高性能SnO_2电极制备、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,电催化氧化技术越来越受到国内外环境学者的关注。电催化氧化技术因具有适应性广,氧化性强,无二次污染,反应迅速,设备及其操作简单等优点而日益成为难降解有机废水处理领域的研究热点。
     阳极材料是电催化氧化的核心,它决定了电催化氧化有机污染物的反应机理和电流效率等。理想的阳极材料一般需要满足:导电性好;稳定性好;电催化活性高等条件。然而目前正缺乏理想的阳极材料来满足电催化氧化技术的需要,这也大大限制了电化学催化氧化技术的工业化应用。因此,高效、廉价的阳极材料的研发是目前电催化氧化领域的研究重点。
     本论文旨在研制适用于电催化氧化技术的高性能SnO_2阳极材料。主要研究工作包括三部分:SnO_2电极制备新方法探索;新型Sb-Ce双掺杂SnO_2电极的研制、表征及应用;新型Sb-Mn双掺杂SnO_2电极的研制、表征及应用。
     成功开发了超声喷雾热解法制备钛基掺杂SnO_2电极新技术。研究结果表明,超声喷雾热解法不仅能将掺杂SnO_2膜均匀稳定地沉积在钛基上,而且成膜条件易操控,先驱物易选择,所得电极的电化学性能易调控。以SbCl_3和SnCl_4的盐酸溶液作为先驱物,采用超声喷雾热解法成功制得了钛基Sb掺杂SnO_2电极(Ti/SnO_2-Sb)。在同等条件下,该电极电催化降解苯酚的电流效率较常规法制得的Ti/SnO_2-Sb电极提高20-28%。
     采用超声喷雾热解法成功制备了新型钛基Sb-Ce双掺杂SnO_2电极(Ti/SnO_2-Sb-Ce)。该电极适用于电化学降解,能有效地将废水中的难降解有机污染物分解成CO_2、H_2O等简单的无机物。物理化学表征表明,Ce掺杂可显著优化氧化物膜的微观结构,提高电极的比表面积,改善循环伏安特性。对比实验表明,与Ti/SnO_2-Sb电极相比,Ti/SnO_2-Sb-Ce电极降解橙黄Ⅱ的电流效率提高了22%,能耗降低了21%。
     采用超声喷雾热解法还成功制备了新型钛基Sb-Mn双掺杂SnO_2电极(Ti/SnO_2-Sb-Mn)。该电极适用于难降解有机废水的电化学转化预处理,提高废水的可生化性。物理化学表征表明,Mn以固溶体的方式掺杂到氧化物膜中,显著改善了电极表面微观结构和循环伏安特性。电化学转化实验表明,Ti/SnO_2-Sb-Mn电极能明显改善橙黄Ⅱ废水和甲基橙废水的可生化性,使BOD_5与COD的比值分别由0.01与0.07提高到0.25与0.30。
In the past two decades, the electrochemical oxidation has been widelyinvestigated for wastewater treatment. Its good applicability, high oxidation efficiency,no secondary contamination, fast reaction rate, and easy operation make it a veryattractive alternative for degrading toxic and biologically refractory organicpollutants.
     It is well known that the anodes assemble is the heart of the electrochemicaloxidation process. The efficiency and mechanism of pollutants oxidation dependhighly on the properties of the anodes used. A good anode should meet the followingrequirements: good conductivity, good stability, and high current efficiency. However,industrial application of electrochemical oxidation is restricted due to lack of idealanodes. The development of active anodes is therefore a hot research topic in thisfield.
     This thesis systematically developed high-performance SnO_2 anodes for pollutantsdegradation. Major research works included: methological exploration for depositonof uniform oxide films on Ti substrates; preparation and characterization of novelTi/SnO_2-Sb-Ce anodes for pollutants degradation; and preparation andcharacterization of novel Ti/SnO_2-Sb-Mn anodes for pollutants conversion.
     A new deposition method, i.e. ultrasonic spray pyrolysis, was developed forelectrodes preparation. Experimental results showed that the ultrasonic spraypyrolysis method could not only select the precursor and control the depositioncondition easily, but also deposite films uniformly. The Ti/SnO_2-Sb electrodes weresuccessfully fabricated using ultrasonic spray pyrolysis. Under the samilar condition,the current efficiency for phenol degradation obtained on the Ti/SnO_2-Sb electrodesprepared by ultrasonic spray pyrolysis was 20-28% higher than that obtained onelectrodes prepared by the conventional methods.
