微污染饮用水源人工湿地预处理效能与作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于水环境污染日益严重,水源地水质恶化,现有常规饮用水处理工艺难以适应当前饮用水水质状况。因此,寻找一种高效、简单、经济的微污染饮用水源预处理技术就十分必要。为此,本研究以济南玉清湖水库为依托,分别采用水平流人工湿地系统、上下折流人工湿地系统和表流人工湿地系统对沉砂后的微污染黄河水进行了预处理试验,对微污染饮用水源人工湿地预处理效能与作用机理展开了研究。
     经预处理效能试验研究表明:水平流人工湿地系统对COD,TP,TN和NH4+-N平均去除率分别为49.55%,49.36%,52.81%和48.36%;上下折流人工湿地系统对COD,TP,TN和NH4+-N平均去除率分别为55.87%,50.42%,58.74%,和55.74%;表流人工湿地系统对COD,TP,TN和NH4+-N平均去除率分别为38.27%,41.69%,45.80%和39.86%。上下折流人工湿地处理效果最佳,其次是水平流人工湿地,表流人工湿地处理效果最差。
     通过对人工湿地处理系统影响因素分析表明:进水流量的控制非常关键,适宜的进水流量处理效果最佳;季节温度与处理效果密切相关,处理效果总的趋势为夏季优于秋季,秋季优于春季,冬季最差;从试验期间进水污染物浓度来看,系统对污染物去除量随进水污染物浓度的增加而增加,没有出现明显的偏离。这表明在玉清湖水库现有的进水污染物浓度条件下,对湿地系统不会存在污染负荷过重的威胁,也说明系统仍有承载更大污染负荷的潜力;同时,根据不同污染物的降解情况,构建了三套人工湿地系统的一级动力学降解模型。
     通过对人工湿地沿程及不同高度的污染物浓度变化试验分析表明,人工湿地系统对污染物的降解是沿人工湿地水流方向逐渐降低的,污染物主要在前部去除的,潜流人工湿地床体上部对污染物去除效果更好。
     通过对湿地植物与基质作用研究表明:一方面,植物通过吸收直接去除氮、磷,而且在生长季节作用更明显,另一方面植物根系可以过滤、截留去除水中污染物,并为微生物提供附着表面,从而发挥了微生物的降解作用,这在人工湿地系统起重要的作用;在植物作用分析中我们还看到在床体前部植物生长效果略好于后部,对氮、磷吸收也略高于后部,这正与湿地系统对污染物的降解是沿人工湿地水流方向逐渐降低相吻合。人工湿地基质能够吸附水中一定的污染物质,而且,成熟基质表面布满了各种类型微生物。试验表明基质具有很强的污染物降解能力,对水中污染物的去除发挥重要作用。
     采用聚合酶链式反应—变性梯度凝胶电泳(Polymerse Chain Reaction- Denaturing Gradient Gel Electrophoresis, PCR-DGGE)考察了三套人工湿地系统生物学特性,结果表明不同类型的人工湿地系统对微生物种群结构和分布具有显著影响。同时,也揭示了在人工湿地系统中微生物的群落结构沿水流方向的变化规律。在上下折流式人工湿地系统中,优势菌群由系统前端的Vogesella属和Microvirgula属演变成后端的Rhodoferax属和Fulvimonas属;在水平流人工湿地系统中,优势菌群由系统前端的Cetobacterium属和Thermofilum属演变成后端的Sulfuricurvum属和Xylophilus属;在表流人工湿地系统中,优势菌群由系统前端的Fulvimonas属演变成后端的Salinisphaera属。
     通过对三套人工湿地系统中细菌的分离、纯化和筛选得到5株具有聚磷性能的菌株、6株具有硝化性能的菌株和6株具有反硝化性能的菌株。通过16SrDNA测序,得到了筛选出来的17株细菌的DNA全序列,并在GenBank中进行了相似性检索,结果表明:筛选得到的17株细菌分别属于Bacillus属和Delftia属。说明这两个菌属的细菌在三套人工湿地系统中是普遍存在的,并对污染物去除起着重要作用。
     对试验的上下折流人工湿地系统、表流人工湿地系统以日均进水量2m3,运行周期20年为例进行经济核算。结果表明:上下折流人工湿地建设投资为2076.73元,运行成本为0.05元/t;而表流人工湿地建设投资为2365.01元,运行成本为0.05元/t。这表明人工湿地预处理技术是经济可行的。
In recent years, as the increasing pollution of the water environment, the water quality of the water resource becomes worse, so that the conventional water treatment processes couldn’t adapt to the present situation of water quality. Thus an efficient, simple and economic micro-polluted drinking water resource pretreatment process is badly wanted. This research was carried out in Yuqing Lake Reservoir in Jinan, and there were three types of the constructed wetland systems, including horizontal flow constructed wetland system, up and down fold flow constructed wetland system and surface flow constructed wetland system. All the wetland systems were used to pretreat the raw water which came from Yellow river after sedimentation. The objective of this study was to investigate the pretreatment efficiency and mechanism of the constructed wetland systems.
