秸秆生化复合处理技术及系统营养调控在肉羊日粮配制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用生化复合处理方法研究了其对农作物秸秆营养价值和瘤胃降解率的影响,并利用体外法(in vitro)研究了不同日粮结构和瘤胃调控剂对日粮中粗纤维体外降解及其体外发酵合成产物的影响,旨在通过秸秆的加工调制、饲料间的配合及瘤胃调控法提高秸秆的营养价值和利用率,并为秸秆类饲料和不同瘤胃调控剂在肉羊日粮中的合理应用及其日粮的配制提供理论依据。
     1.生化复合处理提高作物秸秆营养价值方法的研究
     运用正交优化混合位级L_(18)(6~1×3~6)法,在7种因素的作用下对玉米秸、麦秸和稻草秸进行了生化复合处理,经过对秸秆中营养成分的检测,筛选本研究中提高秸秆中粗蛋白和降低NDF和ADF的最佳处理方法,并选4只安装永久性瘤胃瘘的滩寒杂交一代羯羊(体重25±2.0 Kg),用尼龙袋法测定了处理后及未处理秸秆瘤胃48h的DM、NDF和ADF的消失率。结果表明,提高秸秆的最佳措施使得玉米秸秆的粗蛋白由原来的3.65%提高到14.44%,增长率为295.48%,其瘤胃48h的DM、NDF及ADF的消失率显著高于未处理玉米秸(p<0.05);降低秸秆中NDF和ADF的最好处理方法使得处理麦秸中NDF和ADF分别比原秸秆降低25.91%和24.38%。
     2.组合效应对粗纤维体外降解及日粮体外发酵合成产物影响的研究
     选3只体重相近(25±2.0 Kg),体况良好,安装永久性瘤胃瘘的滩寒杂交一代羯羊供采集瘤胃液用。应用体外产气法,研究饲料组合效应对日粮体外发酵培养效果的影响,并以微生物蛋白合成量、产气、NH_3-N、粗纤维的降解率,VFA(乙酸、丙酸、丁酸)等作为评价因素,对15种不同日粮结构及营养结构的育肥羊全混合日粮体外发酵效果进行综合评判以筛选较优的日粮及其适宜的精粗比,结果表明:饲料组合效应对日粮体外发酵培养效果有显著影响(p<0.05)。且当日粮的精粗比为55:45,其中复合处理玉米秸及苜蓿草粉的替换比例分别为25%和20%时,其体外发酵效果最好。
     3.不同瘤胃调控剂对日粮粗纤维体外降解及体外发酵合成产物影响的研究
     选3只体重相近(25+2.0 Kg),体况良好,安装永久性瘤胃瘘的滩寒杂交一代羯羊供采集瘤胃液用。应用体外产气法研究了不同瘤胃调控剂对肉羊秸秆型全混合日粮体外发酵的影响,结果表明:以全混合日粮为发酵底物时,细菌-N合成量及日粮中的粗纤维降解率开始随莫能菌素浓度的升高而增加,两者分别与瘤胃素的浓度呈二次幂函数关系,且当瘤胃素的浓度为0.0323mg/ml时,细菌-N的合成量最高;浓度为0.0287mg/ml时,粗纤维的降解率最高;同时,瘤胃素的添加显著提高了日粮体外发酵过程中细菌-N的合成量(p<0.05);瘤胃素对体外产气有
    
    抑制作用,其浓度与产气量呈负相关,并随其浓度增加乙丙酸比例降低;当发酵
    底物中添加YC后,培养液中细菌氮的合成量增加,但与对照组相比差异不显著
    (P>0.05)。YC对发酵底物中的粗纤维发酵24h后的降解率有显著影响(P<0 .05),
    且培养液中NH,一N的浓度显著高于对赚组(P<0 .05),但对乙丙酸比例影响不显著
    (P>O.05)。同时,本试验表明瘤胃素、Yc和稀土对日粮体外发酵效果有明显的互
    作效应(P<0.05)。
The biochemical processing methods were applied in the first experiment to improve nutrient value of crop fodder and its degradation rate in situiand based on in viro, other experiments were conducted to study the effects of various concentration/roughage of mutton sheep total mixed ration and rumen manipulation doses on crude fiber degradation and fermenting synthesized production of the tested rations.
