机床制造业绿色制造运行模式及其特征主线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色制造是一种综合考虑环境影响和资源消耗的现代制造模式,其目标是使得产品在整个寿命周期中对环境负面影响极小,资源利用率极高,并使企业经济效益和社会效益协调优化。作为资源消耗和环境排放严重的典型行业,机床制造业实施绿色制造是其实现可持续发展的迫切要求,对机床行业的长远发展具有重要的指导意义。
     本论文结合国家重大科技专项(高档数控机床与基础制造装备)课题“模块化高速、精密、大型数控滚齿机”(2009ZX04001-081),国家自然科学基金重点项目“离散车间制造系统高效低碳运行优化理论与关键技术”(51035001)等科研项目,对机床制造业绿色制造运行模式及其特征主线进行了研究。
     首先,针对我国机床制造业面临的机遇与绿色挑战,在分析机床制造业的绿色制造运行模式需求的基础上,提出了一种包括目标体系、特征主线和支撑系统等三层结构的机床制造业绿色制造运行模式,其中,目标体系包括企业战略目标与企业过程目标;特征主线包括机床产品的设计过程主线、多生命周期过程主线及物流过程主线;支撑系统包括绿色设计、清洁化生产、物能资源优化运行、管理信息、环境影响评估和质量保证等系统。
     然后,对机床制造业绿色制造运行模式的三条特征主线进行阐述与分析。
     (1)机床产品设计过程主线中,分析了产品设计主线的主导特性,论述了机床产品绿色设计过程框架,包括绿色设计过程、设计内容及技术体系;重点对机床总体布局设计技术、传动系统设计技术、床身及排屑系统设计、主轴及工作台主轴高速旋转的设计、刀具安装部位及工件接触部位的设计技术、安全防护设计等高速干切机床设计支持技术进行了研究。
     (2)机床产品多生命周期过程主线中,分析了机床多生命周期的内涵,提出了机床多生命周期工程的概念,并对其体系结构、过程模型及特征模型进行了论述;重点研究了多生命周期过程的机床再制造环节,对其定义及特点、工艺过程、工艺技术及典型模式进行了详细论述。
     (3)机床产品物流过程主线中,分析了铸造、锻造、机械加工、热处理、涂装、装配等典型工艺的环境排放及其处理方式;重点对机床产品物流过程碳排放特性进行了分析,建立了基于Petri网的机床制造过程碳排放模型,进而提出了一种机床产品物流过程碳排放量化方法。
     最后,将所研究的机床制造业绿色制造运行模式应用于重庆机床集团的生产实践中,为其机床产品绿色设计以及废旧机床再制造提供了重要的理论与技术支持,取得了较好的应用效果。
Green Manufacturing (GM) is a kind of modern manufacturing mode with the fullconsideration of environmental impact and resource consumption, its goal is to makethe environmental negative impact lower, resource utilization rate higher in the wholelife cycle of product, and make the enterprise economic benefit and social benefitoptimization coordinately. As a resource consumption and environmental emissionsserious typical industry, it’s quite imperative for machine tool industry to implementGM in order to realize its sustainable development and also has important guidingsignificance to the long-term development of the machine tool industry.
     With support from Major National Science&Technology Specific Projects (NO:2009ZX04001-081) and Natural Science Foundation of China (NO:51035001),Machine indutry GM operation mode and its characteristic lines are studied in the paper.
     Firstly, the paper discusses the opportunity and challenge that China’s machine toolindustry is facing, and then introduces the requirements of the GM operation model ofmachine tools industry. Thereby, an overall framework of machine tool GM operationmodel, which is comprised of objective systems, characteristic lines, and supportingsystems, has been established. The objective system contains enterprise strategy goalsand enterprise process goals.The characteristic lines consist of the main lines of productdesign process, product multi-stage life cycle process, and product logistics process.The supporting system is composed of some subsystems, such as green designsupporting system, clean production supporting system, optimized operation supportingsystem of material and energy resource, management information system,environmental effect assessment system and quality assurance system.