     The results of pretreatment efficiency experiment showed that the average removal efficiencies of COD, TP, TN and NH4+-N were 49.55%, 49.36%, 52.81% and 48.36% in the horizontal flow constructed wetland system respectively. The average removal efficiencies of COD, TP, TN and NH4+-N were 55.87%, 50.42%, 58.74% and 55.74% in the up and down fold flow constructed wetland system respectively. The average removal efficiencies of COD, TP, TN and NH_4~+-N were 38.27%, 41.69%, 45.80% and 39.86% in the surface flow constructed wetland system respectively. Among the three types of the constructed wetland systems, the up and down fold flow constructed wetland system had the best performance, followed by the horizontal flow constructed wetland system and the surface flow constructed wetland system performed the worst.
     From the analysis of the impact factors in the constructed wetland systems, it can be seen that a key factor was to control the influent flux, and proper influent flux can obtain the optimum treatment effect. The disposal performance was closely correlated with the temperature of different seasons. And the trend of treatment effects in summer had the best treatment performance. They performed better in autumn than in spring, and in winter they performed the worst. During the experiment, the removal efficiencies of the pollutants increased with an increase of the pollutants concentration in the raw water, and there was no obvious deviation. This indicated that the concentration of the pollutants in YuQing lake reservoir influent can’t threaten the steady operation of the constructed wetland system. It was also observed that the systems had the ability to bear higher load of pollution. Meanwhile, according to the degration situation of different contaminants, first order kinetics removal model for these three constructed wetland systems was established.
     According to the longitudinal variation of pollutants concentration in constructed wetland and different height, it can be clearly observed that the pollutants removal efficiencies in the constructed wetland systems declined along the water flow direction, and most of the pollutants were removed in the front of the water flow direction. Moreover, the upside of the subsurface constructed wetland system had a better treatment effect.
     From the analysis of the plants and substrates in the constructed wetland systems, it can be clearly observed that the plants removed the nitrogen and phosphorus directly by absorption, and this process performed better in the growing season of plants. On the other hand, the pollutants in the raw water were filtrated and absorbed by the plants’roots. The roots also provided a habitat for the microorganism and then, the microorganism played a degradation function on the pollutant, which had a significant effect in the constructed wetland systems. The plants on the foreside of the bed grew better than those grew on the rearward, and they can also absorb more nitrogen and phosphorus. This regulation was accorded with the one that the pollutants removal efficiencies declined along the water flow direction. The substrate in the constructed wetland systems can absorb a lot of pollutants, and there were many microorganisms on the mature substrate surface. Experiment showed that the substrate had a strong ability of biodegradation, and played an important role in the process of pollutants removal.
     The microbial community characteristic was investigated by PCR-DGGE, and the results showed that different types of constructed wetlands exerted great influence on the structure and distribution of microbial community. At the same time, it revealed the regularity that the structure of microbial community in the constructed wetland system varied with the orientations of the water flow. In the up and down fold flow constructed wetland system, the predominant microbial community was Vogesella sp. and Microvirgula sp. in the foreside of the system, and the predominant microbial community was Rhodoferax sp. and Fulvimonas sp. in the rearward. In the horizontal flow constructed wetland system, the predominant microbial community was Cetobacterium sp. and Thermofilum sp. in the foreside of the system, and the predominant microbial community was Sulfuricurvum sp. and Xylophilus sp. in the rearward. In the surface constructed wetland system, the predominant microbial community was Fulvimonas sp. in the foreside of the system, and the predominant microbial community was Salinisphaera sp. in the rearward. This also revealed the variational law of the microbial community along water flow direction in the constructed wetlands.
     Five strains of phosphorus-accumulating organisms, six strains of nitrobacteria and six strains of denitrifying bacteria were isolated from the three constructed wetland systems. From the 16SrDNA sequences measurement the full sequences of the seventeen strains that screened out the constructed wetland systems were obtained, and similarity retrieval was carried out in GenBank and the most similar strains were obtained. It was found that the isolated strains belonged to Bacillus sp. and Delftia sp., which indicated that there were a lot of bacteria belonging to those two genera in the constructed wetland systems. It played an important role in removing the pollutants.
     Economic analysis of the up and down fold flow constructed wetland system and the surface flow constructed wetland system were carried out when influent quantity was 2m3·d-1and the circulate cycle was 20 years. The results showed that the construction cost of the former system was 2076.73 yuan and the operation cost was 0.05 yuan/t. the construction cost of the latter system was 2365.01 yuan, and the operation cost was 0.05 yuan/t. It can be concluded that the constructed wetland pretreatment system was an economical pretreatment system.
引文
1中华人民共和国水利部. 2005年中国水资源公报.中国水利水电出版社, 2006:1~13
    2夏四清,高廷耀,周增炎.受污染饮用水水源生物预处理技术.上海环境科学. 2000, 19(6):285~287
    3中国人民共和国卫生部.生活饮用水卫生标准(GB5749~ 2006).中国卫生出版社, 2006:15~30
    4 S. Kunikane. Advanced Membrane Technology for Application to Water Treatment. Water Supply. 1998, 16(1):313~318
    5桑军强,张锡辉,张声等.原水生物预处理的轻质滤料滤池和陶池运行效果对比.环境科学. 2004, 25(3):40~43
    6刘卫华.微污染原水化学预氧化处理技术试验研究与分析比较.天津大学硕士学位论文. 2004:21~39
    7 J. P. Hoek, J. A. M. H. Hofman The Use of Biological Activated Carbon Filtration for the Removal of Natural Organic Matter and Organic Micropollutants from Water. Water Science and Technology. 1999, 40(9):257~264
    8 A. D.Seyed, K. Tanju, C.Wei. Tailoring Activated Carbons for Enhanced Removal of Natural Organic Matter from Naturalwaters. Carbon. 2004, 42: 547~557
    9张华,徐彬士.上海惠南水厂微污染水源水生物预处理工程设计.给水排水. 1999, 25(8):1~4
    10梅翔,陈洪斌,高廷耀.微污染水源水生物接触氧化处理工艺中几种填料处理效果的初步比较.给水排水. 1999, 26(5):1~3
    11于鑫,李旭东,杨俊仕.微污染原水的生物流化床预处理技术试验研究.环境工程. 1999, 17(5):13~16
    12刘文君,贺北平,张锡辉.生物预处理对受有机污染源水中胶体Zeta电位的影响研究.中国给水排水. 1996, 2(4):27~29.
