结晶器搅拌桨快速设计与制造关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业结晶技术是一种高效低能耗、低污染的制造与分离技术,是化工、医药等行业的关键技术之一。搅拌桨是搅拌釜式结晶器的关键部件,桨的结构和叶形决定了釜内溶液的整体流动形式。搅拌桨传统设计/制造方法为仿船用螺旋桨的图谱设计法,需查表计算、手工制造,其过程信息共享度低、周期长,难以保证桨的质量,且无法预测桨的流体动力性能。本文以实现结晶器搅拌桨优质高效的设计/制造为目标,针对搅拌桨CAD/CAE/CAM集成、搅拌桨结构优化和数控加工工艺等关键问题进行了系统的研究,取得如下创新性研究成果:
     1.提出搅拌桨集成制造的创新思想,构建了搅拌桨CAD/CAE/CAM集成制造系统的总体框架。采用基于特征的面向对象技术建立了集成化的搅拌桨数据模型,为搅拌桨设计、制造各环节提供了统一的产品数据模型。该系统克服了搅拌桨传统设计与制造各环节相互脱节、信息共享度低的缺陷。实现了搅拌桨CAD、CAE与CAM各环节的有效集成和信息共享,大大缩短了搅拌桨的设计/制造周期。
     2.提出了一种新的大型螺旋式搅拌桨的结构设计方法,即分体设计/制造桨叶和桨毂,整体焊接组装的方法,解决了大尺寸搅拌桨的加工受机床加工范围限制的难题。应用CFD(Calculating Fluid Dynamics)分析软件FLUENT对分体式组装桨进行了结构参数的优化设计,优化了叶根几何形状。基于固体力学分析,应用ANSYS软件对桨叶进行强度和刚度校核,优化了桨叶的厚度。优化后的搅拌桨即保证了搅拌效果,又减轻了桨的重量,并减少了后续组装时的焊接工作量。
     3.研究了搅拌桨数控加工工艺,提出五轴数控铣削搅拌桨木模的新方法。该方法利用自行开发的搅拌桨建模平台,建立了搅拌桨铸造毛坯木模的三维数据模型,生成木模的五轴加工程序,完成了木模的加工,从而提高了搅拌桨毛坯的铸造精度。并通过实验研究,得出球头铣刀铣削不锈钢时铣削力经验公式,为数控铣削不锈钢搅拌桨推荐了合理的切削参数。
     4.基于UG平台,应用其二次开发工具OPEN GRIP开发了搅拌桨快速设计与制造集成系统,基于螺旋桨结构开发了适用于常用桨型的搅拌桨型值点计算模块,建立了搅拌桨三维实体模型。以880型螺旋桨式搅拌桨为例,完成其设计和加工。实际验证,搅拌桨的设计/制造周期比传统方法提高了近3-5倍,加工精度得到显著提高。经动平衡检验后使用,搅拌效果良好。
     上述创新成果丰富了工业结晶装备的设计/制造技术,并增加了我国结晶器成套装置的技术含量。
Industrial Crystal Process is one of the key technologies on chemical and pharmacy industry. It is a kind of manufacturing and separating technologies, which is of high efficiency and low energy-consuming and environment friendly. Stirrer is a crucial component of stirring type crystallizer; the geometry shape and dimension of Stirrer determine the flow field in the crystallizer. The traditional design & manufacturing process of stirrers is calculating the surface of marine propeller from table of offsets, which is low information-sharing and time-consuming. The quality of propeller cannot be ensured and the dynamic flow performance couldn’t also be forecasted by this method. In order to realize rapid design & manufacturing for crystallizer propeller, this paper systemically studies the key problems, such as the CAD/CAE/CAM integration technology, the optimizing technology for propeller structure parameters and NC milling process of propeller, and etc, which are critical factors in the rapid design & manufacturing of crystallizer propeller. The main contents and innovation are as following:
     1. The innovation idea of integrated manufacturing is presented for crystallizer propeller. The whole frame of CAD/CAE/CAM integrated system of propeller is constructed. OO (Object Oriented) technology based on the feature is applied to set up the integrated propeller data model, which provides a united propeller data model for the whole design and manufacturing process of propeller. The system gets rid of the defect of traditional method, in which every stage such as design、analysis and manufacturing is separated independently and messages cannot be shared in different stages. Using our method, all stages such as CAD, CAE and CAM for propeller are integrated effectively and the messages are shared widely. The cycle of propeller design & manufacturing is shortened greatly.
