复合式厌氧折流板反应器处理高浓度退浆废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含PVA的退浆废水具有污染物浓度高、碱度大、难降解性强等特点,这种废水处理起来难度很大,至今在生产实际中还没有找到较好的技术使其达标排放。退浆废水的难处理性以及日益严格的排放要求,使开发经济有效的退浆废水处理技术成为必然。
     论文针对含PVA的退浆废水的特性,选用改进的HABR反应器来预处理退浆废水,HABR反应器通过增加反应器高度和出水回流来提高反应器捕获微小颗粒污泥的能力以及促进颗粒污泥的形成,从而提高反应器的处理效率,HABR反应器同时具备了EGSB和ABR反应器的优点。
     本研究来源于横向课题:“蓝岭印染2400吨/日纺织印染废水处理工程设计(课题编号:H20081208)”,并得到东华大学博士学位论文创新基金(项目编号:BC200828)和上海市重点学科建设项目(项目编号:B064)的资助。
     本文以实际退浆废水为进水,系统研究了HABR反应器的启动;通过正交试验确定了最优运行参数;进行了PVA的厌氧静态试验;讨论了HABR反应器中厌氧颗粒污泥的微生态特征;分析了PVA的降解机理;对HABR反应器稳定运行阶段的数据和HABR反应器的水力特性示踪试验结果进行了分析。
     本文的试验结果表明:
     (1)在HABR中直接接种厌氧颗粒污泥,以退浆废水为试验进水,在系统水力停留时间为168h、中温(32±1)℃、进水pH值6.5~8.0、碱度适当偏高条件下,进入反应器废水COD_(Cr)浓度由1800mg/L逐渐提高到13520mg/L,运行60天后系统COD_(Cr)去除率均高于45%,并且保持稳定,出水pH值和碱度相对比较稳定,污泥明显呈颗粒状,反应器启动完成。反应器可以在短时间内重新启动,污泥活性很快得到恢复。
     (2)通过135天的正交试验讨论了不同的进水碱度,出水回流比和水力停留时间对COD、PVA去除率的影响,试验结果表明影响COD、PVA去除率的主次关系为:水力停留时间>出水回流比>进水碱度。根据正交试验结果和实际的工程的需要,确定较优的运行方案为:进水碱度500 mg/L、出水回流比94、水力停留时间5天。
     (3)厌氧颗粒污泥对纯PVA的降解试验表明污泥的微生物组成与粒径大小对PVA降解有影响。碱度过大对PVA的降解不利,但对COD的去除有利。共基质试验表明,以葡萄糖为碳源时,高浓度的葡萄糖抑制PVA的生物降解;以淀粉为碳源时,PVA的降解机理与加入葡萄糖时不同;以豆浆为共基质,PVA需要较长时间才能降解。PVA浓度对厌氧污泥活性的抑制试验表明:当处理废水中的PVA浓度与驯化污泥的废水中PVA浓度相差较大时,则会对污泥的活性产生一定的抑制作用。
     (4) HABR反应器中厌氧颗粒污泥的微生态特征研究表明:由于颗粒污泥的形成,HABR反应器有较好的COD去除率。HABR各隔室不同的环境(pH、底物类型及浓度)形成了不同的微生物群落,1~#隔室颗粒污泥中的优势菌是利用H_2的产甲烷菌;2~#隔室的颗粒污泥中没有明显的优势菌,菌群多样复杂;3~#隔室的颗粒污泥中以球状菌和长杆状菌占优势;4~#隔室的颗粒污泥中的优势菌是短杆状产甲烷菌。HABR各隔室颗粒污泥利用淀粉、乙酸、丙酸和丁酸的产甲烷活性不同,说明各隔室颗粒污泥的微生物组成不同,前面以产酸菌为主,后面以产甲烷菌为主。HABR反应器中颗粒污泥的辅酶F_(420)沿隔室逐渐变化,与产甲烷活性的变化趋势不同,可能是由于各产甲烷细菌的含量不一,因此相关性较差。
     (5)进出退浆废水的FT-IR、~1H NMR谱图分析结果表明:退浆废水中PVA的分子链在厌氧微生物的作用下发生了断裂,大分子的PVA能在兼氧条件下降解成较简单的中间产物,并且这些中间产物能在好氧条件下进一步矿化。PVA能在厌氧条件下发生有效降解,而且和在有氧条件下的降解机理相类似,但试验条件的不同具体的代谢路径也是有区别的。
     (6) HABR反应器在平稳运行阶段COD和PVA去除率稳定在42.0%和18.0%左右;最大平均产气量为0.3 L CH_4/g COD去除;出水碱度在700mg/L左右,适合的碱度和pH值是HABR反应器平稳运行的关键。HABR反应器的水力死区较小,它的分散数D/uL在0.105~0.132之间,流态介于理想完全混合式与理想推流式之间,接近理想推流式。
Polyvinyl alcohol (PVA)-containing desizing wastewater containing high strength of recalcitrant organic matters and waste alkali are discharged from final textile wastewater. Due to its poor biodegradability, the desizing wastewaters require adequate and sufficient treatment before being allowed to be discharged into surface waters.
