Lubken M, Wichern M, Schlattmann M, et al. Modelling the energy balance of an anaerobic digesterfed with cattle manure and renewable energy crops [J]. Water Research,2007,41(18):4085–4096.
    [116] Yasui H, Goel R, Li Y Y, et al. Modified ADM1structure for modelling municipal primary sludgehydrolysis [J]. Water Research,2008,42(1-2):249–259.
    [117]董春娟,吕炳南.膨胀颗粒污泥床反应器在低温低浓度下的动力学研究[J].化工环保,2006,26(3):185–189.
    [118]芦芳杰,刘社锋,高军晖,等.预酸化-UASB法处理乳制品废水及基质降解动力学[J].水资源保护,2008,24(1):65–68.
    [119]王宝贞,沈耀良.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社,2006.150–348.
    [120]信欣,胡细全,蔡鹤生,等. ABR处理生活污水的指标沿程变化及动力学研究[J].环境科学与技术,2006,29(8):8–9.
    [121]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.42–320.
    [122] Rizzi A, Zucchi M, Borin S, et al. Response of methanogen populations to organic load increaseduring anaerobic digestion of olive mill wastewater [J]. Journal of Chemical Technology andBiotechnology,2006,81(9):1556–1562.
    [123] Li D W, Wang Q A, Wang K H. The Research of Cultivated Sludge rapidly of UASB andMethanogenic [J]. Disaster Advances,2010,3(4):301–305.
    [124] Show K Y, Wang Y, Foong S F, et al. Accelerated start-up and enhanced granulation in upflowanaerobic sludge blanket reactors [J]. Water Research,2004,38(9):2293–2304.
    [125] Xu Z H, Li D W, Wang K H, et al. Study on Quick Cultivation of Granular Sludge and ItsCharacteristicsin Acidogenic UASB [J]. Research Journal of Chemistry and Environmen,2009,13(4):28–33.
    [126] Simate G S, Cluett J, Iyuke S E, et al. The treatment of brewery wastewater for reuse: State of theart [J]. Desalination,2011,273(2-3):235–247.
    [127] Muroyama K, Nakai T, Uehara Y, et al. Analysis of reactions for biodegradation of volatile acidcomponents in an anaerobic sludge granular bed treating beer brewery wastewater [J]. Journal ofchemical engineering of Japan,2004,37(8):1026–1034.
    [128] Association A P H, Federation W P C, Federation W E. Standard methods for the examination ofwater and wastewater [M]. American Public Health Association,1976.
    [129] Muda K, Aris A, Salim M R, et al. Development of granular sludge for textile wastewater treatment[J]. Water Research,2010,44(15):4341–4350.
    [130] Van Hullebusch E D, Gieteling J, Van Daele W, et al. Effect of sulfate and iron on physico-chemicalcharacteristics of anaerobic granular sludge [J]. Biochemical Engineering Journal,2007,33(2):168–177.
    [131] Li X Y, Yang S F. Influence of loosely bound extracellular polymeric substances (EPS) on theflocculation, sedimentation and dewaterability of activated sludge [J]. Water Research,2007,41(5):1022–1030.
    [132] Mcswain B S, Irvine R L, Hausner M, et al. Composition and distribution of extracellular polymericsubstances in aerobic flocs and granular sludge [J]. Applied and Environmental Microbiology,2005,71(2):1051–1057.
    [133] Nadais M H, Capela M I, Arroja L M, et al. Biosorption of milk substrates onto anaerobicflocculent and granular sludge [J]. Biotechnology Progress,2003,19(3):1053–1065.
    [134] Wu J, Zhou H M, Li H Z, et al. Impacts of hydrodynamic shear force on nucleation of flocculentsludge in anaerobic reactor [J]. Water Research,2009,43(12):3029–3036.
    [135]王凯军,江翰,贺延龄.厌氧颗粒污泥悬浮床反应器的理论基础初探[J].给水排水,2008,34(05):165–169.
    [136]颜智勇,胡勇有,田静,等.厌氧颗粒污泥膨胀床(EGSB)-稳定塘工艺处理木薯淀粉废水[J].给水排水,2004,30(1):53–55.
    [137] De S M, Di I C, Lopez A, et al. Granular biomass structure and population dynamics in SequencingBatch Biofilter Granular Reactor (SBBGR)[J]. Bioresource Technology,2010,101(7):2152–2158.