     2. A new structure design method is proposed for large propeller. The blades and hub of the propeller are designed and manufactured separately and assembled by welding. This method solves the machining problem for large propeller. The main structure parameters of propeller and shape of root of blade are optimized for propeller assembling by using Calculating Fluid Dynamics software. And on the basis of Solid Dynamics Analyzing, the intensity and rigidity of propeller are checked by using ANSYS software, in order to optimize the thickness of blade. The weight of propeller be optimized is more light and needs less jointing work for assembly.
     3. The NC machining process of propeller is studied and a new 5-axis based NC milling process of propeller casting wood-model was also proposed. The 3D math data of propeller was built based on the propeller design platform and 5-axis NC milling code for machining propeller casting wood-model was also generated. The casting wood-model made by this method has higher casting precision and quality. The fixing method of propeller is determined, and the special clamp and assistant support is designed for machining propeller in 3-axis NC machine tool. We also studied NC machining tool path plan for stainless steel propeller. At last, the tool path is checked. According to the principle of Taguchi design of experiments method, predictive cutting force models are developed, and the recommendation values of the ball-end milling parameter are presented for casting stainless steel propeller-blade. Reasonable high speed milling parameters of the flat-end milling are obtained in machining smooth blade area exactly by high speed milling experiments.
     4. Basing on the UG software platform, the propeller rapid design & manufacturing integrated system is developed by using OPEN GRIP redevelopment tool. An algorithm is introduced to calculate feature points of propeller and the 3D math data of propeller is constructed. As an example, the 880 propeller was designed and machined, in which the above method is used. Because of high productivity and good machining quality in the process, the result of this research task is satisfied.
     The above research results enriches the design and manufacturing technology of industry crystal facility and raises hi-tech value in the crystallizer whole set in our country.
引文
[1] 熊光楞,张和明,李伯虎.并行工程在我国的研究与应用.计算机集成制造系统,2000(4),6(2):pp1~6,45
    [2] 王静康.化学工程手册—结晶.10(2)
    [3] 卢赤杰.搅拌设备的工艺设计计算.化工厂设计,1990(3):pp20~26
    [4] 靳兆文,潘家祯.新型搅拌桨研究进展.化工装备技术,2004(4):pp10~13
    [5] 计其达.聚合过程设备.北京:化工工业出版社,1983 年