     An improved lab-scale hybrid anaerobic baffled reactor (HABR) was developed to treat desizing wastewater. The modification was achieved by increasing the height of HABR and application of proper effluent recycle, which enabled to increase the ability of entrapping microbe-rich small particles in the reactor and prompted the formation of granules. The reactor combined the advantages of EGSB and ABR simultaneously.
     This research came from crosswise tasks: "the project design for 2400 t/d textile wastewater treatment of Lanling dying and prting plant" (No. H20081208). And this work was also supported by the Innovation Foundation of Donghua University for Ph.D. candidates (No. BC200828) and and the Key Subject Construction Item of Shanghai city (No. B064).
     First, the paper studied the start-up of HABR and optimization of the operation parameters of HABR; The biodegradation characteristics of PVA 1799 were studied; The structures and micro-ecology characteristics of anaerobic granular sludge in each separation compartment of HABR were studied; The transformation of desizing wastewater in HABR was investigated; the performance of HABR under steady condition was examined and tracer studies were carried out in order to determine the hydrodynamics of HABR.
     The results indicated;
     (1) The wastewater was treated on mesophilic condition after anaerobic granular sludge was inoculated in the HABR, the pH of influent was 6.5~8.0 and alkalinity was suitable higher. Hydraulic retention time (HRT) was 168h and the influent concentration was increased from 1800 mg/L to 13520 mg/L gradually during the experiments. The experimental results indicated that the removal of COD_(Cr) was above 45% and the pH and alkalinity of effluent were relatively stable. At the same time sludge appeared obviously granulation, the start-up was successfully finished. HABR can be restarted-up in a short time and the activities of anaerobic granular sludge can be restored quickly.
     (2) Within 135 days of the orthogonal experiment for optimization of the operation parameters of HABR, the effect of three important factors including alkalinity of influent, effluent recycle ratio, HRT and each factor at three levels were studied using Taguchi's method. The results showed that the most important factor contributing to the COD and PVA removal efficiency was HRT followed by effluent recycle ratio and lastly, influent alkalinity. By comprehensively comparing experimental data and considering cost, the optimum condition was chosen as alkalinity of influent 500 mg/L, effluent recycle ratio of 94 times influent rate and HRT 5 d.
     (3) The biodegradability of PVA 1799 under anaerobic conditions was demonstrated using anaerobic granular sludge from HABR. The results showed that the microorganism composition and particle size of the granular sludge directly influenced the PVA removal rate. Alkalinity influenced degradation of PVA 1799, and high alkalinity suppressed PVA 1799 degradation. It was indicated the degradation of PVA 1799 was suppressed by high glucose concentration; when starch was taken as carbon source, starch molecule first adsorbed on sludge surface and degraded before PVA; It took longer time to degrade PVA 1799 when using soybean milk as carbon source; The inhibition test of PVA concentration on anaerobic granular sludge activity showed: the activity of anaerobic granular sludge was suppressed when PVA concentration between wastewater treated and wastewater for acclimated sludge had larger difference.
     (4) It was indicated the good removal of COD was achieved probably due to the formation of granular sludge. Hydrogen-utilizing methanogenic bacteria were predominant in interior of granular sludge in compartment 1. As for compartment 2, there were no absolutely predominant bacteria and there were multiple and complicated bacteria communities. In compartment 3, the predominant bacteria were Methanococcus and Methanobacterium. In compartment 4 of the reactor, the predominant bacteria were similar to Methanobrevibacter. The SMA of granular sludge in each compartment of HABR was different when the starch, acetate, propionate and butyrate were taken as substrate respectively. The result indicated the composition of microbe was different in each compartments, acidogenic bacteria were predominant in the front, while methanogenic bacteria were predominant in the rear.The content of coenzyme F_(420) in granular sludge of HABR varied along the reactor, which had no same tendency of variation of SMA, the result maybe due to content of methanogenic bacteria species was different, so it had poor correlation.