    1. Study on biochemical treatment methods to improve nutrient value of crop fodder
    The Orthogonal Experiment Design [L18 (61X3) ] of seven factors was applied in this experiment and through biochemical treatment methods the maize stover, wheat straw and rice straw were processed, then by nutrient ingredients detection of the treated fodder to screen the optimum method of improving their nutrient value in this test. Meanwhile, the in situ degradation rate of the treated and untreated fodder were determined with 4 Tan-Han crossbreed castrated sheep fitted with permanent cannulas in the rumen. The results show that the crude protein percentage content of maize stover be improved from 3.65% to 14.44%, and its DM.NDF, ADF in situ degradation rate is higher than untreated maize stover(p<0.05) ;the NDF and ADF percentage content of treated wheat straw decreased by 25.91% and 24.38% respectively compared with untreated wheat straw by using optimum methods in this study.
    2. Associative effects of different feeds on in vitro crude fiber degradation and fermentation effects of various fattening lamb total mixed rations
    Three Tan-Han crossbreed castrated lamb fitted with permanent cannulas were used as donated animals for collecting rumen fluid. Applying the method of in vitro gas production and comprehensive judgment of multiple factors, with the multiple factors of gas production, microorganism protein production, degradation rate of crude fiber, VFA production and concentration of NHa-N, to evaluate the fermentation effects of 15 kinds of various feed and nutrient compose of fattening lamb total mixed rations. The results show that the associative effects of ration on its in vitro fermentation results is significantly(p<0.05),and the comprehensive fermentation character of the ration, which roughage and concentration rate is 45:55
    
    
    and the biochemical treatment corn straw and alfalfa powder substitute rate in ration are 35% and 20% respectively, is the best. 3. Different rumen manipulation doses on in vitro crude fiber degradation and the fermentation effect of various fattening lamb total mixed rations
    Three Tan-Han crossbreed castrated lamb fitted with permanent cannulas were used as donated animals for collecting rumen fluid. Based on in vitro, the experiment was conducted to study on the effects of different rumen manipulation doses on the fermentation effect of various fating lamb total mixed ration . The results showed that when the tested ration added monesin and fermented in vitro, the yield of bacterial-N and the crude fiber(CF) degradation were increased with the increase of monesin concentration at first and reached maximum value as the monesin concentration were 0.0287mg/ml and 0.0323mg/ml respectively;The effect of monesin concentration on the yield of bacterial-N was significantly(p<0.05);The gas production was restrained after monesin was added in the tested ration; The acetone yield was decreased with the increase of monesin concentration ; The yield of bacterial-N in fermenting solution was increased when YC was added in the ration but the difference was not significant compared with the co