     Secondly, the three characteristic lines of GM operation model in machine toolsindustry are specified and analyzed.
     The main line of product design process is centered on the dominant characteristicsand the framework of machine tool product green design, including design process,design contents and technique systems. Meanwhile, some design technologies formachine tool in general layout, transmission system, machine tool bed and automaticchip removal system, spindle and workbench spindle high speed rotating design, tooland workpiece parts installation design technology and safety protection design etc areemphatically introduced.
     In view of the multi life cycle process line of machine tool products, the paperanalyses the connotation of multi-stage life cycle of machine tools and propose theconcept of multi-stage life cycle engineering of machine tool. Meanwhile, thearchitecture, process models, and characteristics models are introduced. Thenremanufacturing, one of the important parts of multi-stage life cycle engineering, hasbeen significantly introduced with the specification of the definition and characteristics,process model, process technologies and typical patterns of remanufacturing for oldmachine tools.
     Regarding the logistics process line of machine tool products, the paper discussesthe environmental emissions that typical production processes, such as casting, forging,machining, heat treatment, coating and assembling, produces and the correspondingtreatments are also presented. Then the carbon emission characteristics of machine toolproducts in the logistics process are substantially analyzed and a carbon emissionmodeling and quantitative method is proposed based on Petri Net.
     Finally, the GM operation model of machine tool industry that has been specifiedabove are applied into Chongqing Machine Tool (Group) Co., Ltd, which providesimportant theoretical and technological supports for the machine tool green design andold machine tools remanufacturing with a good application effect.
引文
[1]刘飞,曹华军,张华.绿色制造的理论与技术[M].北京:科学出版社,2005.
    [2]李隽波.进一步发展我国制造业的战略思考[J].改革与战略,2006,(11):34-36.
    [3]国家发展改革委员会.中华人民共和国国民经济和社会发展第十一个五年规划纲要.2006.
    [4]吴柏林.2008年机床工具行业经济运行分析[J].中国制造业信息化,2009,(6):20-21.
    [5] Melnyk S A, Smith R T. Green Manufacturing [M]. Dearborn, USA: Society ofMmanufacturing Engineers,1996.
    [6]刘飞,张华,岳红辉.绿色制造——现代制造业的可持续发展模式[J].中国机械工程,1998,9(6):76~78.
    [7] Thurwachter S, Schoening J, Sheng P. Environmental Value (EnV) Analysis[A]. IEEEInternational Symposium on Electronics and the Environment Conference Proceedings,Danvers, Massachusetts, May11-13,1999.
    [8] Krishnan N, Thurwachter S, Francis T, et al. The Environmental Value Systems (EnV-S)Analysis: Application to CMP Wastewater Treatment Options[A]. Third InternationalSymposium on Environmental Issues with Materials and Processes for the ElectronicsSemiconductor Industries, Toronto, Canada, May14-18,2000.
    [9] Boughton B, Horvath A. Environmental Assessment of Used Oil Management Methods[J].Environmental Science&Technology,2004,38(2):353-358.
    [10] Suh S, Lenzen M., Treloar G. J, et al. System Boundary Selection in Life-cycle Inventoriesusing Hybrid Approaches[J]. Environmental Science&Technology,2004,38(3):657-664.
    [11] Sheng P, Srinivasan M. Multi-Objective Process Planning in Environmentally ConsciousManufacturing: A Feature-Based Approach[J]. Annals of the CIRP,1995,44(1):433-437.
    [12] Srinivasan M., Sheng P. Feature Based Process Planning for Environmentally ConsciousMachining-Part1: MicroPlanning[J]. Robotics and Computer Integrated Manufacturing,1999,15:257~270.
    [13] Srinivasan M, Sheng P. Feature Based Process Planning for Environmentally ConsciousMachining-Part2: MacroPlanning[J]. Robotics and Computer Integrated Manufacturing,1999,15:271~281.
    [14] Munoz A, Sheng P. An Analytical Approach for Determining the Environmental Impact ofMachining Processes[J]. Journal of Materials Processing Technology,1995,53(3-4):736~758.