     A novel Ti/SnO_2-Sb-Ce electrode for pollutants degradation was successfullyfabricated using ultrasonic spray pyrolysis, which could mineralized the pollutants into CO_2 and H_2O effectively. Physicochemical and electrochemical characterizationindicated the Ce doping could improve the microstructure, specific area and cyclicvoltammograms of electrodes. The orangeⅡdegradation experiments revealed thatthe Ce doping could enhance the current efficiency by 22% and save the energyconsumption by 21%.
     A novel Ti/SnO_2-Sb-Mn electrode for pollutants electrochemical conversion wassuccessfully deposited using ultrasonic srpay pyrolysis, which could improve thebiodegradability of wastewater. Physicochemical and electrochemical examinationsdemonstrated that the solid-solution of Mn doping could improve the microstructureand cyclic voltammograms of electrodes effectively. The experimental resultsindicated that the biodegradability of wastewater containing orangeⅡ/Methyl orangewere greatly enhanced after electrochemical pretreatment, and the ratios ofBOD_5/COD of wastewater were increased from 0.01 and 0.07 to 0.25 and 0.30,repectively.
引文
[1] Comninellis Ch. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta., 1994, 39: 1857-1862.
    [2] Comninellis Ch., Vercesi G P. Characterization of DSA - type oxygen evolving electrodes - choice of coating. J. Appl. Electrochem., 1991, 21 (4): 335-345.
    [3] Comninellis Ch., pulgarin C. Anodic oxidation of phenol for wastewater treatment. J. Appl. Electrochem., 1991, 21: 703-708.
    [4] Comninellis Ch. Electrochemical treatment of wastewater containing phenol. Trans Ichem E. Part B., 1992, 70: 219-224.
    [5] Beck F., Schulz H. Cr-Ti-Sb oxide composite anodes: electro-organic oxidation. J. Appl. Electrochem., 1987, 17: 914-924.
    [6] Comninellis Ch., Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem., 1995, 25: 23-28.
    [7] Franclin T. C., Darlington J. The use of the oxidation barium peroxide in aqueous surfactant systems in the electrolytic destruction of organic compound. J. Electrochem. Soc., 1991, 138 (11): 2285-2288.
    [8] Do J. S., Yeh W. C. In situ paired electrooxidative degradation of formaledehyde with electrogenerated hydrogen peroxide and hypochlorite ion. J. Appl. Electrochem., 1998, 28: 700-710.
    [9] Brilas E., Bastide R. M., Liosa E. Electrochemical destruction of aniline and 4-chloroaniline for waste water treatment using a carbon-PTFE O_2-fed cathode. J. Electrochem. Soc., 1996, 143: L49-L52.
    [10] 熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水.北京化工大学学报,2002,29(5):34-37.
    [11] 张素娟,曲久辉,刘会娟.电絮凝-催化氧化法去除染料工业废水COD的研究.环境污染治理技术与设备,2002,3(3):74-76.
    [12]Swain G.M.,Andrson B.A.R.B.,Angus J.C.Applications of diamond thin films in electrochemistry.MRS.Bulletin.,1998,23 (9):56-60.
    [13]Marincic L.,Leitz F.B.Electro-oxidation of ammonia in waste water.J.Appl.Electrochem.,1978,8:333-345.
    [14]Ho C.C.,Chan C.Y.,Khoo K.H.Electrochemical treatment of effluents:a preliminary study of anodic oxidation of simple sugars using lead dioxide-coated titanium anodes.J.Chem.Tech.Biotechnol,1986,36:7-14.
    [15]Stucki S.,Kotz R.,Carcer B.,Suter W.Electrochemical waste water treatment using high overvoltage anodes part Ⅱ:Anode performance and applications.J.Appl.Electrochem.,1991,21:99-104.
    [16]Awad Y.M.,Abuzaid N.S.Electrochemical treatment of phenolic wastewater:efficiency,design considerations and economic evaluation.J.Environ.Sci.Health.A.,1997,32:1393-1414.
    [17]Kannan N.,Sivadurai S.N.,Berchnians L.J.,Vijayavalli R.Removal of phenolic compounds by electrooxidation method.J.Environ.Sci.Health.A.,1995,30:2185-2203.