    [6] 胡长鹰.轴流式生化搅拌桨的研究进展.食品与机械, 2001(5):pp33~35
    [7] 张锁龙,沈惠平,张国忠.推进桨、45°三叶折叶桨及新型轴流式桨的流场分析.石油化工高等学校学报,2001(3),14(1):pp55~58
    [8] 陈剑佩,戴干策. 高效搪瓷板框桨的悬浮特性研究.华东理工大学学报,1999(10),25(5):pp451~455
    [9] C.Xuereb,J.bertrand.3-D Hydrodynamics in a tank stirred by a double-propeller system and filled with a liquid having evoling rheological properties.Chemical Engineering Sciencd,1996,Vol.51(10):pp1725~1734
    [10] H.M. Blackburn et. .al. / Appl. Math. Modelling.2000(24):pp795~805
    [11] K.J. Bittorf,S.M. Kresta.Chemical Engineering Science.2000(55):pp1325~1335
    [12] 叶雯.轴流式翼型桨的流动分析.高校化学工程学报,1994,8(4):pp369~373
    [13] 侯栓弟.螺旋桨揽拌槽内湍流运动测量及数据处理.高校化学工程学报,1996,10(2):pp196~201
    [14] 赵学明.搅拌生化反应器的循环时间分布和混合结构模型.化工学报,1999(3):pp326~336
    [15] 王国强,盛振邦.船舶推进.上海:上海交通大学出版社,1995(9),第 1 版
    [16] M.W.C.Oosterveld,P.VAN Oossanen.胡志良译.经计算机进一步分析过的瓦赫宁恩 B 系列螺旋桨资料.江苏船舶第十卷(2):pp33~42
    [17] 孙永华.荷兰船模水池 B 系列螺旋桨新旧图谱的比较.船舶,1997(3):pp30~36
    [18] 陈家栋,董世汤.非定常螺旋桨表面压力面元法计算.中国造船,1998(1),第 1 期(总第 140 期):pp9~15
    [19] Hoshino T.Hydrodynamic analysis of propellers in unsteady flow using a surface panel method.Journal of the Society of Naval Architects of Japan,1993:pp174~178
    [20] 王言英,梁勃.计入粘性影响的螺旋桨性能计算.大连理工大学学报,1994(6),34(3):pp325~329
    [21] Yamaguchi H,Kato H,Maeda M.Development of Marine Propellers with Better Cavitation Performance (and Report).J. SNA Japan,1988:pp163~169
    [22] 王大政,王言英,柴树红.新型叶剖面设计及叶剖面参数对空泡特性影响的研究—(1)新型叶剖面设计.水动力学研究与进展,A 辑.1999,14(2).pp189~200
    [23] 使一鸣,计算机的应用推动船舶螺旋桨设计手段和观点变革,软件开发与应用,1996(2):pp16~19
    [24] 王宁.计算机辅助螺旋桨设计系统.软件开发与应用,1992(5):pp19~22
    [25] 吴小平,杨松林,奚炜.MATLAB 辅助船用螺旋桨设计.江苏船舶,2004,21(1):pp4~6
    [26] www.seastar.com
    [27] www.hydrocompinc.com
    [28] 叶永兴,王玉华.螺旋桨理论在 LPG 船侧斜桨设计中的应用.船舶力学,1999(8),3(4):pp17~24
    [29] 张怀萍.钢板焊接螺旋桨制造工艺.水运科技情报,1991(4):pp33~34
    [30] 郭顺福,郭慧.钢板焊接螺旋桨制造工艺.造船技术,1998(7):pp19~20
    [31] G.W.Vickers,Computer–aided manufacturing of marine propeller.Comput.-Aided Design, 1977,9(4):pp267~274
    [32] 高连吉.经济型数控螺旋桨铣床的设计.机械工程师,1990(5):pp7~8
    [33] 郭顺福.螺旋桨铸件高精度快速加工定位法.中国修船,1991(1):pp43~45
    [34] 任秉银,唐余勇.螺旋桨叶片曲面数控加工几何模型研究.哈尔滨工业大学学报,1999,31(4):pp84~87
    [35] 於孝春,邹群彩.螺旋桨桨叶加工计算机辅助工艺生成系统.南京化工大学学报,2000,22(5):pp100-102
    [36] 张和明,张玉云.复杂曲面五坐标数控加工干涉检查及刀位修正.清华大学学报:自然科学版,1998,38(2):65~68
    [37] 马昌忠.螺旋桨铸造毛坯的预测预判.造船技术,1996(3):pp27~30
    [38] 周文浩.船用可变螺旋桨的计算机辅助制造.求新科协科技论文集,1998(1):pp51~54
    [39] 路甬祥.工程设计的发展趋势和来来.机械工程学报,1997(1):pp1~8
    [40] 童时中.模块化原理设计方法及应用.中国标准出版社 2000.5
    [41] 张桂英,张建中.汽车覆盖件模具 CAD/CAM 的研究与应用.工厂建设与设计,1997(6):pp15-17
    [42] 罗浩,张新访等.基于约束的参数化设计技术发展现状及前景.中国机械工程,1995,6(5),pp21~24