    [15] Rosen C M, Beckman S, Bercovitz J. The Role of Voluntary Industry Standards inEnvironmental Supply Chain Management: An Institutional Economics Perspective[J].Journal of Industrial Ecology,2002,6(3-4):103-123.
    [16] Masanet E, Horvath A. Assessing the Benefits of Design for Recycling of Plastics inElectronics: A Case Study of Computer Enclosures[J]. Materials&Design,2007,28(6):1801-1811.
    [17] Michael W T. The growing strategic importance of end-of-life product management[J].California Management Review,2003,45(3):102-129.
    [18] Masanet E. Assessing Public Exposure to Silver-Contaminated Groundwater from Lead-FreeSolder: An Upper Bound Risk-Based Approach[A]. Proceedings of the IEEE InternationalSymposium on Electronics and the Environment, San Fransicso, USA, May8-10,2002.
    [19] Sustainable Design and Manufacturing[EB/OL]. http://www.sdm.gatech.edu/,2008-12-23.
    [20] Bras B, Reap J. Towards Biologically Inspired Design for Sustainability[A]. Proceedings ofthe Sustainable Manufacturing IV Global Conference on Sustainable Product Developmentand Life Cycle Engineering, Sao Paulo, Brazil, Oct.3–6,2006.
    [21] Coutee A. S, McDermott S. D, Bras B. A Haptic Assembly and Disassembly SimulationEnvironment and Associated Computational Load Optimization Techniques[J]. ASME Journalof Computing&Information Science in Engineering,2001,1:113-122.
    [22] Emblemsvg J, Bras B. Activity-Based Cost and Environmental Management-A DifferentApproach to the ISO14000Compliance[M]. Amsterdam: Kluwer Academic Publishers,2000.
    [23] Bras B. Incorporating Environmental Issues in Product Realization[J]. Industry andEnvironment, United Nations UNEP/IE,1997,20(1-2):7-13.
    [24] Bilec M., Ries R., Matthews H, S.et al. Example of a Hybrid Life-Cycle Assessment ofConstruction Processes[J]. Journal of Infrastructure Systems,2006,12(4):207-215.
    [25] Peters G., Weber C., Guan D, et al. China's Growing CO2Emissions-A Race betweenIncreasing Consumption and Efficiency Gains[J]. Environmental Science&Technology,2007,41(17):5939-5944.
    [26] Hawkins T, Hendrickson C, Higgins C, et al. A mixed-unit input-output model forenvironmental life-cycle assessment and material flow analysis[J]. Environmental Science&Technology,2007,41(3):1024-1031.
    [27] Hawkins T R., Matthews H. S, Hendrickson C. Closing the loop on cadmium-An assessmentof the material cycle of cadmium in the US[J]. International Journal of Life Cycle Assessment,2006,11(1):38-48.
    [28] Lloyd S M, Lave L B, Matthews H S. Life cycle benefits of using nanotechnology to stabilizeplatinum-group metal particles in automotive catalysts[J]. Environmental Science&Technology,2005,39(5):1384-1392.
    [29] Environmentally Benign Manufacturing[EB/OL]. http://web.mit.edu/ebm/www/index.html,2008-12-23.
    [30] Gutowski T, Murphy C, Allen D, et al. Environmentally Benign Manufacturing: Observationsfrom Japan, Europe and the United States[J]. Journal of Cleaner Production,2005,13:1-17.
    [31] Allen D, Bauer D, Bras B, et al. Environmentally Benign Manufacturing: Trends in Europe,Japan and the U.S.A[J]. Journal of Manufacturing Science and Engineering,2002,124:908-920.
    [32] Matthew B, Gutowski T, Jones A, et al. A Thermodynamic Framework for Analyzing andImproving Manufacturing Processes[A]. IEEE International Symposium on Electronics andthe Environment, San Francisco, USA, May19-20,2008
    [33] Gutowski T. The Carbon and Energy Intensity of Manufacturing[A].40th CIRP InternationalManufacturing Systems Seminar, Liverpool, UK, May30-June1,2007.