     (5) Judging from the FTIR and 'H NMR analysis of influent and effluent wastewater, it was indicated the molecule chain of PVA fractured in the process of anaerobic biodegradation by the microbes, some of PVA molecules could be facultatively broken down into simple intermediate products. Biodegradation of PVA certainly occurred in an anaerobic environment, which had the same degradation mechanism under anaerobic conditions as that under aerobic conditions, but a different biodegradation pathway might exist under anaerobic conditions due to different experimental conditions. Results of the product analyses confirmed the biodegradation of PVA occurred under anaerobic conditions, it also offered an effective desizing wastewater degradation craft.
     (6) Under optimum condition (alkalinity of influent 500 mg/L, effluent recycle ratio of 94 times influent rate and hydraulic retention time of 5 d), the system demonstrated a good performance of COD and PVA removal efficiencies (around 42.0% and 18.0% respectively) and the average concentration of alkalinity in the effluent was around 700 mg/L and pH value was above 6.8. Proper pH and alkalinity were of key importance for the stable operation of HABR. The system at the HRT 5 d had highest observed methane yield averaged at 0.30 L CH4 /g COD removed of HABR. Based on the tracer studies carried out at three different effluent recycle ratio, it was observed that the flow pattern within the HABR remain intermediate between plug and perfectly mixed flows (0.105
引文
[1]林琳.2007/2008中国印染行业发展报告[J].印染,2008,34(6):46-50.
    [2]林琳.印染行业节能减排现状及重点任务[J].印染,2008,34(2):40-43.
    [3]北京水环境技术与设备研究中心.三废处理工程技术手册—废水卷[M].北京:化学工业出版社.2000,4.
    [4]郭丽,奚旦立,袁海源.含PVA退浆废水处理技术及应用的研究[J].今日科技,2007,8:44-47.
    [5]盛季陶.PVA退浆废水预处理研究[J].东华大学学报(自然科学版),2002,28(1):101-104.
    [6]顾春雷,于奕峰,王广玉.絮凝法处理退浆废水的实验研究[J].工业水处理,2007,27(9):48-50.
    [7]雷乐成.光助Fenton氧化处理PVA退浆废水的研究[J].环境科学学报,2000,20(2):139-144.
    [8]Suzuld T,Ichihara Y,Yamada M,et al.Purification and properties of secondary alcohol oxidation from a strain of Pseudomona[J].Agric.Bio.Chem,1973,37(3):747-756.
    [9]Schonberger H,Baumann A,Keller W.Conditions for the Microbiological Degradation of Polyvinyl Alcohol[J].Textilveredlung,1996,31:1-9.
    [10]Yu H,Gu G,and Song L.Degradation of Polyvinyl Alcohol in Sequencing Batch Reactors[J].Environ.Technol.,1996,17:1261-1267.
    [11]张毅,顾润南.动态陶瓷膜处理PVA退浆废水的工艺[J].东华大学学报(自然科学版),2007,33(2):236-238.
    [12]Lin S H,Lo C C.Fenton process for treatment of desizing wastewater[J].Water Res.,1997,31(8):2050-2056.
    [13]Lin S H,Liu C M.Treatment of textile waste effluents by ozonation and chemical coagulation[J].Water Res.,1993,27:1743-1749.
    [14]Lin S H,Peng C F.Treatment of textile wastewater by electrochemical method[J].Water Res.,1994,28:277-283.
    [15]刘义新,李忻,丁荔萍.研究聚乙烯醇(PVA)对土壤理化性状的影响[J].中国农学通报,1996,12(5):14-16.
    [16]张韵慧,李宁,许建辰.聚乙烯醇在中药新剂型中的应用[J].中国中药杂志,2004,29(2):101-103.
    [17]方柏容,林少宁,蒯琳萍.聚乙烯醇的生化降解[J].纺织学报,1988,9(1):26-28.
    [18]张益储,林少宁,刘振鸿.含聚乙烯醇降解菌的研究[J].石油化工环境保护,1988,4:17-19.
    [19]林少宁,方柏容.F8633菌降解聚乙烯醇特性的研究[J].中国纺织大学学报,1990,16(3):18-22.
    [20]Schonberger H,Baumann A,Keller W.Study of microbial degradation of polyvinyl alcohol (PVA) in wastewater treatment plants[J].American Dyestuff Reporter,1997,86(8):9-18.
    [21]Mori T,Sakimoto M,Kagi T.Enzymatic desizingof polyvinyl alcohol from cotton fabrics[J].J.Chem.Tech.Biotechnol.,1997,68:151-156.
    [22]Matsumura S,Kurita H,Shimokobe H.Anaerobic biodegradability of polyvinyl alcohol[J].Biotechnol.Lett.,1993,15:749-754.