    [138] Xu H L, Tay J H. Anaerobic granulation with methanol-cultured seed sludge [J]. Journal ofEnvironmental Science and Health, Part A,2002,37(1):85–94.
    [139] Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencingbatch reactors [J]. Process Biochemistry,2004,39(5):579–584.
    [140] Pevere A, Guibaud G, Goin E, et al. Effects of physico-chemical factors on the viscosity evolutionof anaerobic granular sludge [J]. Biochemical Engineering Journal,2009,43(3):231–238.
    [141] Ye J X, Mu Y J, Cheng X, et al. Treatment of fresh leachate with high-strength organics andcalcium from municipal solid waste incineration plant using UASB reactor [J]. BioresourceTechnology,2011,102(9):5498–5503.
    [142] Tiwari M K, Guha S, Harendranath C S, et al. Enhanced granulation by natural ionic polymeradditives in UASB reactor treating low-strength wastewater [J]. Water Research,2005,39(16):3801–3810.
    [143] Bhunia P, Ghangrekar M M. Required minimum granule size in UASB reactor and characteristicsvariation with size [J]. Bioresource Technology,2007,98(5):994–999.
    [144] Wang Y, Show K Y, Tay J H, et al. Effects of cationic polymer on start-up and granulation inupflow anaerobic sludge blanket reactors [J]. Journal of Chemical Technology andBiotechnology,2004,79(3):219–228.
    [145] Ghangrekar M M, Asolekar S R, Joshi S G. Characteristics of sludge developed under differentloading conditions during UASB reactor start-up and granulation [J]. Water Research,2005,39(6):1123–1133.
    [146] Ni B J, Hu B L, Fang F, et al. Microbial and Physicochemical Characteristics of CompactAnaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor [J].Applied and Environmental Microbiology,2010,76(8):2652–2666.
    [147] Ji G D, Zhai F M, Wang R J, et al. Sludge granulation and performance of a low superficial gasvelocity sequencing batch reactor (SBR) in the treatment of prepared sanitary wastewater [J].Bioresource Technology,2010,101(23):9058–9064.
    [148] Li W W, Yu H Q. Physicochemical characteristics of anaerobic H2-producing granular sludge [J].Bioresource Technology,2011,102(18):8653–8660.
    [149] Jung K W, Kim D H, Shin H S. A simple method to reduce the start-up period in a H2-producingUASB reactor [J]. International Journal of Hydrogen Energy,2011,36(2):1466–1473.
    [150] Yu G H, He P J, Shao L M. Characteristics of extracellular polymeric substances (EPS) fractionsfrom excess sludges and their effects on bioflocculability [J]. Bioresource Technology,2009,100(13):3193–3198.
    [151] Collins G, Foy C, Mchugh S, et al. Anaerobic biological treatment of phenolic wastewater at15-18℃[J]. Water Research,2005,39(8):1614–1620.
    [152] Gao R Y, Wang J L. Effects of pH and temperature on isotherm parameters of chlorophenolsbiosorption to anaerobic granular sludge [J]. Journal of hazardous materials,2007,145(3):398–403.
    [153] Dos santos A B, Bisschops I A E, Cervantes F J, et al. The transformation and toxicity ofanthraquinone dyes during thermophilic (55℃) and mesophilic (30℃) anaerobic treatments [J].Journal of biotechnology,2005,115(4):345–353.
    [154] Song Y C, Kwon S J, Woo J H. Mesophilic and thermophilic temperature co-phase anaerobicdigestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge [J].Water Research,2004,38(7):1653–1662.
    [155] Vallero M V G, Camarero E, Lettinga G, et al. Thermophilic (55-65℃) and extreme thermophilic(70-80℃) sulfate reduction in methanol and formate-fed UASB reactors [J]. BiotechnologyProgress,2004,20(5):1382–1392.
    [156] Moran J, Granada E, Miguez J L, et al. Use of grey relational analysis to assess and optimize smallbiomass boilers [J]. Fuel Processing Technology,2006,87(2):123–127.
    [157] Lenz M, Enright A M, O'flaherty V, et al. Bioaugmentation of UASB reactors with immobilizedSulfurospirillum barnesii for simultaneous selenate and nitrate removal [J]. Applied Microbiologyand Biotechnology,2009,83(2):377–388.