    [34] Gutowski T, Dahmus J, Thiriez A, et al. A Thermodynamic Characterization of ManufacturingProcesses[A]. IEEE International Symposium on Electronics and the Environment, Orlando,Florida, USA, May7-10,2007.
    [35] Gutowski T, Dahmus J, Thiriez A. Electrical Energy Requirements for ManufacturingProcesses[A].13th CIRP International Conference on Life Cycle Engineering, Leuven,Belgium, May31-June2,2006.
    [36] Dahmus J, Gutowski T. Material Recycling at Product End-of-Life[A]. IEEE InternationalSymposium on Electronics and the Environment, San Francisco, California, USA, May8-11,2006.
    [37] Gutowski T. Thermodynamics and Recycling, A Review[A]. IEEE International Symposiumon Electronics and the Environment, San Francisco, USA, May19-20,2008.
    [38] Dahmus J, Gutowski T. What Gets Recycled: An Information Theory Based Model of ProductRecycling[J]. Environmental Science and Technology,2007,41:7543–7550.
    [39] Gutowski T, Dahmus J, Albino D, et al. Bayesian Material Separation Model WithApplications to Recycling[A]. IEEE International Symposium on Electronics and theEnvironment, Orlando, Florida, USA, May7-10,2007.
    [40] Gutowski T, Dahmus J. Mixing Entropy and Product Recycling[A]. IEEE InternationalSymposium on Electronics and the Environment, New Orleans, Louisiana, USA, May16-19,2005.
    [41] Dahmus J. Gutowski T. Efficiency and Production: Historical Trends for Seven IndustrialSectors[A]. The3rd Biennial Conference of the US Society for Ecological Economics,Tacoma, Washington, USA, July20-23,2005.
    [42] Gutowski T, Dahmus J. Efficiency, Eco-efficiency and the Environment[A].2nd InternationalConference of International Society for Industrial Ecology, Ann Arbor, Michigan, USA, June29-July2,2003.
    [43] Sutherland J. W, Gunter K L. A Model for Improving Economic Performance of aDemanufacturing System for Reduced Product End-of-Life Environmental Impact[J]. Annalsof CIRP,2002,51(1):45-48.
    [44] Sutherland J W, Gunter K L, Haapala K R., et al. Environmentally Benign Manufacturing:Status and Vision for the Future[J]. Transactions of NAMRI/SME,2003,31:345-352.
    [45] Sutherland J W, Gunter K L, Allen D, et al. A Global Perspective on the EnvironmentalChallenges Facing the Automotive Industry: State-of-the-Art and Directions for the Future[J].International Journal of Vehicle Design,2004,35:86-110.
    [46] Xue H, Kumar V, Sutherland J W. Material Flows and Environmental Impacts ofManufacturing Systems via Aggregated Input-Output Models[J]. Journal of CleanerProduction,2007,15(13-14):1349-1358.
    [47] Center for Industrial Ecology [EB/OL]. http://www.yale.edu/cie/index.html,2008-12-23.
    [48] Graedel T E, Allenby B R. Industrial Ecology (2nd Edition)[M]. Upper Saddle River, NJ:Prentice-Hall,2002.
    [49] Thomas E G, Jennifer A, Grenville H. Greening The Industrial Facility: Perspectives,Approaches, and Tools[M]. New York: Springer,2005.
    [50] Graedel T E. Streamlined Life-Cycle Assessment[M]. Upper Saddle River, NJ: Prentice-Hall,1998.
    [51] Graedel T E, Allenby B R. Design for Environment (2nd Edition)[M]. Upper Saddle River, NJ:Prentice-Hall,2001.
    [52] Sustainable Manufacturing Group[EB/OL]. http://www.ifm.eng.cam.ac.uk/sustainability/,2008-12-25.
    [53] Counsell T A M, Allwood J M. A review of technology options for reducing theenvironmental impact of office paper. Resources, Conservation and Recycling,2007,49:340-352.