    ntrol group(p>0.05);However, YC effect the crude fiber degradation significantly after fermenting 24h in vitro(p<0. 05), and the concentration of NHrN was higher than control group(p<0.05),but on the acetic acid/acetone , the YC effect was not significantly(p>0.05). Meanwhile, the experiment results showed that monesin, YC and rare earth have distinct interaction on the fermentation results of test ration.
引文
[1] 赵守仁,等.用生物技术开发秸秆饲料.资源.饲料工业,1997,18(2):34-36
    [2] 王建华,等.开发秸秆发酵饲料的思考.中国饲料,1997,(14):13-16
    [3] 王建华,等.秸秆发酵饲料的研究.中国饲料,1998,(3):36-37
    [4] 曹玉凤,等.生物技术在处理秸秆饲料中的应用.饲料研究,1999,(1):25-26
    [5] 陈洪章,等.直接利用秸秆发酵蛋白饲料的可行性研究.饲料研究1996,9:4-5
    [6] 王仁振,碱化秸秆的工业化生产技术.饲料工业,1997,18(5):1-3
    [7] 张凤菊,等.秸秆资源的饲料化利用.农机化研究,2002,2:20-21
    [8] 李大鹏,等.利用生物技术开发玉米秸秆饲料资源的研究.饲料研究,2001,(2)14-15
    [9] 王仁振,秸秆类粗纤维饲料生化加工技术的研究.饲料工业,1999,20(3):8-12
    [10] 刘稼芳,等.秸秆资源作为饲料的开发利用.饲料博览,1998,10(2):20-21
    [11] 毛华明,等.尿素和氢氧化钙处理作物秸秆提高提高营养价值的研究.中国畜牧杂志,1991,27(5):3-5
    [12] 秦为琳,应用气相色谱仪测定瘤胃挥发性脂肪酸方法的研究进展,南京农学院学报,1994,(4)
    [13] 谭支良,卢德勋,提高粗饲料利用率的系统组合营养技术及其组合效应的研究进展,饲料博览,1999,11(7):6-10
    [14] 苏海涯,等,反刍动物饲料间的组合效应,饲料博览,2002,8:18-19
    [15] 农业模糊数学[M].郑州.河南科技出版社。1996
    [16] 唐一国等,体外产气法在评定草食家畜饲料营养价值上的应用,草食家畜,2003,2:47-50
    [17] 杨曙明,测定反刍动物饲料消化率体外方法的研究进展,中国饲料,1997,20:33-35
    [18] 张辉等,反刍动物饲料组合效应的研究进展,青海畜牧兽医杂志,1996,1:34-36
    [19] 高明等,反刍饲料间的组合效应,内蒙古畜牧科学,1997,3:20-22
    [20] 陈化鹏等,体外消化试验的初步评价,东北林业大学学报,1997,25:81-84
    [21] 赵国琦等,In sacco和In vitro法测定绵羊瘤胃饲料RNA降解率及微生物蛋白合成效率的研究,江苏农业研究,1999,20(4):47-52
    [22] 熊本海等,利用体外产气法研究粗饲料的产气曲线及5种养分的发酵系数,畜牧兽医学报,2001,32(2):113-121
    [23] 徐明等,瘤胃素在反刍动物生产中的应用,饲料工业,2002,23(9):27-29
    [24] 吉增强等,瘤胃纤维素分解菌粗生长物质的探讨,中国畜牧杂志,1997,33(3):42-43
    [25] 林雪彦等,体外发酵试验莫能菌素溶剂及其适宜浓度筛选的研究,草食家畜,1999,4:40-42
    [26] 王海珍等,瘤胃内纤维的降解机制及其调控,国外畜牧科技,2002,29(4):3-6
    [27] 林雪彦等,瘤胃微生物蛋白产量的调控,山东畜牧兽医,2000(1):29-30
    
    
    [28] 秦为琳,应用气相色谱仪测定瘤胃挥发性脂肪酸方法的研究进展,南京农学院学报,1994,(4)
    [29] 赵广永,瘤胃发酵调控研究进展,动物营养学报,1999,11:21-28
    [30] 安登第,瘤胃发酵调控研究进展,甘肃农业大学学报,2002,1:11-20
    [31] 桂荣等,稀土对阿尔巴斯绒山羊瘤胃发酵、消化代谢及其生产性能的影响,畜牧兽医学报,1995,26(6):515-521
    [32] 卢庆萍,体内法、体外法研究纤维素酶、活性酵母培养物(YC)对瘤胃发酵的影响,中国草食动物,1999,5(1)3-5
    [33] 时建忠,活性酵母的研究进展,饲料研究,1998,(3):11-16
    [34] 尚磊等,新型饲料添加剂-稀土,饲料与畜牧,1991,9(3):3
    [35] 张俊奇.肉羊补饲稀土元素效果及其机理的研究.硕士学位论文,1991
    [36] 童世泸等.稀土的生物学效应.稀土,1987,4:42—54.
    [37] 赖松家等.瘤胃内环境调控对饲料消化率影响的研究.四川畜牧兽医,2000,113(27):26—27.
    [38] 卢德勋.反刍动物营养调控理论及其应用[J].内蒙古畜牧科学,1993(增刊).
    [39] 吉增福等.瘤胃纤维分解细菌促生长物质的探讨.中国畜牧杂志,1997,3(33):42—43
    [40] 柴巍中.瘤胃发酵调控的理论、方法、研究现状及最新进展.37—43.
    [41] 陈化鹏.提外消化试验法的初步探讨.东北林业大学学报,1997,5(25):81—84.