    13 H. Kazuaki, N. Jun, T. Satoshi, et al. Simple Prediction of Oxygen Penetration Depth in Biofilms for Wastewater Treatment. Biochemical Engineering Journal. 2004, 19(1):61~68
    14 G. Tjasa. Bulc, O.Alenka. The use of Constructed Wetland for Dye-rich Textile Wastewater Treatment Journal of Hazardous Materials. 2008, 155:76~82
    15 J. b. Li, Y. Wen, Q. Zhou, et al. Influence of Vegetation and Substrate on the Removal and Transformation of Dissolved Organic Matter in Horizontal Subsurface-flow Constructed Wetlands Bioresource Technology. 2008, 99:4990~4996
    16 V. Francis. RBC for Wastewater Treatment in Aequatorial Climate. Water Science and Technology. 1997, 35(8):177~184
    17王永仪,蒋展鹏,顾夏声.二氧化氯消毒现状与发展.中国给水排水. 1996, 12(5):23~25
    18陈翼孙,翁晓姚.二氧化氯在饮用水处理中应用的几个问题.给水排水. 1998, 24(11):61~64
    19孙昕,张金松.饮用水预臭氧化技术的进展.给水排水. 2002, 28(4):7~9
    20王晟,低浓度臭氧化-生物过滤工艺深度处理城市污水的实验研究.西安建筑科技大学硕士论文. 2002:7~8
    21 J. C. Joret. Inactivation of Indigenous Bacteria in Water by Ozone and Chlorine. Water Science and Technology. 1997, 35(11~12):81~86
    22李圭白,马军.用高锰酸钾去除和控制受污染水源水中的致突变物质.给水排水. 1992, 18(2):15~18
    23马军,李圭白,陈忠林等.高锰酸钾除污染生产性试验研究.中国给水排水. 1997, 13(6)13~15
    24 J. P. Hoek, J. Hofman. The Use of Biological Activated Carbon Filtration for the Removal of Natural Organic Matter and Organic Micropollutants from Water. Water Science and Technology. 1999, 40 (9):257~264
    25陈莉,范跃华.微污染原水的处理技术发展与探讨.重庆环境科学. 2002, 24(6):67~69
    26 S. Muramotoet. Effective Removal of Musty Odor in the Kanamachi Purification Plant. Water Science and Technology. 1995, 31(11):219~222
    27刘强.高锰酸钾-湿式粉末活性炭除臭技术研究.西安建筑科技大学硕士论文. 2004:6 13~16
    28谢晖,陈勋贤,付乐等.自来水厂氨氮的活性炭深度处理.水处理技术.2007, 33(2):89~91
    29赵魁义.地球之肾.化学工业出版社, 2002:18~25
    30安树青.湿地生态工程-湿地资源利用与保护的优化模式.化学工业出版社, 2003: 35~49
    31鲁奇.中国湿地消失的因素及保护对策.环境保护. 2001, 10:21~23
    32陈宜瑜.湿地功能与湿地科学的研究方向.湿地科学. 2003, 1(1):17~19
    33 G. M. Vyaeheslavov. The Use of Construeted Wetlands for the Treatment of Run-Off and Drainage Water; the UK and Ukraine Experience. Water Science and Technology. 1996, 33(4~5):315~323
    34 C. L. McJannet, P A. Keddy, F. R. Pick. Nitrogen and Phosphorus Tissue Concentrations in 41 Wetland Plants: a Comparison across Habitats and Functional Groups. Functional Ecology. 1995, 9(2):231~238
    35 P. A. Mays. Comparison of Heavy Metal Accumulation in a Natural Wetland and Constructed Wetlands Receiving Acid Mine Drainage. Ecological Engineering. 2001, 16(4):487~500
    36 N. W. Zhua, P. Anb, B. Krishnakumarc, et al. Effect of Plant Harvest on Methane Emission from Two Constructed Wetlands Designed for the Treatment of Wastewater. Journal of Environmental Management 2007, 85:936~943
    37 Tanner. Plant for Constructed Wetland Treatment Systems-a Comparison of the Growth and Nutrient Uptake of Eight Emergent Species. Ecological Engineering. 1996, 7(1):59~83
    38周凤霞.水生维管束植物对污水的净化效应及其应用前景.污染防治技术. 1998, 11(3):160~162
    39陈毓华,汪俊三,梁明易等.华南地区11种高等水生维管植物净化城镇污水效益评价.农村生态环境. 1995, 11(1):26~29
    40 B. O. Urbanc. Reed Stands in Constructed Wetlands:“Edge Effect”and Photochemical Efficiency of PS2 in Common Reed. Water Science and Technology. 1997, 35(5):143~147
    41戴全裕,蔡述伟,张秀英.多花黑麦草对黄金废水净化与富集的研究.环境科学学报. 1998, 18(5):553~556
    42邓欢欢,葛利云,顾国泉等.垂直流人工湿地基质微生物群落的代谢特性和功能多样性研究.水处理技术. 2007, 33(6)18~21
    43 Vlasta, B. Jarmila, V. Jan. Microbical Characteristics of Constructed Wetlands. Water Science and Technology. 1997, 35(5):117~123
    44丁浩.梦清园芦苇湿地根际微生物特性初步研究.华东师范大学硕士论文. 2007:40~47
    45 G. Joan, O. Esther, S. Enric, et al. Spatial Variations of Temperatur, Redox Potential, and Contaminants in Horizontal Flow Reed Beds. Ecological Engineering. 2003, 21(2):129~142
    46俞孔坚,李迪华,孟亚凡.湿地及其在高科技园区中的营造.中国园林. 2001, 2(1):26~28
    47 F. Graud. Biodegradation of Anthracene and Fluoranthene by Fungi Isolated from an Experimental Constructed Wetland for Wastewater Treatment. Water Research. 2001, 35(17):4126~4136