    [54] Allwood J M. Utsunomiya H. A survey of flexible forming processes in Japan, Int. J. MachineTool&Manuf.,2006,46(15):1939-1960.
    [55] Counsell T A M, Allwood J M. Desktop paper recycling: A survey of novel technologies thatmight recycle office paper within the office. J Mat Proc Tech,2006,173(1):111-123.
    [56] Allwood J M, Kopp R, Michl D, et al The Technical and Commercial Potential of anIncremental Ring Rolling Process. Annals of CIRP,2005,54(1):233-236.
    [57] Allwood J M, Lee J H. The design of an agent for modeling supply chain network dynamics. IJ Prod Res,2005,43(22):4875-4898.
    [58] Hata T, Kato S, Sakamoto H, et al. Product Life Cycle Simulation with Quality Model[C].7thCIRP International Seminar on Life Cycle Engineering.
    [59] Kimura F, Kato S, Hata T, et al. Product modularization for parts reuse in inversemanufacturing[C]. Annals of the CIRP,2001,50(1):89-92.
    [60]刘飞,曹华军.绿色制造理论体系框架[J].中国机械工程,2000,11(9):979-982.
    [61]刘飞,曹华军,何乃军.绿色制造的研究现状与发展趋势[J].中国机械工程,2000,11(1-2):105-110.
    [62]张华,刘飞,梁洁.绿色制造的体系结构及其实施中的几个战略问题探讨[J].计算机集成制造系统,1997,3(2):11~14.
    [63]刘飞,徐宗俊,但斌,昝昕武.机械加工系统能量特性及其应用[M].北京:机械工业出版社,1995.
    [64] F. Liu, H. Zhang, P. Wu, H. J. Cao. A model for analyzing the consumption situation ofproduct material resources in manufacturing systems[J]. Journal of Materials ProcessingTechnology,2002,122(2-3):201~207.
    [65]曹华军,刘飞,何彦等.面向绿色制造的机床设备选择模型及其应用[J].机械工程学报,2004,40(3):6~10.
    [66]谭显春,刘飞,曹华军.面向绿色制造的刀具选择模型及应用研究[J].重庆大学学报,2003,26(3):117~121.
    [67]谭显春,刘飞,曹华军.面向绿色制造的切削液选择模型及其应用研究[J].工具技术,2002,910~114.
    [68]曹华军,刘飞,何彦等.基于模型集的面向绿色制造工艺规划策略研究[J].计算机集成制造系统,2002,18(12):978~982.
    [69]何彦,刘飞,曹华军等.面向绿色制造的工艺规划支持系统及应用[J].计算机集成制造系统,2005,11(7):975~980.
    [70]曹华军,刘飞,阎春平,李聪波.制造过程环境影响评价方法及其应用[J].机械工程学报,2005,41(6):163-167.
    [71]何彦,刘飞,曹华军等.面向绿色制造的机械加工系统任务优化调度模型[J].机械工程学报,2007,43(4):27-33.
    [72] He Yan, Liu Fei, Cao Huajun, et al. A bi-objective model for the job-shop scheduling problemto minimize both energy consumption and makespan [J]. Journal of Central South Universityof Technology,2005,12(s2):167-171.
    [73] He Yan, Liu Fei, Shi Jinliang, et al. A framework of scheduling models in machiningworkshop for green manufacturing[J]. Journal of Advanced Manufacturing Systems,2008,7(2):319-322.
    [74]刘飞,曹华军,杜彦斌.机床再制造技术框架及产业化策略研究[J].中国表面工程,2006,19(5):25-28.
    [75] Cao Huajun, Du Yanbin, Liu Fei. A disassembly capability planning model for themake-to-order remanufacturing system[J]. Journal of Advanced Manufacturing Systems,2008,7(2):329-332.
    [76]绿色设计与制造工程研究所[EB/OL]. http://www1.hfut.edu.cn/organ/greendesign/index.php,2008-12-26.
    [77]刘志峰,刘光复.绿色设计[M].北京:机械工业出版社,1999.