    [43] D. Jovanoski,H. Muthsam.Workpiece modeling for computer-aided process planning.Int. J. Advanced Manufacturing Technology,1995,Vol.10, No.6:pp404~410
    [44] D. Kiritsis.,M. Porchet.Generic Petri net model for dynamic process planning and sequence optimization.Advanced engineering Software,1996,Vol.25,No.1: pp61~71
    [45] John G. Cheng, Xin-yu Shao, Yubao Chen.Feature-based Part Modeling and Process Planning for Rapid Response manufacturing.Computers & Industrial Engineering,1998,Vol. 4,No.2:pp257~279
    [46] Mun. Duhwan,Han. Soonhung,Kim. Junhwan,Oh. Youchon.A set of standard modeling commands for the history-based parametric approach.Computer-Aided Design,2003,35(13):pp1171~1179
    [47] 简析 90 年代主流 CAD 造型基础技术.CAD 信息网
    [48] 王资源,黄力平,班世炳.参数化、变量化技术的发展与研究.广西民族学院学报(自然科学版),1999,第 5 卷(2):pp116~118
    [49] CAM-I.CAM-I’s Illustrated Glossary of Workpiece Form Features.CAM-I Report, 1981:pp02~80
    [50] M. R. Henderson,D. C. Anderson.Computer recognition and extraction of form features:a CAD/CAM link.Computer In Industry,1984,Vol.5,No.4:pp329~339
    [51] Pratt M. J.,Wilson P. R..Requirements for Support of Form Features in a Solid Modeling System.CAM-I Report,R-85-ASPP-01,1985
    [52] 姚英学,蔡颖主编.计算机辅助设计与制造.高等教育出版社,2002.1
    [53] John G. Cheng,Xin-yu Shao,Yubao Chen.Feature-based Part Modeling and ProcessPlanning for Rapid Response manufacturing.Computers & Industrial Engineering,1998,Vol. 4,No.2:pp257~279
    [54] Winfried van Holland1,Willem F. Bronsvoort.Assembly features in modeling and planning.Robotics and Computer Integrated Manufacturing,2000 (16):pp277~294
    [55] Jae Yeol Lee,Kwangsoo Kim.A feature-based approach to extracting machining features.Computer-Aided Design,1998,Vol. 30,No. 13:pp1019~1035
    [56] Yuan-Jye Tseng.A modular modeling approach by integrating feature recognition and feature-based design.Computers in Industry,1999(39):pp113~125
    [57] 赵新,唐希智.基于 UGⅡ的特征建模技术研究.电子机械工程,总第 87 期第5 期,2000(10):pp34~36
    [58] 李峰,周雄辉,阮雪榆.基于特征的 CAD 系统研究.组合机床与自动化加工技术,1999(6):pp19~20
    [59] 侯亮.机械产品广义模块化设计理论研究及其在液压机产品中的应用.天津大学博士论文,2002.3
    [60] Rogers G. G.,Bottaci L.Modular production systems: a new manufacture paradigm. Journal of Intelligent Manufacturing,1997,8(2):147~156
    [61] H. Tsukune et al.Modular Manufacturing.Journal of Intelligent Manufacturing,v4, n2,1993:pp163~181
    [62] 姜军生,杨祖孝.高速切削加工及其关键技术研究.机械工程师,2001.10:pp10~12
    [63] King P I,Vaughn R L.A Synaptic view of High-Speed Machining from Salmon to the Present.High Speed Machining edited by Komanduri,Subramanian K et. al. ASME,U.S.A,1984:pp1~13
    [64] A. Kaldos,I.F.Dagiloke and A. Boyle.Computer Aided Cutting Process Parameter Selection for High Speed Milling.