    48 C. Mclatche, Regulation of Organic Matter Decomposition and Nutrient Release in a Wetland Soil. Journal of Environmental Quality. l998, 27(5):1268~1275
    49 Y. Ann. Influence of Redox Potential on Phosphorus Solubility in Chemically Amended Wetland Organic Soils. Ecological Engineering. 2000, 149(2):169~180
    50李怀正,叶建锋,徐祖信.几种经济型人工湿地基质的除污效能分析.中国给水排水. 2007, 23(19):27~30
    51 K. R. Reddy. Biogeochemical Indicators to Evaluate Pollutant Removal Efficiency in Constructed Wetlands. Water Science and Technology. l997, 35(5):l~10
    52 F. L. Edgar, W. K. Lawrence. Managing Phosphorus-based, Cultral Eutrophication in Wetland: a Conceptual Approach. Ecological Engineering. 1997, 9(2):109~118
    53杨健,陆雍森,王树乾.绿色生态滤池处理城镇污水的中式研究.环境工程. 2001, 19(2):20~22
    54吕炳南,陈志强.污水生物处理新技术.哈尔滨工业大学出版社, 2000:91~92.
    55 E. C. Regan, M. S. Skeffington, M. J. Gormally. Wetland Plant Communities of Turloughs in Southeast Galway/north Clare, Ireland in Relation to Environmental Factors. Aquatic Botany. 2007, 87:22~30
    56陆琦,陈敏娇,郭宗楼.人工湿地优化设计方法研究.农机化研究. 2007, 11: 223~224
    57 H. Kadlec. Surface Flow Constucted Wetlands. Water Science and Technology. 1995, 32(3):1~12
    58 N. Srinivasan. Improvement of Domestic Wastewater Quality by Subsurface Flow Constructed Wetlands. Bioresource Technology. 2000, 75(1):19~25
    59李旭东,张旭,薛玉等.除氮中试研究.环境科学. 2003, 24(3):158~160
    60 R. H. Kadlec. Overview: Surface Flow Consteructed Wetland. Water Science and Technology. 1995, 32(3):1~12
    61 N. R. Khatiwada, C. Polprasert. A. Assessment of Effective Specific Surface Area for free Water Surface constructed Wetlands. Water Science and Technology. 1999, 40(3):83~89.
    62 L. KnightK, J. Payer, R. E. Borer. Constructed Wetlands for Livestock Waste- Water Management. Ecological Engineering. 2000, 15(1):41~55
    63吴振斌,成水平,贺锋等.垂直流人工湿地的设计及净化功能初探.应用生态学报. 2002, 13(6):715~718
    64吴晓磊.人工湿地废水处理机理.环境科学. 1995, 16(3):83~86
    65 S.W. Chen, C.M. Kao, C.R. Jou, et al. Use of a Constructed Wetland for Post-Treatment of Swine Wastewater. Environment Engineering Science. 2008, 25(3):407~417
    66 K. G. Janet, R. S. Otto. Polar Organic Solvent Removal in Microcosm Constructed Wetlands. Water Research. 2005, 39(6):4040~4050
    67 S. A. Christos, A. T. Vassilios. Effects of Temperature, HRT, Vegetation and Porous Media on Removal Efficiency of Pilot-Scale Horizontal Subsurface Flow Constructed Wetland. Ecological Engineering. 2007, 29(2):173~191
    68 K. Thammarat, P. Chongrak. Role of Plant Uptake on Nitrogen Removal in Constructed Wetlands Located in the Tropics. Water Science and Technology. 1997, 36(12):1~8
    69 C. C. Tanner, R. H. Kadlec, M G. Max. Nitrogen Processing Gradients in Subsurface-Flow Treatment Wetlands-Influence of Wastewater Characteris- tics. Ecological Engineering. 2002, 18(4):499~520
    70 C. Ernest, H. B. Andrew. Improving Aquatic Plant Growth Using Propagules and Topsoil in Created Bentonite Wetlands of Wyoming. EcologicalEngineering. 2003, 21(2):175~189
    71 R. E. Keith, C. Hana, Z. Katerina, et al. Plant Growth and Microbial Process in a Constructed Wetland with Phalaris Arundinacea. Ecological Engineering. 2006, 27(2):153~165
    72张丽华,宋长春,王德宣等.沼泽湿地生态系统呼吸与温度、氮素及植物生长的相互关系.环境科学. 2007, 28(1):1~8
    73 C. A. Arias, D. M. Bubba, Brix H. Phosphorus Removal by Sands for Use as Media in Subsurface Flow Constructed Reed Beds. Water Research. 2001, 35(5):1159~1168
    74袁东海,景丽洁,张孟群等.几种人工湿地基质净化磷素的机理.中国环境科学2004, 24(5):614~617
    75 F. Suliman, H. K. French Haugen. Change in Flow and Transport Patters in Horizontal Subsurface Flow Constructed Wetland as a Result of Biological Growth. Ecological Engineering. 2006, 27(2):124~133
    76 H..C. Hoppe. Microbial Decomposition in Aquatic Environments: Combined Processes of Extracellular Activity and Substrate Uptake. Applied and Environmental Microbiology. 1988, 54(3):784~790