    [78]刘光复,刘志峰,李钢.绿色设计与绿色制造[M].机械工业出版社,2000.
    [79]黄志斌,刘志峰.当代生态哲学及绿色设计方法论[M].合肥:安徽人民出版社,2004.
    [80]刘志峰,张崇高,任家隆.干切削加工技术及应用[M].北京:机械工业出版社,2005.
    [81]可持续研究中心[EB/OL]. http://www.rcsm.sdu.edu.cn/,2008-12-26.
    [82]汪劲松,段广洪,李方义,向东,张洪潮.基于产品生命周期的绿色制造技术研究现状与展望[J].计算机集成制造系统,2000,5(4):1~8.
    [83]姚丽英,高建刚,段广洪等.基于分层结构的拆卸序列规划研究[J].中国机械工程,2003,14(17):1516~1519.
    [84]李方义.刘钢.汪劲松.段广洪.模糊AHP方法在产品绿色模块化设计中的应用[J].中国机械工程,2000,10(9):997~1000.
    [85]徐滨士等.再制造与循环经济[M].北京:科学出版社,2007.
    [86]徐滨士等.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [87]王能民,孙林岩,汪应洛.绿色制造模式下的供应商选择[J].系统工程,2001,19(2):347~41.
    [88]徐和平,赵小惠.孙林岩.绿色制造模式形成与实施的环境分析[J].中国机械工程,2003,14(4):1211~1214.
    [89]谢家平,陈荣秋.基于时间竞争的绿色再制造运作管理模式研究.中国流通经济2003,(9):61~65.
    [90]朱庆华.绿色供应链管理[M].北京:化学工业出版社,2004.
    [91]朱庆华,耿勇.工业生态设计[M].北京:化学工业出版社,2004.
    [92]张曙.下一代生产系统[J].世界制造技术与装备市场,2008,2:52-55.
    [93] Ecofit.http://ecofit.fatronik.com/,2009-03-04.
    [94]唐涛.基于数字化、网络化的TK6380A卧室镗铣床的再设计与再制造方法及实现[D].成都:电子科技大学硕士学位论文,2003:1-3.
    [95] Mikron机床适应绿色制造[J].世界制造技术与装备市场,2008,(4):78.
    [96]何彦.面向绿色制造的机械加工系统任务优化调度方法研究[D].重庆:重庆大学博士学位论文,2007:7-9.
    [97] Cutting Fluid Evaluation Software Testbed (CFEST)[EB/OL].http://www.mfg.mtu.edu/testbeds/cfest/,2007.
    [98] Sutherland J.W, Kulur V N, King N C. Experimental investigation of air quality in wet anddry turning [C].CIRP Annals-Manufacturing Technology,2000,49(1):61-6.
    [99] Vadrevu S, Sutherland J W, Olson W. Value model for use in environmentally consciousdesign and manufacturing [J].ASME-Manufacturing Science and Engineering,1994,68(1):93-102.
    [100] Shen G, Arici O, Sutherland J W. Development of a model for the prediction of the energypartition in a peripheral milling operation [J]. ASME Manufacturing Engineering Division,2001,12:97~106.
    [101]滕士波.数控机床的改造及应用[D].哈尔滨:哈尔滨工程大学硕士学位论文,2006:2-3.
    [102]朱家生.螺旋槽电解工具磨床数控化再制造技术研究与实现[D].重庆:重庆大学硕士学位论文,2006:3-4.
    [103]绿色制造,机床工业的新要求[EB/OL]. http://www.istis.sh.cn/list/list.aspx?id=3181,2006-8-15.
    [104]王可,汪文昌,付玉生,孙凤.数控螺杆铣床绿色制造策略及应用[J].机床与液压,2006,12:97-98.
    [105]贾育秦,王培霞,阎献国.面向绿色制造的机床全生命周期开发技术[J].制造技术与机床,2000,12:17-19.
    [106]李鹏忠,陈炳森,张为民,黄淑娟.绿色产品设计决策的影响评估算法.同济大学学报(自然科学版)[J],2004,32(9):2115-2119.