    [65] 周正干,崔在成等.高速加工的核心技术和方法.航空制造技术,2000(3):pp13~16
    [66] 艾兴.高速切削技术和刀具材料现状与展望.世界制造技术与装备市场(WMEM),2001(3):pp32~36
    [67] Smith S,Tlusty J.Current trends in high speed machining.Transaction of the ASME,Journal of Manufacturing and Engineering,1997,Vol.119:pp664~666
    [68] 艾兴,刘占强等.高速切削综合技术.航空制造技术,2002(3):pp20~23
    [69] Kahles J F,Field M,Harvey S M.High Speed Machining Possibilities and needs.Annals of CIRP,1978,Vol.27(2):pp551~558
    [70] 田中义信,津和秀夫,角園睦美.超高速切削汇関する研究.(第 1 报)精密机械30 卷 8 号(1964)44-45;(第 2 报)31 卷 6 号(1965)46-53;(第 3 报)32 卷 4号(1966)34-40;(第 4 报)32 卷 10 号(1966)14-19;(第 5 报)33 卷 12 号(1967)24-30
    [71] 刘战强.高速切削技术的研究与应用.博士后出站论文,山东大学,2001
    [72] Komanduri R,Flom D G,Lee M.Highlights of the DARPA advanced machining research program.High Speed Machining edited by Komanduri,Subramanian K et. al. ASME,U.S.A,1984:pp15~36
    [73] H.舒尔茨著.王志刚译.高速加工发展概况.机械制造与自动化,2002(1):pp4~8
    [74] Schulz H.High-speed machining.Annals of the CIRP,1992,Vol.41(2):pp637~642
    [75] 田中克敏.超高速工作機械の現状と问题点.機械の研究,第 50 卷第 1 号(1998):pp213~219
    [76] Vysa A , Shaw M C . Mechanics of Saw-Tooth Chip Formation in Metal Cutting.Journal of Manufacturing Science and Engineering,May,1999,Vol.121:pp163~171
    [77] Gente A,Hoffmeister H W.Chip Formation in Machining Ti6A14 Vz at Extremely High Cutting Speed, CRIP, Vol.50/1/2001:pp49~5
    [78] Lezanski P,Shaw M C.Tool Face Temperature in High Speed Milling.Transaction of ASME, Vol. 112,1990(5):pp132~135
    [79] 艾兴,萧虹.陶瓷刀具切削加工.北京:机械工业出版社,1988.4
    [80] 艾兴,刘镇昌等.高速切削技术的研究与应用.全国生产工程第 8 届学术大会暨第 3 届青年学者学术会议论文集,北京:机械工业出版社,1999(9):pp146~150
    [81] 赵军,艾兴等.模具高速加工技术与策略.工具技术,2002,Vol.36(12):pp32~34
    [82] 刘占强,艾兴.高速切削刀具磨损表面形态研究.摩擦学学报,Vol.22(6)2002:pp468~471
    [83] 陈明等.推动我国高速切削工艺发展若干问题的探讨.中国机械工程,1999,Vol.10(11):pp1296~1298
    [84] 陈明,袁人炜等.铝合金高速铣削中切削温度动态变化规律的实验研究,工具技术,2000,Vol.34(5):pp7~10
    [85] 张伯霖,潘姗姗等.直线电极及其在超高速机床上的应用.中国机械工程,1997(4):pp85~88
    [86] 赵炳桢,沈杜行.21 世纪初我国切削加工与工具技术展望.世界制造技术与装备市场(WMEM),2001(3):pp8~10
    [87] 沈杜行.入世之后我国刀具企业面临的真正挑战及其对策.工具技术,2002,Vol.36(1):pp6~10
    [88] 王清辉,叶佩青等.多坐标数控加工技术的应用与研究.计算机辅助设计与制造,1997(10):pp53~54
    [89] 胡道钟.模具 CAD 中的 UG 菜单生成技术.汽车科技,1999(2):pp28~30
    [90] 王清辉,廖文和.五坐标数控加工刀位轨迹及其干涉检查的算法研究.航空学报,May 1997,18(3):pp330~335
    [91] 杨勇生,左敦稳等.消隐算法在 5 轴 NC 加工干涉检查中的应用.应用科学学报,Dec 1998,16(4):pp385~391