    [23]Suzuki T,Ichihara Y,Yamada M,et al.Some characteristics of Pseudomonas O~3 which utilizes polyvinyl alchol[J].Agric.Biol.Chem.,1973,37(4):747-756.
    [24]Suzuki T.Purification and some properties of polyvinyl alcohol-degrading enzyme produced by Pseudomonas O~3[j].Agric.Biol.Chem.,1976,40(3):497-500.
    [25]Suzuki T.Oxidatio of secondary alcohol-degrading enzyme produced by Pseudomonas O~3[J].Agric.Biol.Chem.,1978,42(6):1187-1194.
    [26]Morita M,Hamada N,Sakai K,et al.Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas[J].Agric.Biol.Chem.,1979,43(6):1225-1235.
    [27]肖良建,陈庆华.聚乙烯醇改性及降解研究进展[J].化学与生物工程,2005,(5):1-3.
    [28]Shimao M,Ninomiya K,Kuno O,et al.Existence of a novel enzyme,pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase,in a bacterial symbiont,Pseudomonas sp.Strain VM15C[J].Appli.Environ.Microbiol.,1986,51(2):268-275.
    [29]Shimao M,Onishi S,Kato N,et al.Pyrroloquinoline quinone-dependent cytochrome reduction in polyvinyl alcohol-degrading Pseudomonas sp.Strain VM15C[J].Appli.Environ.Microbial.,1989,55(2):275-278.
    [30]Sheng H Lin,Cho C Lo.Fenton process for treatment of desizing wastewater[J].Water Res.,1997,31(8):2050-2056.
    [31]Harkal U D,Gogate P R,Pandit A B,et al.Ultrasonic degradation of poly(vinyl alcohol) in aqueous solution[J].Ultrason.Sonochem.,2006(13):423-428.
    [32]Zhang S J,Yu H Q.Radiation-induced degradation of polyvinyl alcohol in aqueous solutions[J].Water Res.,2004,38:309-316.
    [33]Lipczynska-Kochany E.Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction[J].Chemosphere,1991,22:529-536.
    [34]Ruppert G,Bauer R,Heisler G.The photo-Fenton reaction an effective photochemical wastewater treatment process[J].J.Photochem.Photobiol.A:Chem,1993,73:75-78.
    [35]Pignatello J J,Chapa G.Degradation of PCBs by ferric ion,hydrogen-peroxide and UV-light[J].Environ.Toxicol.Chem.,1994,13:423-427.
    [36]McCarty P L.The development of anaerobic treatment and its future[J].Water Sci.Technol.,2001,44(8):149-156.
    [37]买文宁.生物化工废水处理技术及工程实例[M].化学工业出版社,2002,1:65-67.
    [38]斯皮思R.E著.工业废水的厌氧生物技术[M].李亚新译.北京:中国建筑工业出版社,2001,226.
    [39]A F Moigno.Mouras'Automatic Scavenger[J].Cosmos,1881,622.
    [40]A F Moigno.Mouras'Automatic Scavenger[J].Cosmos,1882,97.
    [4l]Metcalf L,Eddy H P.American Sewerage Practice,Ⅲ[A].Disposal of Sewage(1 ed.)[C]. McGraw-Hill Book Company,Inc.,NewYork,1995.
    [42]Buswell A M,Neave S L.Laboratory Studies of Sludge Digestion No.Bulletin[J].State Water Survey,1930,29.
    [43]Stander G J.Effluents from Fermentation Industries.Part Ⅳ.A New Method for Increasing and Maintaining Efficiency in the Anaerobic Digestion of Fermentation Effluents[J].J.Inst.Sewage Purification,1950,4:438.
    [44]Stander G J.Water Pollution Research:A Key to Wastewater Management[J].J.Water Pollut.Control Fed.,1966,38:774.
    [45]Stronach,et al.Anaerobic digestion process[J].Industrial Wastewater Treatment,1986(6):23-35.
    [46]高廷耀主编.水污染控制技术[M].北京高等教育出版社,1989.
    [47j 顾夏声.水处理工程[M].北京清华大学出版社,1985
    [48]Lettinga G,et al.use of up-flow sludge blanket(USB) reactor concept for biological wastewater [J].Biotechnol.Bioeng.,1980,22(4):699-734.
    [49]Guiot S R,et al.Performance of an up-flow anaerobic reactor combining a sludge blanket and a filter treating sugar waste[J].Biotechnol.Bioeng.,1985,27(6):800-806.
    [50]郝雯娣.UASB厌氧处理系统处理柠檬酸废水[J].给水排水,1999,25(10):41-45.
    [51]王世和,何炜.厌氧颗粒污泥流化床处理有机废水的运行特征[J].东南大学学报,1998,28(2):82-88.