    [158] Tapia-rodriguez A, Luna-velasco A, Field J A, et al. Anaerobic bioremediation of hexavalenturanium in groundwater by reductive precipitation with methanogenic granular sludge [J]. WaterResearch,2010,44(7):2153–2162.
    [159] Zeng G M, Jiang R, Huang G H, et al. Optimization of wastewater treatment alternative selection byhierarchy grey relational analysis [J]. Journal of Environmental Management,2007,82(2):250–259.
    [160] Zhou W L, Imai T, Ukita M, et al. Triggering forces for anaerobic granulation in UASB reactors [J].Process Biochemistry,2006,41(1):36–43.
    [161] Ye F X, Shen D S, Feng X S. Anaerobic granule development for removal of pentachlorophenol inan upflow anaerobic sludge blanket (UASB) reactor [J]. Process Biochemistry,2004,39(10):1249-1256
    [162] Angela M, Beatrice B, Mathieu S. Biologically induced phosphorus precipitation in aerobicgranular sludge process [J]. Water Research,2011,45(12):3776–3786.
    [163] Lu X W, Shih K M. Metal stabilization mechanism of incorporating lead-bearing sludge inkaolinite-based ceramics [J]. Chemosphere,2012,86(8):817–821.
    [164]江瀚,王凯军,石宪奎,等.一种新型颗粒污泥——无机核颗粒污泥的形成和机理探讨[J].微生物学报,2005,45(6):925–929.
    [165] Lens P N L, Klijn R, Van lier J B, et al. Effect of specific gas loading rate on thermophilic (55℃)acidifying (pH6) and sulfate reducing granular sludge reactors [J]. Water Research,2003,37(5):1033–1047.
    [166] Ince O, Ince B K, Yenigun O. Determination of potential methane production capacity of a granularsludge from a pilot-scale upflow anaerobic sludge blanket reactor using a specific methanogenicactivity test [J]. Journal of Chemical Technology and Biotechnology,2001,76(6):573–578.
    [167] Zandvoort M H, Geerts R, Lettinga G, et al. Effect of long-term cobalt deprivation on methanoldegradation in a methanogenic granular sludge bioreactor [J]. Biotechnology Progress,2002,18(6):1233–1239.
    [168] Zhang L L, Zhang B, Huang Y F, et al. Application of aerobic granular sludge in polishing theUASB effluent [J]. Environmental Technology,2005,26(12):1327–1334.
    [169] Fernandez N, Diaz E E, Amils R, et al. Analysis of microbial community during biofilmdevelopment in an anaerobic wastewater treatment reactor [J]. Microbial Ecology,2008,56(1):121–132.
    [170]李建平,左剑恶.沼气循环厌氧颗粒污泥床反应器的运行特性[J].中国沼气,2006,24(3):6–10.
    [171]陈坚,刘和,李秀芬,等.环境微生物实验技术[M].北京:化学工业出版社,2008.1–73.
    [172] Boon N, De W W, Verstraete W, et al. Evaluation of nested PCR-DGGE (denaturing gradient gelelectrophoresis) with group-specific16S rRNA primers for the analysis of bacterial communitiesfrom different wastewater treatment plants [J]. Fems Microbiology Ecology,2002,39(2):101–112.
    [173] Goberna M, Insam H, Franke-whittle I H. Effect of Biowaste Sludge Maturation on the Diversity ofThermophilic Bacteria and Archaea in an Anaerobic Reactor [J]. Applied and EnvironmentalMicrobiology,2009,75(8):2566–2572.
    [174] Gafan G P, Lucas V S, Roberts G J, et al. Statistical analyses of complex denaturing gradient gelelectrophoresis profiles [J]. Journal of Clinical Microbiology,2005,43(8):3971–3978.
    [175] Amani T, Nosrati M, Mousavi S M. Response surface methodology analysis of anaerobicsyntrophic degradation of volatile fatty acids in an upflow anaerobic sludge bed reactor inoculatedwith enriched cultures [J]. Biotechnology and Bioprocess Engineering,2012,17(1):133–144.
    [176] Dai R H, Liu Y, Liu X, et al. Investigation of a sewage-integrated technology combining anexpanded granular sludge bed (EGSB) and an electrochemical reactor in a pilot-scale plant [J].Journal of hazardous materials,2011,192(3):1161–1170.