    [92] Xiong-Wei Liu . Five-axis NC cylindrical milling of sculptured surfaces.Computer-Aided Design,Vol.27(12):pp887~894
    [93] 薛兆鹏.基于流场和结构优化的搅拌桨设计/制造集成技术研究.天津大学博士学位论文,2003 年 1 月,pp 49~52
    [94] 美国HydroComp公司主页.http://www.hydrocompinc.com
    [95] 日本Kamome螺旋桨有限公司主页.http://www.kamome-propeller.co.jp
    [96] 刘俊成.铬镍不锈钢的切削加工.制造技术与机床,2002(2):pp36~37
    [97] 不锈钢铣削的磨损问题.“切削刀具工程”,V01.42(3):pp55~57
    [98] 王国强.船舶推进.北京:国防工业出版社 1991
    [99] 靳兆文,潘家祯.新型搅拌桨研究进展.化工装备技术,2004,25(4):pp10~13
    [100] 薛兆鹏,徐燕申,牛文铁.基于流体分析的工业结晶器搅拌桨结构优化.西南交通大学学报,2003,38(5):pp501~504
    [101] 膝启,王科社,孙江宏.试论快速设计技术与方法.北京机械工业学院学报,2000(15),2:pp15~18
    [102] 熊光楞,张和明,李伯虎.并行工程在我国的研究与应用.计算机集成制造系统,2000.4,vol.6,No.2:pp1~6
    [103] 田美丽.机械 CAD/CAM.北京:中国电力出版社,2005.8
    [104] 贾延林.模块化设计.北京:机械工业出版社,1993.9
    [105] 劳俊,伍世虔等.模块化与现代制造技术.制造技术与机床,1994.9, pp40~42
    [106] 童时中.模块化设计的技术经济价值.机械制造与自动化,1995(6):pp11~12,1996(1):pp12~13
    [107] 胡维刚.机床模块化设计及其智能支持系统的研究与实践.华中理工大学博士论文,1993.3
    [108] 张峰,李兆前,黄传真.参数化设计的研究现状与发展趋势.机械工程师,2002(1):pp13~15
    [109] 王卫兵编著.UG NX 数控编程实用教程.北京:清华大学出版社,2004.5
    [110] Unigrapgics.UG/Open GRIP Reference Guide. Version 18.0, 2001
    [111] 蔡国铭,黄俊明,吴运明.Unigraphics/CAM 三轴铣削加工.北京:中国铁道出版社,2003.1
    [112] 余京,孙正兴.面向集成的特征产品建模系统研究.计算机辅助设计与制造,1998(4):56 ~ 60
    [113] 王玉新编著.数字化设计.北京:机械工业出版社,2003
    [114] 倪明田,吴良芝编著.计算机图形学.北京:北京大学出版社,2004(7):pp262 ~ 263
    [115] 李建平.计算机图形学原理教程.北京:电子科技大学出版社,1998
    [116] 张明星.Fluent 软件在除尘领域中的应用.济南大学学报:自然科学版,2006年 20 卷 2 期,pp160~163
    [117] Fluent lnc.FLUENT User’s Guide[Z].Fluent Inc,2003
    [118] 李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent.水动力学研究与进展,A 辑第 16 卷(2),2001(6):pp254~258
    [119] 黄雄斌.大型轴流式搅拌装置.化工进展,1996(4)pp44~45,71
    [120] 沈惠平,张锁龙.一种新型轴流式搅拌器的研究与开发.中国机械工程第 11 卷(5),2000(5):pp502~504
    [121] 肖作兵,戴干策,陈剑佩.新型翼形铀流桨的搅拌性能研究.化学工程师,1994(5):pp4~8
    [122] A.T. 特罗斯科兰斯基.叶片泵计算与结构.北京:机械工业出版社,1981.11
    [123] 孙家悦.不锈钢 1Cr18Ni9Ti 的加工.航空精密制造技术,1995,31 卷 4 期,pp42~43
    [124] 韩荣第,于启勋.难切削材料的加工技术.北京:机械工业出版社,1996.1
    [125] 顾松富,张正中.不锈钢铣削得磨损问题.《刃具研究》,1991 年 1 期,pp25-27
    [126] 初犁编译.不锈钢的铣削加工.工具技术,1994 年第 28 卷 5 期,pp32~35
    [127] 张树森.机械制造工程学.哈尔滨:东北大学出版社,2001 年 3 月,pp82~83
    [128] 李艳聪.不锈钢搅拌桨铣削加工的实验研究.天津大学硕士论文,2003.1
    [129] Benardos, P.G.,Vosniakos, G.C.Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments . Robotics and Computer-Integrated Manufacturing, v 18, n 5-6, Oct.-Dec. 2002, pp343~54