    [42] 懂卫民.秸秆饲料加工利用前景展望.饲料与畜牧.2001,(3):11—12
    [43] 王钟建.提高秸秆营养价值研究进展.饲料工业.1998,19(15):12—14
    [44] 吴克谦.秸秆资源作为饲料的开发与利用.中国兽医学报.1997,17(4):412—416
    [45] 冯仰廉.反刍动物碳水化合物营养.北京农业大学自编教材.1992,33
    [46] 冯仰廉.中国反刍家畜在某些方面的研究进展.中国农业大学自编教材.1991,129
    [47] 毛华明,等.复合化学处理与成型加工工艺条件对秸秆营养价值影响的研究.中国饲料.1999,(7):8—9
    [48] 杨文大,等.秸秆机械复合化学处理技术.饲料加工.1999,20(1):6—8
    [49] 张英来,等.青贮酶制剂.中国奶牛.2001,(6):
    [50] 卢庆萍,等.秸秆处理技术的研究.中国饲料.1999,(10):26—28
    [51] 孔祥浩.泌乳早期乳牛日粮中添加纤维分解酶的效果.饲料博览.2000,(6):26
    [52] 王立新,等.多菌种发酵粗饲料提高其利用率的研究.饲料研究.2000,(5):30—32
    [53] 刘晓牧,等.白腐真菌与秸秆饲料的有效利用.饲料研究.2000,(1):42—43
    [54] 付京花,等.生物技术在降解秸秆木质素中的应用.饲料工业.2001,22(6):38—39
    [55] 闵小梅,等.白腐真菌处理秸秆的研究.饲料研究.2000,(9):7—9
    [56] 孟冬丽.秸秆厌氧发酵活杆菌的研究及应用. 饲料研究.2001,(5):30—31
    [57] 郝正里,等.反刍动物营养学.兰州.甘肃民族出版社.2000
    
    
    [58] E.R.Φrskov,M.Ryle.反刍动物营养学.北京.中国农业科技出版社.1992
    [59] 周鼎年.国外秸秆饲料化的研究进展.中国良种黄牛,1985(3):1~32
    [60] 安登第.秸秆饲料的微生物开发技术.饲料博览,1995(3):28~293
    [61] 贾万富.农作物秸秆饲料的加工利用.中国畜牧杂志,1996(1):43~444
    [62] 刘宗贵,陈国胜,胡刚安等.氢氧化钠+尿素同步处理稻草喂牛的试验研究.豫南农专学报,1991(1):16~17
    [63] 李俐,丁角立 肽对体外混合培养瘤胃微生物发酵和生长影响的研究[J] 畜牧兽学报,1998,31(2):113 119
    [64] 卢忠民 陈杰 韩正康 日粮添加硫、磷提高水牛瘤胃纤维素消化率的研究[J] 动物营养学报,1996,10(3):10—13
    [65] 谭支良,卢德勋,胡明,等绵羊日粮不同碳水化合物比例对纤维物质在消化道不同部位流通量和消化率的影响[J]动物营养学报,1999,11(4):29—38
    [66] 孟庆祥 精料水平与秸秆氨化对绵羊日粮消化、氮存留与进食量的影响[J]北京农业大学学报,1991,(3):109—111
    [67] 王加启,冯仰廉 不同来源可发酵碳水化合物和可降解氮合成瘤胃微生物蛋白质效率的研究[J] 畜牧兽医学报,1994,27(2):97—104
    [68] 冯宗慈,高明.通过比色法测定瘤胃液氨氮含量方法的改进[J].内蒙古畜牧科学,1993,3:42~43.
    [69] 叶均安.莫能菌素的添加对瘤胃发酵培养的影响.饲料研究,2003,6:39
    [70] 霍鲜鲜等.不同精粗比日粮对绵羊瘤胃内纤维素酶活的影响.甘肃畜牧兽医.2003,5:16—20
    [71] Forbers, E B., et al., 1931. The metabolizable energy and net energy values of corn meal when fed exclusively and in combination with alfalfa hay. J. Agric. Rec,43:1015-1026
    [72] Mould,F L.1988.饲料的组合效应.E.R Φrskov著“饲料学”第11章,323-339,北京农业大学出版社
    [73] Gill, M and Powell, C. 1993. Prediction of associative effects of mixing feeds .In "Proceeding of the international conference on increasing livestock production though utilization of local resources ". 393-405
    [74] Preston ,T. R. 1985. Associated effects and interactions among feed ingredients. In "FAO animal production and heath paper No. 86" 142-155
    [75] Menke, K.H. and Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid [J]. Animal Research and Development. 1988, (28):7-55
    [76] Menke, K. H.. et.al, J. Agric.Sic, Camb. The Gas Production Method. [J] 1979, (93) :217-222.