    [52]Mario T K.The anaerobic treatment of low strength wastewater in UASB and EGSB reactors[J].Water Sci.Technol.,1997,36(6):375-382.
    [53]Pereboom J H F.Methanogenic Granule development in full scale internal circulation reactors[J].Water Sci.Technol.,1994,30(8):9-21.
    [54]王晶日,张艳桥.垂直、管式、折流生化反应器处理高浓度有机废水[J].北京:环境保护科学,1997,23(4):18-27.
    [55]Ndon U J,Dague R R.Effects of temperature and hydraulic retention time on A SBR treatment of low strength wastewater[J].Water Res.,1997,31(10):2455-2466.
    [56]Ross W R,Barnard J.P.and Strohwald N.K.H.Practical Application of ADUF Process to the Full-scale Treatment of maize processing Effluent[J].Water Sci.Technol.,1992,25(10):27-39.
    [57]沈耀良,等.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999.
    [58]黄永恒,王建龙,文湘华,钱易.折流式厌氧反应器的工艺特性及其运行([J].中国给水排水.1999,15(7):18-20.
    [59]Bachmann A,Beard V L.,McCarty PL.Comparison of fixed film reactors with a modified sludge blanket reactor[J].Pollut.Technol Rev.,1983,10:384-402.
    [60]陈际平等.垂直折流厌氧污泥床((VBASB)反应器的研究[J].环境污染与防治1993,15(2):2-6.
    [61]Skiadas I V,Lyberatos G.The periodic anaerobic baffled reactor[J].Wat Sci Tech.1998,38(8-9):401-408.
    [62]Bodkhe,S Y.A modified anaerobic baffled reactor for municipal wastewater treatment[J].J.Environ.Manage.,2009,90:2488-2493.
    [63]Feng H J,Hua L f,Mahmood Q,Qiu C D,Fang C.R.and Shen D.S.(2008).Anaerobic domestic wastewater treatment with bamboo carrier anaerobic baffled reactor[J].Int.Biodeter.Biodegr.,2008,62:232-238.
    [64]Grobicki A,Stuckey DC.Hydrodynamic characteristics of anaerobic baffled reactor[J].Water Res.,1992,26(3):371-378.
    [65]郭静等.ABR反应器性能及水力学研究[[J].中国给水排.1997,13(4):17-20.
    [66]黄永恒等.折流式厌氧反应器水力特性及工艺特性研究[M].清华大学环境与工程系硕士论文,1999.
    [67]Henze W P,Harremoes P.Anaerobic treatment of wastwater in fixed film reactors:a literature review[J].Water Sci.Tech.,1983,15:1-101.
    [68]Barber W P,Stuckey D C.Start-up strategies for anaerobic baffled reactors treating a synthetic sucrose feed[C].In:Proc.8th International Conf.on Anaerobic Digestion,1997,32-39.
    [69]Boopathy R,Tilche A.Anaerobic digestion of high strength molasses wastewater using a hybrid anaerobic baffled reactor[J].Water Res.,1991,25(7):785-790.
    [70]Grobicki A,Stuckey D C.The role of formate in anaerobic baffled reactor[J].Water Res.,1989, 23(12):1599-1602.
    [71]Nachaiyasit S,Stucky D C.The effect of shock loads on the performance of an anaerobic baffled reactor(ABR).2.Step and transient hydraulic shocks at constant feed concentration[J].Water Res.,1997,31(11):2747-2754.
    [72]Barber W P,Stuckey D C.The use of the anaerobic baffled reactor(ABR) for wastewater treatment:a review[J].Water Res.1999,33(7):1559-1578.
    [73]Boopathy R,Tilche A.Pelletization of biomass in a hybrid anaerobic baffled reactor(HABR)treating acidified wastewater[J].Bioresource Technol.1992,40(2):101-107.
    [74]王建龙.生物固定化技术与水污染控制[M].科学出版社,2002.
    [75]Ji G D,Sun T H,Ni J R and Tong J J.Anaerobic baffled reactor(ABR) for treating heavy oil produced water with high concentrations of salt and poor nutrient[J].Bioresource Technol.,2009,100:1108-1114.
    [76]Gopala Krishna,G V T,Kumar P,and Kumar P.Treatment of low-strength soluble wastewater using an anaerobic baffled reactor(ABR)[J].J.Environ.Manage.,2007,90:1-11.
    [77]Gopala Krishna G V T,Kumar P and Kumar P,Treatment of low strength complex wastewater using an anaerobic baffled reactor(ABR)[J].Bioresource Technol.,2008,99:8193-8200.