    77 M. S. Fennessy, J. K. Cronk, W. J. Mitsch. Macrophyte Productivity and Community Development in Created Freshwater Wetlands Under Experimental Hydrological Conditions. Ecological Engineering. 1994, 3(4):469~484
    78 V. Christina, A. Reimo, N. Kaspar, et al. Dynamics of Phosphorus, Nitrogen and Carbon Removal in a Horizontal Subsurface Flow Constructed Wetland. Science of the Total Environment. 2007, 380(1):66~74
    79 M. B. Green. Constructed Reed Beds: A Cost-Effectiove Way to Polish Waste-Water Effluents for Small Communities Water. Environment Research. 1994, 66(4):188~193
    80 C. House.Combining Constructed Wetlands and Aquatic and Soil Filter for Reclamation and Reuse of Water. Ecological Engineering. 1999, 12(1):27~38
    81 M. Ays, S. Selcuk. A Three-Dimensional Water Quality- Macrophyte Interaction Model for Shallow Lakes. Ecological Modelling. 2000, 133(3):161~180
    82 k. Hana, B. Hans, K. Ji, et al. Organic Acids in the Sediments of WetlandsDominated by Phragmites Australis: Evidence of Phytotoxic Concentrations. Aquatic Botany. 1999, 64(4):303~315
    83 A. Drizo, C.A. Frost, Grace J. Physicochemical Screening of Phosphate Removing Substrates for Use in Constructed Wetland Systems. Water Research. 1999, 33(7):3595~3602
    84 G. B. Steven, B. S. George. An Approach toward Rational Design of Constructed Wetlands for Wastewater Treatment. Ecological Engineering. 1995, 4(4):249~275.
    85 M. G. Healy, M. Rodgers, J. Mulqueen. Treatment of Dairy Wastewater Using Constructed Wetlands and Intermittent Sand Filters. Bioresource Technology. 2007, 98:2268~2281
    86郭飞.人工湿地污水处理影响因素研究及优化.同济大学硕士论文, 2006:37~43
    87何亚丽,朱伟萍.利用人工湿地处理小区污水的技术研究.许昌学院学报. 2003, 22(2):49~50
    88吴献花,侯长定,王林等.人工湿地处理污水的机理.玉溪师范学院学报. 2002, 18(1):103~105
    89李科德.芦苇床系统净化污水的机理.中国环境科学. 1995, (2):140~144
    90辛晓云,马秀东.氧化塘水生植物净化污水的研究.山西大学学报(自然科学版). 2003, 2(1):85~87
    91沈耀良,杨铨大.新型废水处理技术—人工湿地.污染防治技术. 1996, 9(1~2):1~8
    92莫凤鸾.高效垂直流人工是地湿地污水处理系统实践研究.中南林学院硕士论文, 2004:19~22
    93白晓慧,王宝贞,余敏等.人工湿地污水处理技术及其发展应用.哈尔滨建筑大学. 1999, 32(6):88~92
    94滕文民.高寒地区污水氧化塘的设计.中国给水排水. 1999, 15(6):36~37
    95 M. R. Andrew, S. I. Richard. Development of Vegetation in a Constructed Wetland Receiving Irrigation Return Flows. Agriculture, Ecosystems and Environment. 2007, 121(4):401~406
    96 L. S. Anne, A. M. Cynthia. Design and Hadrulic Performance of a Constructed Wetland Treating Oil Refinery Wasterwater. Water Science and Technology. 1999, 40(3):301~307
    97 G. Margaret. Nutrient Content of Wetland Plants in Constructed Wetlands Receiving Municipal Effluent in Tropical Australia. Water Science and Technology. 1997, 35(5):135~142
    98 K. Sakadevan, H. J.Bovar. Nutrient Removal Mechanisms in Constructed Wetlands and Sustainable Water Management. Water Science and Technology. 1999, 40(2):121~128
    99 C. A. Winthrop, B. H. Paul, A. B. Joel, et al. Temperature and Wetland Plant Species Effects on Wastewater and Root Zone Oxidation. Journal of Environmental Quality. 2002, 31(3):1010~1016
    100中华人民共和国水利部. 2005年中国水资源公报.中国水利水电出版社, 2006:25~36
    101王佳,舒新前.人工湿地植物的作用和选择.环境与可持续发展. 2007, (4): 62~64
    102国家环境保护总局.地表水环境质量标准.中国环境科学出版社, 2003:2 7~9
    103国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.第三版.中国环境科学出版社, 1989:280~285 354~356
    104鲍士旦.土壤农化分析.第三版.中国农业出版社, 2000:25~76 163~164
    105马放,任南琪,杨基先.污染控制微生物实验.哈尔滨工业大学出版社, 2002:68~83
    106 D. Rousseau, P. Vanrolleghemb, N. Pauwa. Constructed Wetlands in Flanders: a Performance Analysis. Ecological Engineering. 2004, 23(93):151~163
    107 E. A. Korkusuz, M. Beklioglu, N. G. Demirer. Comparison of the Treatment Performances of Blast Furnaceslag-based and Gravel-based Vertical Flow Wetlands Operated Identically for Domestic Wastewater Treatment in Turkey. Ecological Engineering. 2005, 24(3):185~198
    108 L. F. Li, Y. H. Li, K. B. Dilip. Potential of Constructed Wetlands in Treating the Eutrophic Water: Evidence from Taihu Lake of China. Bioresource Technology. 2008, 99(6):1656~1663