    [177] Vijayaraghavan K, Ahmad D, Samson M. Biohydrogen generation from beer brewery wastewaterusing an anaerobic contact filter [J]. Journal of the American Society of Brewing Chemists,2007,65(2):110–115.
    [178] Ahn Y, Song Y J, Lee Y J, et al. Physicochemical characterization of UASB sludge with differentsize distributions [J]. Environmental Technology,2002,23(8):889–897.
    [179] Olguin-lorA P, Puig-grajales L, Razo-flores E. Inhibition of the acetoclastic methanogenic activityby phenol and alkyl phenols [J]. Environmental Technology,2003,24(8):999–1006.
    [180] Akarsubasi A T, Ince O, Oz n A, et al. Evaluation of performance, acetoclastic methanogenicactivity and archaeal composition of full-scale UASB reactors. Treating alcohol distillerywastewaters [J]. Process Biochemistry,2006,41(1):28–35.
    [181] Song Z W, Pan Y J, Zhang K, et al. Effect of seed sludge on characteristics and microbialcommunity of aerobic granular sludge [J]. Journal of Environmental Sciences,2010,22(9):1312–1318.
    [182] Yang h, Zhao J S, Hawari J. Effect of2,4-dinitrotoluene on the anaerobic bacterial community inmarine sediment [J]. Journal of Applied Microbiology,2009,107(6):1799–1808.
    [183] Wei L, Ma F, Zhao G. Composition and dynamics of sulfate-reducing bacteria during thewaterflooding process in the oil field application [J]. Bioresource Technology,2010,101(8):2643–2650.
    [184] Chen S Y, Dong X Z. Proteiniphilum acetatigenes gen. nov., sp nov., from a UASB reactor treatingbrewery wastewater [J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(6):2257–2261.
    [185] Jeong T Y, Cha G C, Yeom S H, et al. Comparison of hydrogen production by four representativehydrogen-producing bacteria [J]. Journal of Industrial and Engineering Chemistry,2008,14(3):333–337.
    [186] Fernandez-gomez M J, Nogales R, Insam H, et al. Use of DGGE and COMPOCHIP forinvestigating bacterial communities of various vermicomposts produced from different wastesunder dissimilar conditions [J]. Science of the Total Environment,2012,414(1):664–671.
    [187] Chu C Y, Wu S Y, Wu Y C, et al. Phase holdups and microbial community in high-ratefermentative hydrogen bioreactors [J]. International Journal of Hydrogen Energy,2011,36(1):364–373.
    [188] Zhang C, Jia L, Wang S H, et al. Biodegradation of beta-cypermethrin by two Serratia spp. withdifferent cell surface hydrophobicity [J]. Bioresource Technology,2010,101(10):3423–3429.
    [189]杨秀山,田沈,郑颖,等.固定化甲烷八叠球菌(Methanosarcina)研究厌氧颗粒污泥的形成[J].中国环境科学,1998,18(4):356–359.
    [190] Sun Y J, Xing W, Li J P, et al. Microbial community in granules from a high-rate EGSB reactor[J].Applied Biochemistry and Microbiology,2009,45(6):593–598.
    [191] Duarte I C S, Oliveira L L, Mayor M S, et al. Degradation of detergent (linear alkylbenzenesulfonate) in an anaerobic stirred sequencing-batch reactor containing granular biomass [J].International Biodeterioration&Biodegradation,2010,64(2):129–134.
    [192] Acharya B K, Pathak H, Mohana S, et al. Kinetic modelling and microbial community assessmentof anaerobic biphasic fixed film bioreactor treating distillery spent wash [J]. Water Research,2011,45(14):4248–4259.
    [193] Garcia H, Rico C, Garcia P A, et al. Flocculants effect in biomass retention in a UASB reactortreating dairy manure [J]. Bioresource Technology,2008,99(14):6028-6032.
    [194]王劲松.微生物絮凝剂作用下厌氧颗粒污泥的形成及特性[J].环境科学,2009,30(11):3329–3335.
    [195] Mohan S V, Srikanth S, Babu M L, et al. Insight into the dehydrogenase catalyzed redox reactionsand electron discharge pattern during fermentative hydrogen production [J]. BioresourceTechnology,2010,101(6):1826–1833.
    [196] Zhao M X, Yan Q, Ruan W Q, et al. Effects of butyric acid stress on anaerobic sludge for hydrogenproduction from kitchen wastes [J]. Journal of Chemical Technology and Biotechnology,2010,85(6):866–871.