    [78]Alettea A M,Langenhoff and David C,Stuckey,Treatment of dilute wastewater using anaerobic baffled reactor:effect of low temperature[J].Water Res.,2000,34:3867-3875.
    [79]Foxon K M,Pillay S,Lalbahadur T,Rodda N,Holder F and Buckley C A,The anaerobic baffled reactor(ABR):An appropriate technology for on-site sanitation[J].Water SA,2004,30:592-597.
    [80]傅嘉媛,董发开.折流板厌氧接触池处理城镇污水(中试)[J].中国给水排水,2003,19(1):17-19.
    [81]Faisal M and Unnob H.Kinetic analysis of palm oil mill wastewater treatment by a modified anaerobic baffled reactor[J].Biochem.Eng.J.,2001,9:25-31.
    [82]Akunna JC and Clark M.Performance of a granular-bed anaerobic baffled reactor(GRABBR)treating whisky distillery wastewater[J].Bioresource Technol.,2000,74:257-261.
    [83]Baloch M I,Akunna J C and Collier P J.The performance of a phase separated granular bed bioreactor treating brewery wastewater[J].Bioresour Technol.,2007,98:1849-1855.
    [84]Saritpongteeraka K and Chaiprapat S.Effects of pH adjustment by parawood ash and effluent recycle ratio on the performance of anaerobic baffled reactors treating high sulfate wastewater[J].Bioresource Technol.,2008,99:8987-8994.
    [85]Zhu G F,Li J Z,Wu P,Jin H Z and Wang Z.The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater[J].Bioresource Technol.,2008,99:8027-8033.
    [86]Gong Y K,Xiang H Q and Mu L.Study on performance of anaerobic baffled reactor for treating wastewater from penicillin production[J].Modern Chem.Ind.,2006,26(Supplement):172-175.(in Chinese)
    [87]Ji F Y,Wei X J,Zhang L J and Han W Y.Study on treatment of fine chemical wastewater by anaerobic baffled reactor[J].China water & wastewater.,2007,23:19-23.(in Chinese)
    [88]Boopathy R,Tilche A.Anaerobic digestion of high strength molasses wastewater using a hybrid anaerobic baffled reactor[J].Water Res.,1991,25(7):785-790.
    [89]伦世仪,卢自金.多段折流板厌氧反应器处理高悬浮固体有机废水的研究[J].中国沼气,1990,8(1):6-10.
    [90]Orozo A.Pilot and full-scale anaerobic treatment of low strength wastewater at sub-optimal temperature(15℃)with a hybrid plug flow reactor[A].Proceedings of 8th International Conf.on Anaerobic Digestion[C].Sendi,Japan,1997,2:40-47.
    [91]沈耀良,赵丹,王承武.ABR反应器的水力特性研究[J].中国给水排水,2003,19(11):1-3.
    [92]沈耀良,王宝贞,杨铨大.厌氧折流板反应器处理垃圾渗滤液混合废水[J].中国给水排水,1999,15(5):10-12.
    [93]沈耀良,厌氧折流板反应器(ABR)的水力流态及其处理高浓度有机废水效能的研究[学位论文],河海大学,2001.
    [94]沈耀良,王惠民,厌氧折流板反应器处理淀粉废水及污泥特性[J],上海环境科学,2002,21(3):139-142.
    [1]斯皮思R E.著,工业废水的厌氧生物技术[M],北京:中国建工出版社,2001.
    [2]贾洪斌等,挡板式水解酸化法处理印染废水的中试试验研究[J].工业水处理,2000.21(1):39-41.
    [3]沈耀良等,厌氧折流板反应器处理垃圾渗滤液混合废水[J].中国给水排水,1999,15(5):10-12.
    [4]戴友芝等,厌氧折流板反应器对有毒有机物冲击负荷的适应性[J].环境科学2000,21(1):94-97.
    [5]戴友芝等,厌氧折流板反应器对有毒废水及其污泥特性的研究[J].环境科学,2000,20(3):285-289.
    [6]国家环保局,水与废水监测分析方法(第三版)[M],北京:中国环境科学出版社,1997
    [7]贺延龄,废水的厌氧生物处理[M],中国轻工业出版社,1998
    [8]俞毓馨等,环境工程微生物检验手册[M],北京:中国环境科学出版社,1990.
    [1]Weiland P and Rozzi A.The start-up,operation and monitoring of high-reate anaerobic treatment systems:Discusser's Report[J].Wat.Sci.Tech.1991,24(8):257-277.
    [2]Barber W P and Stuckey D C.The use of Anaerobic Baffled Reactor(ABR) for wastewater treatment:A review[J].Wat.Res.1999,33(7):1559-1578.