    [77] Getachew, G.,Blummel, M., Makkar, H. P. S., Becker , K., In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review [J]. Anim. Feed Sci. Technol. 1998, (72):261-281
    [78] Blaxter, K.L. 1962. The energy Metabolism of ruminants, Hutchinson, London
    [79] Chandler P. Associative effects of different feeds can influence cow
    
    performance. Feed Stuff.,1992, June, 22:10
    [80] Preston T.R Associated effect and interaction among feed ingredients. FAO:Animal production and health paper. 1989,63:M-21
    [81] Gill M. Prediction of associative effect of mixed feed. FAO:International Preference on Animal Production with Local Resources, 1993
    [82] Poos M I ,L Hanson, T J Klollpfenstein .1999. Monesin effect on diet digestibility ,ruminal protien bypass and microbial protein synthesis [J] Animal. Sci,48:1516-1524
    [83] Yang C M J, JB Russell. 1993. The effect of monesin supple mentation on ruminal ammonia accumulation in vitro and the mumbers of amino acid-fermenting bacteria[J].J Anima1. Sci.,71:3470-3476
    [84] Abe U,I J Lean, A Rabiee, J Porter, C Graham. 1994. Effect of sodium monesinonreproductiveperformanceofdairycattle. Ⅱ. Effectsonmetabo lites in plasm, resumption of ovarian cyclicity and oestrus in lactating cows [J].Aust vet.J,71:227-281
    [85] Goodrich R D,J E Garrett, B R Gast, M A kirick, B A Lsrson, J C Meiske. 1994. Influence of monesin on the performance of cattle[J], J Anim. sci ,58:1484-1498
    [86] Grings E E, j r Males. 1987. Perfoumande, blood and ruminal characteristics of cows receiving monesin and magnesium supplement. J Anim. sci ,66:566-573
    [87] Hanson T L,T Kopfendtien. 1998. Monesin, protein source and protein levels for growing steers. J Anim. sci,48:474-479
    [88] Rogers P A M, MJ Hope-Gawdery, 1980. Monesin, ketosis and nitrate toxicity in cows. [J]Vet. Rec.,106:311
    [89] Stephenson K A, IJLean, M L Curtis, J K Garyin, I B Lowe. 1997. Effects of sodium monesin on the metabolisim of peri-parturient dairy cows[J] J Dairy. sci , 80:830-837
    [90] Carro M D Lebzion P,rohr K,1992 Effect of yeast culture on rumen fermentation, digestibility and duodenal flow in dairy cows fed a silage based diet. Livestock science, 32:219-229
    [91] Newbold ,Williams P E V, Mekain N, Walker A, Wallace R J. 1990. The effects of yeast cultureonyeast numbers and fermentationin the rumen of sheep. Proc.Nutr. soc.,49:47A
    [92] Fondevila M. Newbold C J, Hetten P M, Orskov E R. 1990. A note on the effect of Aspergillus Oryzae fermentation extract on the rumen fermentation of sheep given straw. Anim. Prod.,51:422-425
    [93] Mould F L, Orskov E R. 1983/1984. Manipulation of rumen fluid pH and its influence on celluloysis in sacco dry matter degradation and the rumen microflora of sheep. PROC. Nutr. Soc,.49:47A
    [94] Harrsion D G. BEever D E, Thomson D J, Osbourn D F, 1975. Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen. J Agri. sci., camb, 85:93-101
    [95] Harrsion D G. BEever D E, Thomson D J, Osbourn D F, 1976. Manipulation
    
    of rumen fermentation in sheep, J Food sci. Agric,27:617-620
    [96] Mould FL, Orskov ER. Manipulation of rumen fluid Ph and its influence on celluloysis in sacco ,drymatter degradation and the rumen microflora of sheep offered either hay or concentrate[J] Animal Feed Science and Technology, 1983,10:1—14
    [97] Akin DE, Rigsby LL, LyonCE, etal. Relationship of tissued digestion to textural strength in bermudagrass and alfalfa stems[J] crop Sci ,1990,30:990-993
    [98] Sundstol F. Livestock Production Sci, 1988,19:137—158
    [99] Wukeqian et al. Effect of diet composition on components of the rumen liquid and DMdisappearance of ammoniated straw in the rumen: In: conference of increasing livestockproduction through utilization of local resources . Beijing, 1993, 305-306
    [100] Forberg C W et al. Integration of rumen microorganisms and their hydrolytic enzymes. In: Akin DE, Ljungdahl ,L G, Wilson JR ,Harris P J(eds). Microbial opportunities to improveiignocellulose utilization by ruminants. Anim Sci, 1999,64:783-791
    [101] Jones DF, Hoover WH, Miller TK Webster. Effects of Concentrations of PeptidesonMetabolism in Continuous Cluture[J]Anim Sci, 1998,76:611-616
    [102] ChenG, Strobel HJ, Russell JB, etal. Effect of hydrophobicity on utilization of peptides by ruminal bacterial in vitro[J]Appl Environ Yicrobio, 1987,53:2021 2025
    [103] Griswold KE, Hoover WH, Miller TK, etal. Effect of form of nitrogen on growth of ruminal microbes in continuous culture [J] Anim Sci, 1996,74:483 491 [11]
    [104] Argyle JL, Baldwin RL. Effects of amino acids and peptides on rumen microbial growth yields [J] Dairy Sci, 1989,72:2017 2027
    [105] Perdok HB, Leng RA, Hyperexcibility in cattle fed ammoniated roughages [J]Animal Feed Science and Technology, 1987,17:121 143 [9]
    [106] Miller BG, Muntifiering RB. Effect of forage concentrate on kinetics of forage fiber digestion in vitro [J]. JDairy Sci, 1985,55:125~129.