    109杨敦,周琪,人工湿地脱氮技术的机理及应用.中国给水排水. 2003, 19(1): 23~24
    110 F. A. Comin, J. A. Romero, V. Astorga, et al. Nitrogen Removal andCycling in Restored Wetlands Used as Filters of Nutrients for Agricultural Run off . Water Science and Technology. 1997, 35(5):255~261
    111 J. Vymazal. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment. 2007, 380(1):48~65
    112卢少勇,金相,余刚.人工湿地的氮去除机理.生态学报. 2006, 26(8): 2670~2677
    113 C. Platzer . Design Recommendations for Subsurface Flow Constructed Wetlands for Nitrification and Denitrification. Water Science and Technology. 1999, 40(3):257~263
    114 J. Vymazal. The Use of Sub-Surface Constructed Wetlands for Wastewater Treatment in the Czech Republic: 10 Years Experience. Ecoligical Engineering. 2002, 18(5):633~646
    115 D. D. Kozub, S. K. Liehr. Assessing Denitrification Rate Limiting Factors in a Constructed Wetland Receiving Landfill Leachate. Water Science and Technology. 1999, 40(3):75~82
    116 M. M. Fisher, K. R. Reddy. Phosphorus Flux from Wetland Soils Affected by Long-Term Nutrient Loading. Journal of Environmental Quality. 2001, 30(1):261~271
    117 M. D. Bubba, C. A. Arias, H. Brix. Phosphorus Adsorption Maximum of Sands for Use as Media in Subsurface Flow Constructed Reed Beds as Measured by the Langmuir Isotherm. Water Research. 2003, 37(14):390~400
    118 B. Hamouri, J. Nazih, J. Lahjouj. Subsurface-horizontal Flow Constructed Wetland for Sewage Treatment under Moroccan Climate Conditions. Desalination. 2007, 215(2):153~158
    119吴建强,黄沈发,丁玲等.人工湿地中的SND机理以及DO,pH对其的影响.环境污染与防治. 2005, 27(6):47~52
    120肖海文,邓荣森,翟俊等.溶解氧对人工湿地处理受污染城市河流水体效果的影响.环境科学. 2006, 27(12):2426~2431
    121 M. A. Belmont, C. D. Metcalfe Feasibility of Using Ornamental Plants (Zantedeschia aethi-opica) in Subsurface Flow Treatment Wetlands to Remove Nitrogen , Chemical Oxygen Demand and Nonylphenol Ethoxylate Surfactants a Laboratory Scale Study. EnvironmentalEngineering. 2003, 21(3):233~247
    122 S. A. Christos, A. T. Vassilios. Effect of Temperature, HRT, Vegetation and Porous Media on Removal Efficiency of Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands. Ecological Engineering. 2007, 29(2):173~191
    123 Z. Chen, R. Kostaschuk, M. Yang. Heavy metals on Tidal Flats in the Yangtze Estuary. China. Environmental Geology. 2001, 40(6):743~750
    124 B. Hristina, T. Karin. Impact of Loadings, Seasons and Plant Species on the Performance of a Tropical Constructed Wetland Polishing Effluent from Sugar Factory Stabilization Ponds. Ecological Engineering. 2007(1), 29:66~76
    125 S. R. Jing, Y.F. Lin. Seasonal Effect on Ammonia Nitrogen Removal by Constructed Wetlands Treating River Water in Southern Taiwan. Environmental Pollution. 2004, 127(2):291~301
    126 C. Turon, J. Comas, J. lemanya, et al. Environmental decision support systems: A new approachto support the operation and maintenance of horizontal subsurface flow constructed wetlands ecological engineering. 2007, 30(4)362~372
    127 C. Mitchell, D. McNevin. Alternative Analysis of BOD Removal in Subsur- face Flow Constructed Wetlands Employing Monod Kinctics. Water Research. 2001, 39(7):1295~1303
    128 P. L. Diederik, A. V. Peter, D. P. Niels. Model-Based Design of Horizontal Subsurface Flow Constructed Treatment Wetlands: a Review. Water Research. 2004, 38(6):1484~1493
    129 W. X. Liu, M. F. Dahab, Y. Surmpallir. Nitrogen Transformations Modeling in Subsurface-Flow Constructed Wetlands. Water Environment Research. 2005, 77(3):246~251
    130 A. M. Ray, R. S. Inouye. Development of Vegetation in a Constructed Wetland Receiving Irrigation Return Flows Agriculture, Ecosystems and Environment 2007,121 401~406
    131 H. I. Shepherd, G. Tchobanoglous, M. Grismcr. Time-Dependent Retardation Model for Chemical Oxygen Demand Removal in a Subsurface-Flow Constructed Wetland for Winery Wastewater Treatment. Water Environment Research. 2001, 73(3):246~251
    132程树培.应用人工湿地生态系统处理中小城市排放废水.城市环境与城市生态. 1989, 10(1):35~37