    [3]Boopathy R and Tilche A.Pelletization of biomass in a hybrid anaerobic baffled reactor(HABR)treating acidified waste-water[J].Bioresource Technol.,1992,40(2):101-107.
    [4]Holt C J,Matthew R G S,Terzis E.A comparative study using the anaerobic baffled reactor to treat a phenolic wastewater[C].In:Proc.8~(th) international conf.on Anaerobic Digestion,1997,32-39.
    [5]郭静,郑培福,杨秀文,田淑媛.厌氧折流反应器处理高浓度有机废水的研究[J].中国给水排水,1993 9(5):40-47.
    [6]雷中方等.用厌氧折流板反应器处理碱法草浆黑液[J].上海环境科学,1995,14(5):19-22.
    [7]陈洪斌等.厌氧折流板反应器处理都豆制品废水的研究[J].中国沼气,1999,17(1):12-16.
    [8]Bachmann A,Beard V L,McCarty P L.Comparison of fixed film reactors with a modified sludge blanket reactor[J].Pollut.Technol.Rev.,1983,10:382-402.
    [9]Wang J L,Huang Y H,Zhao X.Performance and characteristics of an anaerobic baffled reactor [J].Biore.Technol.,2004,93:205-208.
    [10]沈耀良.ABR反应器中颗粒污泥的微生态特性[J].中国沼气.2005,23(1):13-16
    [11]Liu Y,Xu H L,Yang S F,et al.Mechanisms and models for an aerobic granulation in upflow anaerobic sludge blanket reactor[J].Wat.Res.,2003,37(3):661-673.
    [12]Liu W T,Chan O C,Fang Herbert H P.Characterization of microbial community in granular sludge treating brewery wastewater[J].Wat.Res.,2002,36(7):1767-1775.
    [13]Batstone D J,Keller J and Blackall L L.The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass[J].Wat.Res.,2004,38(6):1390-1404.
    [14]杨秀山,田沈,郑颖,等.固定化甲烷八叠球菌(Methanosarcin)研究[J].中国环境科学,1998,18(4):356-359.
    [15]Sponza D T.Enhancement of granule formation and sludge retainment for tetrachloroethylene(TCE) removal in an up-flow anaerobic sludge blanket(UASB) reactor[J].Advances in Environmental Research,2003,7(2):453-462。
    [16]徐向阳,冯孝善.工业有机废水为共基质培养降解五氯酚厌氧颗粒污泥[J].环境科学,2001,22(3):108-112.
    [17]陆正禹.UASB处理链霉素废水颗粒污泥培养技术探索[J].中国沼气,1997,15(3):11-15.
    [18]国家环境保护局.水与废水检测分析方法[M].第3版.北京:中国环境科学出版社,1997.
    [19]张在勤,杨百忍.ABR反应器污泥颗粒化及影响因素[J].安徽农学通报,2007,13(3):59-60.
    [20]徐金兰,王志盈,杨永哲等.ABR的启动与颗粒污泥形成特征[J].环境科学学报,2003,23(5):575-581.
    [1]Roy R K.A Primer on the Taguchi Method[M].VNR Publishers,New York,1990.
    [2]孙荣恒,伊亨云,刘群荪.数理统计[M].重庆:重庆大学出版社,2000.
    [3]庄楚强,吴亚森.应用数理统计基础[M],广州:华南理工大学出版,1992:383-485.
    [4]滕海英,祝国强,黄平,刘沛.正交试验设计实例分析[J].药学服务与研究,2008,8(1):75-76.
    [5]庞超明,秦鸿根.试验设计与混凝土无损检测技术[[M].中国建材工业出版社 2006.
    [6]祝国强,庆欧.医药数理统计方法[M].教育出版社,2000.
    [7]祝国强,滕海英,黄平.正交试验设计方法在医药学中的应用[J].数理医学杂志,2001,20(4):568-569.
    [8]董昕,于秀山.正交试验方法在软件测试中的应用[J].北京化工大学学报,2007,34(增刊 Ⅰ):130-132。
    [9]白燕,李蕊,程涛等.正交设计和均匀设计用于硒-金膜修饰电极制备条件的选择[J].分析试验 室,2003,22(6):9-12.
    [1]任南琪等.厌氧生物技术原理与应用[M].化学工业出版社,2004:315-317.
    [2]Gartiser S,Wallrabenstein M,Stiene M.Environ.Polym.Degr.1998,159-173.
    [3]陈梓生译.水溶性聚乙烯醇((PVA)的使用及其改性[J].塑料包装.1997,7(2):45-48.