    [197]李永灿,严群,阮文权.餐厨垃圾厌氧消化产沼气过程中酶学表征[J].工业微生物,2011,41(3):76–80.
    [198] Tam N F Y. Effects of wastewater discharge on microbial populations and enzyme activities inmangrove soils [J]. Environmental Pollution,1998,102(2-3):233–242.
    [199] BashirI G, Rehan A M, Greenwood D R, et al. Metabolic Engineering of Cofactor F420Productionin Mycobacterium smegmatis [J]. Plos One,2010,5(12):12–18.
    [200] Liu Y J, Sun D D. Calcium augmentation for enhanced denitrifying granulation in sequencing batchreactors [J]. Process Biochemistry,2011,46(4):987–992.
    [201] Li H S, Wen Y, Cao A S, et al. The influence of additives (Ca2+, Al3+, and Fe3+) on the interactionenergy and loosely bound extracellular polymeric substances (EPS) of activated sludge and theirflocculation mechanisms [J]. Bioresource Technology,2012,114(6):188–194.
    [202] Ahmad A, Ghufran R, Abd wahid Z. Role of calcium oxide in sludge granulation andmethanogenesis for the treatment of palm oil mill effluent using UASB reactor [J]. Journal ofhazardous materials,2011,198(12):40–48.
    [203] Liu J Y, Hu J, Zhong J P, et al. The effect of calcium on the treatment of fresh leachate in anexpanded granular sludge bed bioreactor [J]. Bioresource Technology,2011,102(9):5466–5472.
    [204]岳秀萍,李亚新,刘美霞.聚季铵盐对厌氧生化反应器中微生物自身固定化的促进作用[J]化工学报,2004,55(3):418–421.
    [205] Yan Q, Wang A J, Yu C F, et al. Enzymatic characterization of acid tolerance response (ATR)during the enhanced biohydrogen production process from Taihu cyanobacteria via anaerobicdigestion [J]. International Journal of Hydrogen Energy,2011,36(1):405–410.
    [206] Lopez I, Borzacconi L. Modelling of an EGSB treating sugarcane vinasse using first-order variablekinetics [J]. Water Science and Technology,2011,64(10):2080–2088.
    [207] Oktem Y, Tufekci N. Treatment of brewery wastewater by pilot scale upflow anaerobic sludgeblanket reactor in mesophilic temperature [J]. Journal of Scientific&Industrial Research,2006,65(3):248–251.
    [208] Liu R R, Lu X J, Tian Q, et al. The performance evaluation of hybrid anaerobic baffled reactor fortreatment of PVA-containing desizing wastewater [J]. Desalination,2011,271(1-3):287–294.
    [209] Turkdogan-aydinol F I, Yetilmezsoy K, Comez S. Effect of extracellular enzyme activity ondigestion performance of mesophilic UASB reactor treating high-strength municipal wastewater [J].Bioprocess and Biosystems Engineering,2011,34(4):389–401.
    [210] Morgan-sagastume F, Pratt S, Karlsson A, et al. Production of volatile fatty acids by fermentationof waste activated sludge pre-treated in full-scale thermal hydrolysis plants [J]. BioresourceTechnology,2011,102(3):3089–3097.
    [211] Lim S J, Fox P. Evaluation of a static granular bed reactor using a chemical oxygen demand balanceand mathematical modeling [J]. Bioresource Technology,2011,102(11):6399–6404.
    [212] SandhyA S, SarayU K, Swaminathan K. Determination of kinetic constants of hybrid textilewastewater treatment system [J]. Bioresource Technology,2008,99(13):5793–5797.
    [213] Ni S Q, Sung S W, Yue Q Y, et al. Substrate removal evaluation of granular anammox process in apilot-scale upflow anaerobic sludge blanket reactor [J]. Ecological Engineering,2012,38(1):30–36.
    [214] Basu D, Asolekar S R. Evaluation of substrate removal kinetics for UASB reactors treatingchlorinated ethanes [J]. Environmental Science and Pollution Research,2012,19(6):2419–2427.
    [215] Turkdogan-aydinol F I, Yetilmezsoy K, Comez S, et al. Performance evaluation and kineticmodeling of the start-up of a UASB reactor treating municipal wastewater at low temperature [J].Bioprocess and Biosystems Engineering,2011,34(2):153–162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700