    133 K. R. Edwards, H. Cizkova, K. Zemanova, et al. Plant Growth and Microbial Processes in a Constructed Wetland Planted with Phalaris Arundinacea. Ecological Engineering. 2006, (27):153~165
    134王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究.环境科学学报.2006, 26(2):225~22
    135 R. Kroger, M. M. Holland, M. T. Moore, et al. Plant Senescence: A Mech- anism for Nutrient Release in Temperate Agricultural Wetlands. Environmental Pollution. 2007, 46(1):114~119
    136 V. Christina, A. Reimo, N. Kaspar, et al. Dynamics of Phosphorus, Nitrogen and Carbon Removal in a Horizontal Subsurface Flow Constructed Wetland. Science of the Total Environment. 2007, 380(1):66~74
    137 S. Variga, P. Chongrak. Nitrogen Mass. Balance and Microbial Analysis of Constructed Wetlands Treating Municipal Landfill Leachate. Bioresource Technology. 2007, 98(3):565~570
    138 V. D. Gon. Oxidation of Methane in the Rhizosphere of Rice Plants. Biology and Fertility of Soils. 1996, 22(4):359~366
    139 S. B. Peterson, J. M. Teal. The Role of Plants in Ecologically Engineered Wastewater Treatment Systems. Ecological Engineering. 1996, 6(2):137~148
    140岳春雷,常杰,葛滢等.人工湿地基质中土壤酶空间分布及其与水质净化效果之间的相关性.科技通报. 2004, 20(2):112~115
    141李今.人工湿地与城市水体生物膜特性及功能研究.中国科学院研究生院博士论文. 2005:34~37
    142陆健健,何文珊,童春福等.湿地生态学.高等教育出版社, 2006:78~82
    143 U. Stottmeister, A. Wiellner, P. Kuschk, et al. Effects of Plants and Microorganisms in Constructed Wetlands for Wastewater Treatment. Biotechnology Advances. 2003, 22(1):93~117
    144 S. Chong, H. Garelick, D. Revitt. The Microbiology Associated the Glycol Removal in Constructed Wetlands. Water Science and Technology. 1999, 40(3):99~107
    145 I. Walsh, T. Hill, B. Moffett, et al. Molecular Characterization of Bacteriain a Wetland Used to Remove Ammoniacal-N from Landfill Leachate. Waste Management and Research. 2002, 20(6):529~535
    146 G. Vacca, H. Wand, M. Nikolausz, et al. Effect of Plants and Filter Materials on Bacteria Removal in Pilot-Scale Constructed Wetlands. Water Research. 2005, 39(7):1361~1373
    147 D. Nicomrat, W. Dick, O. Tuovinen. Assessment of the Microbial Community in a Constructed Wetland that Receives Acid Coal Mine Drainage. Microbial Ecology. 2006, 51(1):83~89
    148 D. C. Baptista, T. Donnelly, D. Rayne, et al. Microbial Mechanisms of Carbon Removal in Subsurface Flow Wetlands. Water Science and Technology. 2003, 48(5):127~134
    149 A. Ibekwe, M. S. Catherine. Characterization of Microbial Communities and Composition in Constructed Dairy Wetland Wastewater Effluent. Applied and Environmental Microbiology. 2003, 69(9):5060~5069
    150张甲耀,夏盛林,邱克明等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究.环境科学学报. 1999, 19(3):323~327
    151梁威,吴振斌,周巧红等.构建人工湿地基质微生物与净化效果及相关分析.中国环境科学. 2002, 22(3):283~285
    152 T. akeshi, S. J. Yu, H. Satoshi, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., Novel Filamentous Anaerobes and Description of the New Classes Anaerolineae Classis nov. and Caldilineae Classis nov. in the Bacterial Phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology. 2006, 56(6):1331~1340
    153 J. D. Gu, K.H. Cheung. Phenotypic Expression of Vogesella Indigofera Upon Exposure to Hexavalent Chromiu, Cr6+. World Journal of Microbiology and Biotechnology. 2001, 17(5):475~480
    154 S. Murakami, J. Takemoto, A. Takashima, et al. Purification and Charac- terization of Two Muconate Cycloisomerase Isozymes from Aniline- assimilating Frateuria Species ANA-18. Bioscience, biotechnology and biochemistry. 1998, 62(6):1129~1133
    155 H. X. Cheng, Y. Akira. Dyella japonica gen. nov., sp. nov.,aγ-proteobacterium Isolated from Soil. International Journal of Systematic andEvolutionary Microbiology. 2005, 55(7):1625~1628
    156 K. T. Finneran, C. V. Johnsen, D. R. Lovley. Rhodoferax ferrireducens sp. nov., a Psychrotolerant, Facultatively Anaerobic Bacterium that Oxidizes Acetate with the Reduction of Fe(III). International Journal of Systematic and Evolutionary Microbiology. 2003, 53(5):669~673