    [18]Martin H.B.,Argoitia A.,Landau U.,Anderson A.B.,Angus J.C.Hydrogen and oxygen evolution on boron-doped diamond electrodes.J.Electrochem.Soc,1996,143:L133-L136.
    [19]Chen X.M.,Gao F.R.,Chen G.H.Comparison of Ti/BDD and Ti/SnO_2-Sb_2O_5 electrodes for pollutant oxidation.J.Appl.Electrochem.,2005,35:185-191.
    [20]Tenne R.,Patel K.,Hashimoto K.,Fujishima A.Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes.J.Electrocuted.Chem.,1993,347:409-415.
    [21]Carey J.J.,Christ J.C.S.,Lowery S.N.Method of electrolysis employing a doped diamond anode to oxidize solutes in wastewater.USA patent 5399247,1995.
    [22]Fernandes A.Electrochemical degradation of C.I.Acid Orange 7.Dyes.Pigments.,2004,61 (3):287-296.
    [23]Palcaro A.M.Electrochemical treatment of wastewater containing phenolic compounds:oxidation at boron-doped diamond electrodes.J.Appl.Electrochem., 2003,33 (10):885-892.
    [24]Fryda M.,Herrmann D.,Schafer L.,Klages C.P.,Perret A.,Haenni W.,Comninellis Ch.,Gandini D.Properties of diamond electrodes for wastewater treatment.NewDiam.Front.C.Techno!.,1999,9:229-240.
    [25]Perret A.,Haenni W.,Skinner N.,Tang T.M.,Gandini D.,Comninellis Ch.,Correa B.,Foti G.Electrochemical behavior of synthetic diamond thin film electrodes.Diam.Relat.Mater.,1999,8:820-823.
    [26]Gandini D.,Mahe E.,Michaud P.A.,Haenni W.,Perret A.,Comninellis Ch.Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewatr treatment.J.Appl.Electrochem.,2000,30:1345-1350.
    [27]Comninellis Ch.,Plattner E.The preparation and behaviour of Ti/Au/PbO_2 anodes.J.Appl.Electrochem.,1982,10:399-404.
    [28]Kirk D.W.,Sharifian H.,Foulkes F.R.Anodic oxidation of aniline for waste water treatment.J.Appl.Electrochem.,1985,15:285-292.
    [29]Feng J.,Johnson D.C.Electrocatalysis of anodic oxygen-transfer reaction:Titanium substrates for pure and doped lead dioxide films.J.Electrochem.Soc,1991,138:3329-3337.
    [30]Polcaro A.M.,Palmas S.,Renoldi F.,Mascia M.On the performance of Ti/SnO_2 and Ti/PbO_2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment.J.Appl.Electrochem.,1999,29:147-151.
    [31]Yeo I.H.,Johnson D.C.Electrocatalysis of anodic oxygen-transfer reactions:effect of groups MA and VA metal oxides in electrodeposited β-lead dioxide electrodes in acidic media.J.Electrochem.Soc,1987,134:1973-1977.
    [32]Feng J.,Houk L.L.,Johnson D.C.Electroatalysis of anodic oxygen-transfer reactions:the electrochemical incineration of benzoquinone.J.Electrochem.Soc,1995,142:3626-3631.
    [33]Song Y.H.,Wei G.,Xiong R.Ch.Structure and properties of PbO_2-CeO_2 anodes on stainless steel.Electrochim.Acta.,2007,52:7022-7027.
    [34]Kong J.T.,Shi S.Y.,Kong L.C.,Zhu X.P.,Ni J.R.Preparation and characterization of PbO_2 electrodes doped with different rare earth oxides.Electrochim.Acta.,2007,53:2048-2054.
    [35]Pulgarin C,Adler N.,Peringer P.,Comninellis Ch.Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment.Wat.Res.,1994,28:887-893.
    [36]Rodgers J.D.,Jedral W.,Bunce N.J.Electrochemical oxidation of chlorinated phenols.Environ.Sci.Technol,1999,33:1453-1457.
    [37]Hutchings R.,Muller K.,Kotz F.,Stucki S.A structural investigation of stabilized oxygen evolution catalysts.J.Mater.Sci.,1984,19:3987-3994.
    [38]Weres O.,Hoffmann M.R.Electrode,electrode manufacturing process and electrochemical cell.USA patent 5,419,824,1995.