    [107]许虹.可重构机床设计理论与方法研究[D].浙江大学博士论文,2003.
    [108]赵岭,陈五一,马建峰.基于结构仿生的高速机床工作台轻量化设计.组合机床与自动化加工技术[J],2008,(1):1-3.
    [109]谢峰,沈维蕾,林巨广.C型压力机机身的轻量化设计.工程图学学报[J].2010,31(1):13-19.
    [110] Leigh Holloway. Materials Selection for Optimal Environmental Impact in MechanicalDesign. Materials and Design [J],1998,19(4):133-143.
    [111] Guidice F, Rosa G. L, Risitano.A. Materials Selection in the Life-Cycle Design Process: amethod to integrate mechanical and environment performances in optimal choice. Materialsand Design [J],2005,26(1):9-20.
    [112]黄海鸿,刘光复,刘志峰,潘君齐.绿色设计中的材料选择多目标决策.机械工程学报[J],2006,41(8):131-136.
    [113]刘飞,徐宗俊.机床主传动系统能量传输数学模型[J].重庆大学学报(自然科学版),1990.02:8-14.
    [114]程明,曹瑞武,胡国文,蔡桂龙,陈军.异步电动机调压节能控制方法研究[J].电力自动化设备,2008,01:6-10.
    [115] National center for Clean Industrial and Treatment technologies (CenCITT).http://cpas.mtu.edu/cencitt/,2004
    [116] Yeo S.H., Neo K G. Inclusion of environmental performance for decision making of weldingprocesses. Journal of Materials Processing Technology,1998,82:78–88
    [117]王静,宾鸿赞.加工过程的废弃物危害性分析及对策[J].机械工程师,2000,8:5-7.
    [118] Weinert K, Inasaki I, Sutherland J W, et al. Dry Machining and Minimum QuantityLubrication. CIRP Annals-Manufacturing Technology,2004,53(2):511-537.
    [119]徐滨士.再制造工程的现状与前沿.材料热处理学报[J],2010,31(1):10-14.
    [120]陈亚宁,丁文政,裴亮.三轴再制造机床空间几何误差建模与辨识研究[J].机床与液压,2008,36(4):314-317.
    [121]丁文政,黄筱调,周明虎.再制造机床可修复零部件精度分配研究[J].机械科学与技术,2007,26(11):1466-1470.
    [122]马世宁,孙晓峰,朱胜,胡仲翔.机床数控化再制造[J].中国表面工程,2004,(4):6-9.
    [123]七丁,晓立.脚踏实地自主创新应对挑战赢取未来——访中国机床工具工业协会总干事长吴柏林[J]《航空制造技术》2007(4),52-54.
    [124]王秋莲.机床行业绿色制造模式及支持技术研究[D].重庆:重庆大学硕士论文,2008
    [125]徐树滋.2007年世界机床产销情况和特点简析[J].制造技术与机床,2008(4):10-11.
    [126]中华人民共和国国家统计局编.中国统计年鉴2009[M].北京:中国统计出版社,2009.
    [127]邓超,王丽琴,吴军.基于工艺约束的生命周期评价与生命周期成本综合评价与优化[J].计算机集成制造系统,2008,14(8):1646-1651.
    [128]陶雪飞陶瓷企业低碳制造系统模式及评估与建模方法[D]重庆:重庆大学博士论文,2010
    [129]徐匡迪. Keynote: Low Carbon Economy and Green Manufacturing. The5th InternationalConference on Responsive Manufacturing (ICRM), Jan.11-13th,2009
    [130]彭建新绿色贸易壁垒对我国农产品贸易的影响经济论坛[J]2006(5),44-45
    [131]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年),2006.
    [132]国务院办公厅.国发[2005]22号,国务院关于加快发展循环经济的若干意见,2005.
    [133]王永靖.汽车制造企业绿色制造模式及关键支持系统研究[D].重庆:重庆大学博士论文,2008
    [134]李聪波.绿色制造运行模式及其实施方法研究[D].重庆大学博士论文,2009.