    [130] Montgomery DC.Design, analyses of experiments. Thirded., John Wiley & Sons,1997
    [131] 陈魁编著.试验设计与分析.清华大学出版社,1995
    [132] 正交试验法.《正交试验法》编写组编,北京:国防工业出版社,1976
    [133] 袁哲俊主编.金属切削实验技术.北京:机械工业出版社,1988.11
    [134] 王松桂.线性统计模型线性回归与方差分析.北京:北京高等教育出版社,1999
    [135] 袁哲俊.金属切削实验技术.北京:机械工业出版社,1988.11
    [136] 王文光编译.日本工具行业新世纪发展战略.世界制造技术与装备市场(WMEM),2002(4):pp64~66
    [137] Ai xing,Liu Zhangqiang et al.Developments and Applications of Tool Materials in High-speed Machining.Chinese Journal of Mechanical Engineering 2002,Vol.15,Supplement(12):pp171~174
    [138] 邓建新,冯益华等.高速切削刀具材料的发展、应用及展望 .机械制造, 2002,4 0(449):pp11~15
    [139] Klocke F,Krieg T.Coated tools for metal cutting features and applications.Annals of the CIRP,1999,48(2):pp515~525
    [140] 张宪.难加工材料切削刀片的正确选用.工具展望,2004,第 6 期
    [141] 李华.机械制造技术.北京:机械工业出版社,1997.8
    [142] H.Y.Fenq.The Predication of cutting Force in the Ball-End Milling Process-I: Model Formulation and Model Building Procedure.Int.J.Mach.Tools.Manuf,1994
    [143] 杨为勘.船用螺旋桨砂型铸造.特种铸造及有色合金,1992(4):pp35~38
    [144] 田美丽,徐燕申,谢燕.不锈钢搅拌桨铸造毛坯的 CAD/CAM.组合机床与自动化加工技术,2006(1):pp82~84
    [145] 郭顺福.中小型螺旋桨铸造工艺缺点分析.造船技术,1992/10,pp16~19
    [146] 赖喜德.三峡水轮机转轮叶片五坐标联动数控加工工艺分析.东方电机,1996(2):pp36~45
    [147] 郭顺福.螺旋桨实样模制作新技术.造船技术,1992 年第 2 期,pp25~27
    [148] 杨立义.快速原型技术及其在铸造生产中的应用.中国铸机,1995(5):pp8~12
    [149] 王荣义等.螺旋桨的熔模铸造.铸造设备研究, 2001(8):pp41~43
    [150] 张以锺.从制造角度谈螺旋桨的设计.武汉造船,1990(6):pp25~30
    [151] 张元祥.95000 吨船用螺旋桨铸造工艺总结.特种铸造及有色合金,1991/2
    [152] 郭顺福.螺旋桨铸件高精度快速加工定位法.中国修船,1991(1):pp41~45
    [153] 马昌忠.螺旋桨铸造毛坯的预测预判.造船技术,1996(3):pp27~32
    [154] 任秉银,刘华明,唐余勇.螺旋桨桨叶曲面数控加工几何模型研究.哈尔滨工业大学学报,1999,31(4):pp84~87
    [155] 苏步青等.应用几何教程.上海:上海复旦大学出版社,1990.12
    [156] Jean Marie Langeron, Emmanuel Duc, Claire Lartigue, Pierre Bourdet.A new format for 5-axis tool path computation, using Bspline curves[J].Computer-Aided Design,Volume: 36,Issue: 12,October,2004,pp1219~1229
    [157] Tea-Soon Lim,Chea-Moon Lee,Seok-Won Kim,Deug-Woo Lee.Evaluation of cutter orientations in 5-axis high speed milling of turbine blade[J].Journal of Materials Processing Technology,Volume: 130-131,Complete,December 20,2002:pp401~406
    [158] 王寿康.光整加工及其选用.高压电器技术,1994 年第 2、3 期
    [159] 魏源迁,陈尔昌.叶片精加工工艺方法的现状与展望.磨床与磨削,1991(1):pp6~8
    [160] 李清砺,鲍桂刚.复杂形面零件的光整加工.机械工人(冷加工), 2001(8)
    [161] 童爱红.Delphi[TP].北京: 清华大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700