    [39]Kesselman J.M.,Weres O.,Lewis N.S.,Hoffmann M.R.Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO_2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways.J.Phys.Chem.B.,1997,101:2637-2643.
    [40]Smith J.R.,Walsh F.C.Electrodes based on magneli phase titanium oxides:the properties and applications of Ebonex materials.J.Appl.Electrochem.,1998,28:1021-1033.
    [41]Chen G.,Betterton E.A.,Arnold R.G.Electrolytic oxidation of trichloroethylene using a ceramic anode.J.Appl.Electrochem.,1999,29:961-970.
    [42]Vincent C.A.,Weston D.G.C.Preparation and properties of semiconducting polycrystalline tin oxide.J.Electrochem.Soc,1972,119:518-521.
    [43]Aboaf J.A.,Marcotte V.C.Chemical composition and electrical properties of tin oxide films prepared by vapor deposition.J.Electrochem.Soc,1973,120:701-702.
    [44]Jarzebski Z.M.,Marton J.P.Physical properties of SnO_2 materials I.Preparation and defect structure.J.Electrochem.Soc,1976,123:199C-205C.
    [45]Hsu Y.S.,Ghandhi S.K.The preparation and properties of arsenic-doped tin oxide films.J.Electrochem.Soc,1979,126:1434-1435.
    [46]Hsu Y.S.,Ghandhi S.K.The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin Ⅰ:Growth and etching properties.J.Electrochem.Soc,1980a,127:1592-1595.
    [47]Hsu Y.S.,Ghandhi S.K.The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin Ⅱ:Electrical properties.J.Electrochem.Soc,1980b,127:1595-1599.
    [48]Kotz R.,Stucki S.,Carcer B.Electrochemical waste water treatment using high overvoltage anodes part I:physical and electrochemical properties of SnO_2 anodes.J.Appl.Electrochem.,1991,21:14-20.
    [49]Nanthakumar A.,Armstrong N.R.In Studies in physical and theoretical chemistry 55,Semiconductor Electrodes,editor:H.O.Finklea,New York,Elsevier Science Publishing Company Inc.,1988,p.203.
    [50]Grimm F.,Bessarabov D.,Maier W.,Storck S.,Sanderson R.D.Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water.Desalination.,1998,115:295-302.
    [51]Li X.Y.,Cui Y.H.,Feng Y.J.,Xie Z.M.,Gu J.D.Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.Wat.Res.,2005,39:1972-1981.
    [52]Correa-Lozano B.,Comninellis Ch.,Battisti A.D.Preparation of SnO_2-Sb_2O_5 films by the spray pyrolysis technique.J.Appl.Electrochem.,1996a,26:83-89.
    [53]Giani E.,Kelly R.A study of SnO_2 thin films formed by sputtering and by anodising.J.Electrochem.Soc,1974,121:394-399.
    [54]Duverneuil P.,Maury F.,Pebere N.,Senocq F.,Vergnes H.Chemical vapor deposition of SnO_2 coatings on Ti plates for the preparation of electrocatalytic anodes.Surf.Coat.Technol,2002,151:9-13.
    [55]Lipp L.,Pletcher D.The preparation and characterization of tin dioxide coated titanium electrodes.Electrochim.Acta.,1997,42:1091-1099.
    [56]Correa-Lozano B.,Comninellis Ch.,Battisti A.D.Electrochemical properties of Ti/SnO_2-Sb_2O_5 electrodes prepared by the spray pyrolysis technique.J.Appl.Electrochem.,1996c,26:683-688.
    [57] He D. L., Mho S. Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO_2: Sb~(5+) electrodes. J. Electroanal. Chem., 2004, 568: 19-27.
    [58] Feng Y. J., Cui Y. H., Wang J. J. Preparation and characterization of Dy doped Ti-base SnO_2/Sb electro-catalytic electrodes. Chinese. J. Inorg. Chem., 2005, 21: 836-841.
    [59] Correa-Lozano B., Comninellis Ch., Battisti A. D. Service life of Ti/SnO_2-Sb_2O_5 anodes. J. Appl. Electrochem., 1997, 27: 970-974.
    [60] Chen A. C., Nigro S. Influence of a nanoscale gold thin layer on Ti/SnO_2-Sb_2O_5 electrodes. J. Phys. Chem. B., 2003, 107 (48): 13341-13348.