    [135]李先广,刘飞,曹华军等.齿轮加工机床的绿色设计与制造技术[J].机械工程学报,2009,45(11):140-145.
    [136]赵中敏.现代机床绿色设计的分析与研究[J].重型机械科技,2006,(2):45-46.
    [137]李先广.面向绿色制造的高速干式切削滚齿机设计与评价技术研究[D].重庆大学硕士论文,2004.
    [138] Mundt A. Design features of a Machine for High-Speed Dry Machining. LIEBHERRSeminar Documents.1994.
    [139]戴曙.金属切削机床设计[M].机械工业出版社.1985.
    [140] Karl-Heinz Speyer. CNC—Waelzfraesen. Verlag moderne Industrie
    [141] KOB. Gear Hobbing—State of the Art and Outlook. LIEBHERR VERZAHNTECHNIKGMBH.2002,3.
    [142]李先广.当代先进制齿及制齿机床技术的发展趋势[J].制造技术与机床,2003,(2):10-12.
    [143]李先广,廖邵华.从EMO2007看世界齿轮加工机床技术的发展[J].世界制造技术与装备市场,2008,(1):62-66.
    [144]陈庄,刘永梅.产品多生命周期工程—背景、现状和展望[J]200014(1),1-6.
    [145]陈庄,刘飞,陈晓慧.基于绿色制造的产品多生命周期工程[J]中国机械工程,199910(2)233-235.
    [146]徐滨士.中国再制造工程及其发展[J].中国表面工程,2010,23(2):1-6.
    [147]徐滨士,刘世参,史佩京,邢忠,谢建军.汽车发动机再制造效益分析及对循环经济贡献研究[J].中国表面工程,2005,(1):1-6.
    [148]薛俊芳.拆卸序列可行性检验及拆卸过程仿真的研究[D].2003.
    [149]崔培枝,姚巨坤.再制造清洗工艺与技术[J].新技术新工艺,2009,(3):25-28.
    [150]赵静.机械零件缺陷的无损检测方法发展趋势[J]农业装备与车辆工程2005(1)39-42.
    [151]刘贵民.无损检测技术[M].国防工业出版社2006.1.
    [152]奥宇可鑫集团[EB/OL]. http://www.aoyuksin.com/,2011-4-22.
    [153]范华兵常温冷熔焊接技术在船用柴油机机身修复中的应用[J]中国水运(下半月)2010(10)126-127.
    [154]赵浚宏机床企业再制造探索特色新模式[J]机电一体化2008,(10)17-24.
    [155]陆钟武,蔡九菊,于庆波,谢安国.钢铁生产流程的物流对能耗的影响[J].金属学报,2000,36(4).
    [156]庄幸,姜克隽.煤炭产品从矿井到用户的能源含量分析[J].中国能源2009,31(9):30-35.
    [157]狄向华,聂祚仁,左铁镛等.中国火力发电燃料消耗的生命周期排放清单[J].中国环境科学,2005,25(5):632-635.
    [158] BSI. Guide to Pass2050-How to assess the carbon footprint of goods and services[M] UK:British library2008.
    [159]林闯.随机Petri网和系统性能评价(第二版)[M].北京:清华大学出版社,2005.
    [160] IPCC.2006IPCC guidelines for national greenhouse gas inventories: volume Ⅱ
    [ES/OL].Japan: the Institute for Global Environmental Strategies,2008[2008-07-20].http://www.ipcc.ch/ipccreports/Methodology-report.hun.
    [161]袁宝荣,聂祚仁,狄向华等.中国化石能源生产的生命周期清单(Ⅱ)--生命周期清单的编制结果[J].现代化工,2006,26(4):59-61.]
    [162]张北平,刘礼祥.城市污水生物—生态处理工艺的能效分析[J].中国给排水,2008,24(5):68-71.
    [163] CAMPATELLI G. Analysis of the environmental impact for a turning operation of AISI1040steel[C]. Innovative Production Machines and Systems2009(IPROMS2009). Island ofIschia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700