    157金赞芳,李文腾,潘志彦.一株反硝化菌的分离鉴定和系统发育分析.环境科学与技术. 2006, 29(7):37~38
    158 P. Dominique, J. J. Godon, P. Dabert, et al. Microvirgula aerodenitrificans gen. nov., sp. nov., a New Gram-negative Bacterium Exhibiting Corespiration of Oxygen and Nitrogen Oxides Up to Oxygen-Saturated Conditions. International Journal of Systematic and Evolutionary Microbiology. 1998, 48(6):775~782
    159 J. T. Staley. Prosthecomicrobium and Ancalomicrobium. New Prosthecate Freshwater Bacteria. Journal of Bacteriology. 1968, 95(5):1921~1942
    160 S. J. Yu, I. Hiroyuki, S. Ambar, et al. Tepidanaero bacter syntrophicus gen. nov., sp. nov., an Anaerobic, Moderately Thermophilic, Syntrophic Alcohol and Lactate-Degrading Bacterium Isolated from Thermophilic Digested Sludges. International Journal of Systematic and Evolutionary Microbiology. 2006, 56(7):1621~1629
    161 J. E. Johansen, S. J. Binnerup, N. Kroer, et al. Luteibacter rhizovi cinus gen. nov., sp. nov., a Yellow-Pigmented Gammaproteobacterium Isolated from the Rhizosphere of Barley. International Journal of Systematic and Evolutionary Microbiology. 2005, 55(6):2285~2291
    162 A. Antunes, W. Eder, P. Fareleira, et al. Salinisphaera shabanensis gen. nov., sp. nov., a Novel, Moderately Halophilic Bacterium from the Brine-Seawater Interface of the Shaban Deep, Red Sea. Extremophiles. 2003, 7(1):29~34
    163 E. Jean. Valid Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(9):1219~1220
    164 T. Hideto, T. Yoshihiro, U. Ikuo. Genome Sequence of Oceanobacillus Iheyensis Isolated from the Iheya Ridge and Its Unexpected Adaptive Capabilities to Extreme Environments. Nucleic Acids Research. 2002,30(18):3927~3935
    165 S. M. Finegold, M. L. Vaisanen, D. R. Molitoris, et al. Cetobacterium somerae sp. nov. from Human Feces and Emended Description of the Genus Cetobacterium. Systematic and Applied Microbiology. 2003, 26(2):177~181
    166 W. Zillig, A.Gierl, G. Schreiber, et al. The Archaebacterium Thermo-filum Pendens Represents a Novel Genus of the Thermophilic, Anaerobic Sulfur Respiring Thermoproteales. Systematic and Applied Microbiology. 2000, 23(1):79~87
    167 I. Anderson, J. Rodriguez, D.Susanti, et al. Genome Sequence of Thermo- filum Pendens Reveals an Exceptional Loss of Biosynthetic Pathways without Genome Reduction. Journal of Bacteriology.2008, 190(8):2957~2965
    168 K. Yumiko, W. Kazuya. Sulfuricurvum kujiense gen. nov., sp. nov., a Facultatively Anaerobic, Chemolithoautotrophic, Sulfur-Oxidizing Bacterium Isolated from an Underground Crude-Oil Storage Cavity. International Journal of Systematic and Evolutionary Microbiology. 2004, 54(11):2297~2300.
    169谭周进,周清明,肖启明等.芽孢杆菌B13功能的初步研究.微生物学通报. 2005, 32(5):103~106
    170李军,李治荣,王宝真.淹没式生物膜法除磷微生物特性研究.北京工业大学学报. 2001, 27(1):7~90
    171宫占元,郑殿峰.侧芽孢杆菌降解有机磷能力的研究.黑龙江八一农垦大学学报. 2006, 18(1):12~14
    172宫占元,郑殿峰.侧芽孢杆菌降解无机磷能力的研究.黑龙江八一农垦大学学报. 2005, 17(5):14~17
    173郝贵玉,徐亚同,黄民生等.芽孢杆菌脱氮作用的研究.环境科学与技术. 2004, 27(1):20~23
    174何霞,赵彬,吕剑等.异养硝化细菌Bacillus sp. LY脱氮性能研究.环境科学. 2007, 28(6):1404~1408
    175侯颖,徐建强,孙德军等.养殖水体高效氨氮脱除菌的分离及脱除特性研究.西北农业科技大学学报. 2006, 34(11):136~140
    176苏俊峰,马放,王弘宇等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态.环境科学学报. 2007, 27(3):386~390
    177于爱茸,李尤,俞吉安.一株耐氧反硝化细菌的筛选及脱氮特性研究.微生物学杂志. 2005, 25(3):77~81
    178张小玲,梁运祥.一株反硝化细菌的筛选及其反硝化特性的研究.淡水渔业. 2006, 36(5):28~32
    179 K. K. Joong, K. young. A Erobic Nitrification-Denitrification by Heterotrophic Bacillus Strains. Bioresource Technology. 2005, 96(1):1897~1906
    180汪苹,项慕飞,翟茜.从不同反应器筛选、鉴别好氧反硝化菌.环境科学研究. 2007, 20(4):120~124
    181杨思璐,闻岳,李剑波等.人工湿地处理系统的生命周期成本评估. 2007, 23(12):6~10
    182 R. L. Knight, W. E. Walton. Strategies for Effective Mosquito Control in Constructed Treatment Wetlands. Ecological Engineering. 2003, 21(11):211~232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700