    [4]徐亚同.污染控制微生物工程[M].北京:化学工业出版社,2000.
    [5]乌锡康.有机化工废水治理技术[M].北京:化学工业出版社,1999.319-321.
    [6]徐金兰,黄廷林,王志盈.聚乙烯醇(PVA)厌氧生物降解特性试验研究[J].环境污染治理技术与设备,2004,5(10):30-34.
    [7]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002.
    [1]陈坚等.二相UASB反应器中产酸颗粒污泥和产甲烷颗粒污泥的物理性质和化学成分[J].中国沼气,1993,11(2):8-12.
    [2]竺建荣等.二相UASB工艺微生物生态学的研究[J].中国沼气,1992,10(2):1-4.
    [3]刘双江等.厌氧颗粒污泥形成过程的微生物学研究[J].中国环境科学,1992,12(6):405-409.
    [4]Joo-Hwa Tay et al,Molecular mechanism of granulation.Ⅰ:H~+ Translocation-dehydration theory[J].J.Environ.Eng.,2000(5):403-410.
    [5]Khay-Chuan Teo,Hai-lou Xu,and Joo-Hwa Tay.Molecular mechanism of granulation.Ⅱ:Proton Translocating activity[J].J.Environ.Eng.,2000(5):411-418.
    [6]贺延龄编著.废水的厌氧生物处理[M].中国轻工业出版社,1998.
    [7]陈坚等.厌氧颗粒污泥的形成机制[J].中国环境科学,1993,13(5):334-339.
    [8]郭晓磊等.厌氧颗粒污泥及其形成机理[J].给水排水,2000,26(1):33-38.
    [9]Wu J H,Liu W T,Tseng I C,and Cheng S S.Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system[J].Micro.,2001,47:373-382.
    [10]Liu W T,Chanc O C,and Fang H H P.Characterization of microbial community in granular sludge treating brewery wastewater[J].Water Res.,2002,36(7):1767-1775.
    [11]APHA,AWWA and WEF,Standard methods for the examination of water and wastewater[M],21th ed.2005,Springer,Berlin.
    [12]Sekiguchi Y,Kamagata Y,Syutsubo K,Ohashi A,Harada H,and Nakamura K.Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis[J].Micro.,1999,144:2655-2665.
    [13]Raskin L,Poulsen L R,Noguera D R,Rittman B E,and Stahl D A.Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization[J].Appl.Environ.Micro.,1994,60:1241-1248
    [14]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册[M].北京:中国环境科学出版社,1990.
    [15]Lettinga G.Advanced anaerobic wastewater treatment in the near future[J].Water Sci.Technol.,1997,35:5-12.
    [1]廖劲松,庄桂,任小青等.原生质体融合选育高效菌株净化PVA工业废水的研究[J].郑州工程学院学报,2001,22(2):84-89.
    [2]张兴英,程钰,赵京波.高分子化学[M].北京:中国轻工业出版社,2000:264.
    [3]Masaji W,Fusako K.Numerical simulation for enzymatic degradation of poly(vinyl alcohol)[J].Polym.Degrad.Stab.,2003,81:393-399.
    [4]Matsumura S,Tomizawa N,Toki A et al,Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism[J].Macromolecules,1999,32:7753-7761.
    [5]]Zhang X,Du G C,Chen J.Developments in Study of Poly(vinyl alcohol) degrading enzyme[J].Journal of Chinese biotechnol,2003,23(2):69-73.(in Chinese with English abstract)
    [6]Emo C,Andrea C,Salvatore D et al.Biodegradation of poly(vinyl alcohcl) based materials[J].Prog.Polym.Sci.,2003,28:963-1014.
    [7]平郑骅,叶均分,丁雅娣.傅里叶红外光谱法研究高分子共混物的相容性[J].复旦学报(自然科学版,1997,36(4):439-444.
    [8]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993.
    [1]Levenspiel O.Chemical Reaction Engineering[M],third ed.Wiley,NewYork,1999.
    [2]Grobicki A and Stuckey D C.Hydrodynamic characteristics of the Anaerobic Baffled Reactor[J].Wat.Res.,1992,26(3):371-378.
    [3]郭静等.ABR反应器的性能及水力特性研究[J].中国给水排水.1997,13(4):17-20.
    [4]Hutnan M,Drtil M,Mrafkova L,Derco J,Buday J.Comparison of startup and anaerobic wastewater treatment in UASB,hybrid and baffled reactor[J].Bioprocess Eng.,1999,21(5),439-445.
    [5]Grobicki A,Stuckey DC.Hydrodynamic characteristics of the anaerobic baffled reactor[J].Water Res.,1992,26(3),371-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700