    [61] Chen X. M., Chen G. H. Improvement of ATO Electrode Stability by Doping with a Trace Amount of Ir. Electrochem. Solid. St., 2004, 7(9): J33-J35.
    [62] Chen X. M., Chen G. H. Stable Ti/RuO_2-Sb_2O_5-SnO_2 electrodes for O_2 evolution. Electrochim. Acta., 2005, 50: 4155-4159.
    [63] Shishkin N. Y., Zharsky I. M., Lugin V. G., Zarapin V. G. Air sensitive tin dioxide thin films by magnetron sputtering and thermal oxidation technique. Sen. Actu. B., 1998, 48: 403-408.
    [64] Zhang D. L., Deng Z. B., Zhang J. B., Chen L. Y. Microstructure and electrical properties of antimony-doped tin oxide thin film deposited by sol-gel process. Mater. Chem. Phys., 2006, 98: 353-357.
    [65] Lee S. Y., Park B. O. Structural, electrical and optical characteristics of SnO_2: Sb thin films by ultrasonic spray pyrolysis. Thin. Solid. Films., 2006, 510: 154-158.
    [66] Chapron D., Girtan M., Le Pommelec J. Y., Bouteville A. Droplet dispersion calculations for ultrasonic spray pyrolysis depositions. J. Optoelectron. Adv. Mater., 2007, 9: 902-906.
    [67] Kolb D. M. Electrochemical surface science. Angew. Chem. Int. Edit., 2001, 40 (7): 1162-1181.
    [68] Herrero E., Buller L. J., Abruna H. D. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chem. Rev., 2001, 101: 1897-1930.
    [69]Yeo I.H.,Johnson D.C.Electrocatalysis of Anodic Oxygen-Transfer Reactions.J.Electrochem.Soc,1991,134:1973-1977.
    [70]Correa-Lozano B.,Comninellis Ch.,Battisti A.D.Physicochemical properties of SnO_2-Sb_2O_5 films prepared by the spray pyrolysis technique.J.Electrochem.Soc,1996b,143:203-209.
    [71]Chen X.M.,Chen G.H.,Yue P.L.Stable Ti/IrO_x-Sb_2O_5-SnO_2 anode for O_2 evolution with low Ir content.J.Phys.Chem.B.,2001,105:4623-4628.
    [72]Rajpure K.Y,Kusumade M.N.,Neumann-Spallart M.N.Effect of Sb doping on properties of conductive spray deposited Sn02 thin films.Mater.Chem.Phys.,2000,64:184-188.
    [73]Elangovan E.,Ramesh K.,Ramamurthi K.Studies on the structural and electrical properties of spray deposited SnO_2:Sb thin films as a function of substrate temperature.Solid.State,communi.,2004,130:523-527.
    [74]Shanthi S.,Subramanian C,Ramasamy P.Growth and characterization of antimony doped tin oxide thin films.J.Cryst.Growth.,1999,197:858-864.
    [75]Montilla F.,Morallon E.,De Battisti A.Preparation and characterization of antimony-doped tin dioxide electrodes.Part 1:Electrochemical characterization.J.Phys.Chem.B.,2004,108:5036-5043.
    [76]Vicent F.,Morallon E.,Quijada C.Characterization and stability of doped SnO_2 anodes.J.Appl.Electrochem.,1998,28:607-612.
    [77]Alver U.,Kilinc T.,Bacaksiz E.,Nezir S.Structure and optical properties of Zn_(1-x)Fe_xO thin films prepared by ultrasonic spray pyrolysis.Mat.Sci.Eng.B-Solid.,2007,138(1):74-77.
    [78]Omura K.,Veluchamy P.,Tsuji M.,Nishio T.,Murozono M.A pyrosol technique to deposit highly transparent,low-resistance SnO_2:F thin films from dimethyltin dichloride.J.Electrochem.Soc,1999,146 (6):2113-2116.
    [79]Martelli G.N.,Ornelas R.,Faita G.Deactivation mechanisms of oxygen evolving anodes at high current densities.Electrochim.Acta.,1994,39:1551-1558.
    [80]Fockedey E.,Van Lierde A.Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes.Water.Res.,2002,36 (16): 4169-4175.