    [107] Slyter LL. Ability of pH selected mixll ruminal microbial population to digest fiber at various pH[J]. A ppl. Environ Microbial, 1986,52:390~391.
    [108] Zinn RA, Owens FN.A rapid procedure for purine measurement and its use for restimating net ruminal protein synthesis[J]. Animal Sci, 1986,66:1~166.
    [109] Murphy JJ, Kennelly JJ. Effect of protein concentrate and protein source on the degradability of dry matter and protein in situ[J].Dairy Sci, 1987,70:1841~1849.
    [110] Allison MN, Smith RH. Biosythesis of amino acids by rumimal microrganisms [J].Anim Sci, 1967,29:797~807.
    [111] Ortega ME, Stern MD, Satter LD. The effect of rumen ammonia concentrate on dry matter disappearance in situ [J].Dairy Sci, 1979,62(Suppl.):76(A
    
    bstr).
    [112] Preston RR. Trapieal Animal Feeding Aman for research workers No 126 FAO Fechuical papers:Animal Production and Health papel, 1995, P101.
    [113] Sharp WM, Johnson RT, OWens FN. Sharp WM, Johnson RT, Owens FN. Ruminal VFA production with steers fed whole or ground corn grain [J].J Animal Science, 1982,55:1505~1514.
    [114] Abe N,. JLean, ARabiee, JPorter, CGraham. 1994. i Effect of sodium monesin on reproductive performance of dairy cattle, ii. Effects on metabolites in plasma, resumption of ovarian cyclicity and oestrus in lactating cows [J]. Aust. Vet. J, 71:277-281.
    [115] Bergn WG, DBBates. 1984. Ionophores: Their effects on production efficiency and mode of action [J]. J Anim. Sci., 58:1465.
    [116] GoodrichRD, JEGarrett, DRGast, MAKirick, DALarson, JCMeiske. 1984. Infl uence of monesin on the performance of cattle [J]. J Anim. Sci.,58: 1484-1498.
    [117] GringsEE, JRMales. 1987. performance, blood and ruminalcharacteristics of cows receiving monesin and magnesium supplement [J]. J Anim. Sci., 66:566-573.
    [118] Hanson TL, TKopfenstein. 1979. Monesin ,protein source and protein levels for growing steers [J]. J Anim. Sci.,48:474-479.
    [119] PoosMI, LHanson, TKlopFenstein. 1979. Monesin effects on diet digestibility, ruminal protein by pass and microbial protein synthesis [J]. J Anim. Sci.,, 48: 1516-1524.
    [120] Rogers PAM, MJHope-Cawdery. 1980. Monesin, ketosis and nitrate toxicity in cows [J]. Vet. Rec.,106:311.
    [121] Russell JB, HJS TRStrobel .1989. Effects of ionophores on ruminal fermantation Russel[J]. Appl. Environ. Microbiol,. 55:1-6.
    [123] Saucer FD, JKGK ramer, WJCant well. 1989. Anti-ketogenic effects of monesin in early lactation [J]. J Dairy Sci., 72: 436-442.
    [124] Stephenson KA, IJLean, MLCurtis, JKGaryin, IBLowe. 1997. Effect of sodium monesin on the metabolisin of peri-parturient dairy cows[J] J Dairy Sci.,, 80: 830-837.
    [125] Stewart CS, MPBryant .1988. The rumen bacterial[A]. In: The rumen Microbial Ecosystem[c].PNHobson (ED). Elsevier Science Publishing,New York.. p21.
    [126] Yang CMJ, JBRussell. 1993. The effect of monesin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria [J]. J Anim. Sci., 71:3470-3476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700