    [81] Ding H. Y., Feng Y. J., Liu J. F. Preparation and properties of Ti/SnO_2-Sb_2O_5 electrodes by electrodeposition. Mater. Lett., 2007, 61, 4920-4923.
    [82] Chen X. M., Chen G. H. Investigation of Ti/IrO_2-Sb_2O_5-SnO_2 electrodes for O_2 evolution. J. Electrochem. Soc., 2005, 152 (7): J59-J64.
    [83] Vazquez-Gomez L., Ferro S., De Battisti A. Preparation and characterization of RuO_2-IrO_2-SnO_2 ternary mixtures for advanced electrochemical technology. Appl. Catal. B: Environ., 2006, 67 (1-2): 34-40.
    [84] Korotcenkov G., Cornet A., Rossinyol E. Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution. Thin. Solid. Films., 2005, 471 (1-2): 310-319.
    [85] Sumangala Devi Amma D., Vaidyan V. K., Manoj P. K. Structural, electrical and optical studies on chemically deposited tin oxide films from inorganic precursors. Mater. Chem. Phys., 2005, 93: 194-201.
    [86] Mohd Y., Pletcher D. The influence of deposition conditions and dopant ions on the structure, activity, and stability of lead dioxide anode coatings. J. Electrochem. Soc., 2005, 152: D97-D102.
    [87] Velichenko A. B., Amadelli R., Baranova E. A., Girenko D. V., Danilov F. I. Electrodeposition of Co-doped lead dioxide and its physicochemical properties. J. Electronanl. Chem., 2002, 527: 56-64.
    [88] Feng Y. J., Li X. Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water, Res., 2003, 37: 2399-2407.
    [89] Feng Y. J., Cui Y. H., Logan B., Liu Z. Q. Performance of Gd-doped Ti-based Sb-SnO_2 anodes for electrochemical destruction of phenol. Chemosphere., 2008, 70: 1629-1636
    [90] Grace W. R. Ceria promoted three way catalysis for auto exhaust emission control. Ind. Eng. Chem. Prod. Ress. Dev., 1982, 21: 267-274.
    [91] Edgar K. Rhodium-free three-way catalyst. USA patent 5001103, 1991.
    [92] Yao H. C., Yu Yao Y. F. Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal., 1984, 86: 254-265.
    [93] 张翼,王磊,闫红娟.钕掺杂Ti基Sn-Sb涂层电极的制备及性能评价.中国稀土学报,2007,25(6):761-762.
    [94] Wang K. L., Zhang Q. B., Sun M. L., Wei X. G., Zhu Y. M. Rare earth elements modification of laser-clad nickel-based alloy coatings. Appl. Surf Sci., 2001, 174: 191-200.
    [95] Matsumoto S. Recent advances in automobile exhaust catalysts. Catal. Today., 2004, 90: 183-190.
    [96] Metcalfe I. S., Sundaresan S. Oxygen storage in automobile exhaust catalyst Chem. Eng. Sci., 1986, 41: 1109-1115.
    [97] Tahar N. B., Savall A. Mechanistic aspects of phenol electrochemical degradation by oxidation on Ta/PbO_2 anode. J. Electrochem. Soc., 1998, 145: 3427-3434.
    [98] Sharifian H., Kirk D. W. The electrochemical oxidation of phenol. J. Electrochem. Soc., 1986, 133: 921-924.
    [99] Chen X. M., Chen G. H. Anodic oxidation of Orange Ⅱ on Ti/BDD electrode: Variable effects. Sep. Purif. Technol., 2006, 48: 45-49.
    [100] Chen X. M., Chen G. H., Yue P. L. Anodic oxidation of dyes on Ti/BDD electrodes. Chem. Eng. Sci., 2003, 58: 995-1001.
    [101] Comninellis C., De Battisti A. Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. J. Chim. Phys., 1996, 93: 673-679.
    [102] Lahousse C., Bernier A., Grange P., Delmon B., Papaefthimiou P., Ioannides T., Verykiosy X. Evaluation of γ-MnO_2 as a VOC removal catalyst: Comparison with a noble metal catalyst. J. Catal., 1998, 178: 214-225.
    [103] Lee S. J., Gavriilidis A., Pankhurst Q. A., Kyek A., Wagner F. E., Wong P. C. L., Yeung K. L. Effect of drying conditions of Au-Mn co-precipitates for low-temperature CO oxidation. J. Catal., 2001, 200: 298-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700